活动介绍

树莓派窗口最大化比例

时间: 2025-01-07 14:51:20 浏览: 137
### 树莓派设置窗口最大化或自定义比例的方法 对于树莓派上的应用程序窗口管理,可以通过多种方式实现窗口的最大化或是按照特定的比例进行缩放。这不仅适用于图形界面下的常规应用,也适合于开发环境中的容器部署场景。 #### 使用命令行工具调整窗口大小 在Linux环境下,包括树莓派使用的Raspbian操作系统中,可以利用`wmctrl`这个强大的命令行工具来控制X Window系统的各个方面,比如改变现有窗口的位置、尺寸以及状态等[^1]。 安装`wmctrl`: ```bash sudo apt-get update && sudo apt-get install wmctrl ``` 假设目标程序名为`example-app`,要将其最大化可执行如下指令: ```bash wmctrl -r "example-app" -b add,maximized_vert,maximized_horz ``` 如果希望设定具体的宽高数值,则需先移动该窗口至屏幕左上角再指定其几何参数: ```bash wmctrl -r "example-app" -e 0,0,0,width,height ``` 此处`width`和`height`应替换为期望的具体像素值;而前面两个零分别代表不更改当前桌面编号与保持原有位置不变。 #### 修改启动器配置使应用全屏运行 当面对某些特殊的应用软件时,可能更倾向于直接编辑它们对应的`.desktop`文件,在其中加入相应选项让程序每次打开都处于最大化的模式下工作[^2]。 找到对应的应用快捷方式通常位于`~/.local/share/applications/`目录内或者是系统级别的共享路径里。接着添加一行`StartupWMClass=`后面紧跟唯一的类名字符串用于精准定位待操作的目标实例,并且紧接着追加一句`Exec=... %U --start-fullscreen`确保以全屏的方式激活进程。 #### 编写脚本自动处理多任务需求 考虑到实际应用场景可能会涉及到多个不同类型的客户端同时开启并各自占据一部分显示区域的情况,编写一段简单的Python脚本来批量完成上述动作不失为一种高效的做法[^3]。 下面给出了一段基于PyQt5框架的小例子用来创建无边框的顶层部件并且通过调用外部库函数精确调整外形轮廓: ```python from PyQt5.QtWidgets import QApplication,QWidget import sys,wsubprocess app = QApplication(sys.argv) widget = QWidget() widget.setWindowTitle('Customized Widget') widget.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint) widget.setGeometry(100, 100, 800, 600) # X,Y,W,H def set_window_geometry(title,x,y,w,h): subprocess.run(['xdotool', 'search', '--name', title,'windowsize','{} {} {}'.format(w,h),'windowmove','{} {} {}'.format(x,y)]) set_window_geometry(widget.windowTitle(),*widget.geometry().getRect()) sys.exit(app.exec_()) ``` 此代码片段展示了怎样借助第三方模块`xdotool`配合原生GUI组件快速搭建满足个性化定制要求的画面布局方案。
阅读全文

相关推荐

竞赛内容:设计一套全自动激光云台装置(下面简称“装置”),包含旋转云台、激光照射器和视频摄像头。基于光电技术,该装置可实现移动目标的目标自动跟踪和激光照射。竞赛场地如图1所示,周边为无围墙遮挡的开放区域,移动目标初始位置在①区域,云台装置放置在②区域(场地大小为四米乘四米,①区域和②区域分别在正方形的两个对角端点)。移动目标上放置高5cm、宽15cm的白色漫反射区域。 竞赛规则:本次光协光电赛-电赛赛道采取计分形式,满分100分(基础分35 +进阶分65),具体计分规则如下:(1)比赛开始时,移动目标处于静止状态,装置能自动找到处于静止状态的目标,并用激光跟踪照射漫反射区域持续2秒不脱靶。(15基础分)(2)移动目标以不大于1m/s的速度作直线运动,装置能自动定位目标,并用激光跟踪照射漫反射区域持续2秒不脱靶。(20基础分)(3)移动目标以不大于2m/s的速度从①区域往任意方向运动,装置能自动定位目标,并用激光跟踪照射漫反射区域持续2秒不脱靶。(15进阶分)(4)装置搭载在移动平台上(例如一台小车),在移动平台移动时,装置能自动找到处于静止状态的目标,并用激光跟踪照射漫反射区域持续2秒不脱靶。(10进阶分)(5)移动目标以不大于1m/s的速度作直线运动,移动平台同时移动,越过中线后装置能自动定位目标,并用激光跟踪照射漫反射区域持续2秒不脱靶。(15进阶分)(6)移动目标以不大于2m/s的速度从①区域往任意方向运动,移动平台同时移动,越过中线后装置能自动定位目标,并用激光跟踪照射漫反射区域持续2秒不脱靶。(15进阶分)(7)移动平台能使用非通信手段实时反馈自身在场地内的位置,误差<10cm。(5进阶分)(8)装置总重量(不含电池)小于100g。(5进阶分) 3. 其他说明:(1)传感器及动作机构:装置搭载的光电传感器、陀螺仪等传感器数量不限,搭载的动作机构数量不限,传感器的安装方式无特定要求。禁止使用OpenMV模块作为图像处理工具,否则视为违规,取消参赛资格。(2)使用小车作为移动平台时,长、宽、高尺寸均控制在15cm~30cm以内,16.8V以下电池供电,电机数量不限。禁止使用非光电方式控制小车的行进,否则视为违规,取消参赛资格。 我使用的设备为树莓派5-4g,采用的摄像头为ov 5647,请写出详细的python代码(我对python不是很熟悉)强化目标检测的算法,特别是当目标过远时

大家在看

recommend-type

HCIP-Transmission(传输)H31-341培训教材v2.5.zip

目录 HCIP-Transmission(传输)H31-341培训教材 版本说明 考试大纲及实验手册
recommend-type

无外部基准电压时STM32L151精确采集ADC电压

当使用电池直接供电 或 外部供电低于LDO的输入电压时,会造成STM32 VDD电压不稳定,忽高忽低。 此时通过使用STM32的内部参考电压功能(Embedded internal reference voltage),可以准确的测量ADC管脚对应的电压值,精度 0.01v左右,可以满足大部分应用场景。 详情参考Blog: https://blog.csdn.net/ioterr/article/details/109170847
recommend-type

电赛省一作品 盲盒识别 2022TI杯 10月联赛 D题

本系统以stm32作为控制核心,设计并制作了盲盒识别装置,通过光电开关可以检测盲盒的有无,并且包含语音播报模块,就是在切换任务时会有声音提示,通过电磁感应检测技术判断不同种类盲盒内硬币的种类以及摆放方式。系统通过传感器对不同的谐振频率测量出不同种类的硬币,并且系统通过扩展板lcd屏显示传感区域盲盒“有”“无”,以及工作状态,识别完成后能够显示识别完成和硬币种类和硬币组合。
recommend-type

红外扫描仪的分辨率-武大遥感与应用PPT

红外扫描仪的分辨率 红外扫描仪的瞬时视场 d:探测器尺寸(直径或宽度);f:扫描仪的焦距 红外扫描仪垂直指向地面的空间分辨率 H: 航高 在仪器设计时已经确定,所以对于一个使用着的传感器,其地面分辨率的变化只与航高有关。航高大,a0值自然就大,则地面分辨率差。
recommend-type

ztecfg中兴配置加解密工具3.0版本.rar

中兴光猫配置文件加解密工具3.0 .\ztecfg.exe -d AESCBC -i .\(要解密的文件名)db_user_cfg.xml -o (解密后文件名)123.cfg

最新推荐

recommend-type

基于树莓派的语音对话机器人

基于树莓派的语音对话机器人是一项有趣的DIY项目,它结合了硬件与软件技术,让树莓派能够接收并响应语音指令。以下是对这个项目的详细解释: 1. **树莓派**:树莓派是一种小型、低成本的单板计算机,通常用于教育、...
recommend-type

基于树莓派opencv的人脸识别.pdf

【基于树莓派opencv的人脸识别】 在计算机视觉领域,人脸识别是一种常见的技术,它通过捕捉和分析面部特征来识别人的身份。本教程将详细介绍如何在树莓派上使用OpenCV库实现这一功能。 首先,我们需要了解摄像头的...
recommend-type

树莓派CM4安装系统SSH登录.docx

树莓派CM4是一款强大的微型计算机模块,常用于DIY项目和嵌入式系统开发。在初次使用时,我们需要为其安装操作系统并配置SSH连接以便远程管理。以下是对整个过程的详细说明: 首先,你需要访问树莓派基金会的官方...
recommend-type

树莓派4B安装Tensorflow的方法步骤

树莓派4B是一款流行的微型计算机,常用于教育、实验和小型项目。TensorFlow是一个强大的开源机器学习框架,由Google开发,广泛应用于数据处理和模型训练。这篇文章将详细介绍如何在树莓派4B上安装TensorFlow,包括两...
recommend-type

Raspberry Pi 树莓派 1代 B完整原理图

Raspberry Pi,通常被称为树莓派,是一款基于Linux操作系统的微型计算机,由英国的树莓派基金会开发。1代B型号是这个系列的早期版本,它为DIY爱好者、学生和开发者提供了一个低成本的平台来学习计算机硬件和软件知识...
recommend-type

精选Java案例开发技巧集锦

从提供的文件信息中,我们可以看出,这是一份关于Java案例开发的集合。虽然没有具体的文件名称列表内容,但根据标题和描述,我们可以推断出这是一份包含了多个Java编程案例的开发集锦。下面我将详细说明与Java案例开发相关的一些知识点。 首先,Java案例开发涉及的知识点相当广泛,它不仅包括了Java语言的基础知识,还包括了面向对象编程思想、数据结构、算法、软件工程原理、设计模式以及特定的开发工具和环境等。 ### Java基础知识 - **Java语言特性**:Java是一种面向对象、解释执行、健壮性、安全性、平台无关性的高级编程语言。 - **数据类型**:Java中的数据类型包括基本数据类型(int、short、long、byte、float、double、boolean、char)和引用数据类型(类、接口、数组)。 - **控制结构**:包括if、else、switch、for、while、do-while等条件和循环控制结构。 - **数组和字符串**:Java数组的定义、初始化和多维数组的使用;字符串的创建、处理和String类的常用方法。 - **异常处理**:try、catch、finally以及throw和throws的使用,用以处理程序中的异常情况。 - **类和对象**:类的定义、对象的创建和使用,以及对象之间的交互。 - **继承和多态**:通过extends关键字实现类的继承,以及通过抽象类和接口实现多态。 ### 面向对象编程 - **封装、继承、多态**:是面向对象编程(OOP)的三大特征,也是Java编程中实现代码复用和模块化的主要手段。 - **抽象类和接口**:抽象类和接口的定义和使用,以及它们在实现多态中的不同应用场景。 ### Java高级特性 - **集合框架**:List、Set、Map等集合类的使用,以及迭代器和比较器的使用。 - **泛型编程**:泛型类、接口和方法的定义和使用,以及类型擦除和通配符的应用。 - **多线程和并发**:创建和管理线程的方法,synchronized和volatile关键字的使用,以及并发包中的类如Executor和ConcurrentMap的应用。 - **I/O流**:文件I/O、字节流、字符流、缓冲流、对象序列化的使用和原理。 - **网络编程**:基于Socket编程,使用java.net包下的类进行网络通信。 - **Java内存模型**:理解堆、栈、方法区等内存区域的作用以及垃圾回收机制。 ### Java开发工具和环境 - **集成开发环境(IDE)**:如Eclipse、IntelliJ IDEA等,它们提供了代码编辑、编译、调试等功能。 - **构建工具**:如Maven和Gradle,它们用于项目构建、依赖管理以及自动化构建过程。 - **版本控制工具**:如Git和SVN,用于代码的版本控制和团队协作。 ### 设计模式和软件工程原理 - **设计模式**:如单例、工厂、策略、观察者、装饰者等设计模式,在Java开发中如何应用这些模式来提高代码的可维护性和可扩展性。 - **软件工程原理**:包括软件开发流程、项目管理、代码审查、单元测试等。 ### 实际案例开发 - **项目结构和构建**:了解如何组织Java项目文件,合理使用包和模块化结构。 - **需求分析和设计**:明确项目需求,进行系统设计,如数据库设计、系统架构设计等。 - **代码编写和实现**:根据设计编写符合要求的代码,实现系统的各个模块功能。 - **测试和维护**:进行单元测试、集成测试,确保代码质量,对项目进行维护和升级。 ### 其他相关知识点 - **Java虚拟机(JVM)**:了解JVM的基本工作原理,包括类加载机制、内存管理、垃圾回收算法等。 - **常用Java框架**:比如Spring、Hibernate、MyBatis等,在实际开发中常常与Java基础结合使用,提高开发效率。 以上知识点可以作为学习Java案例开发的基础框架。在实际的开发实践中,开发者需要结合具体的项目需求,对这些知识点进行灵活运用。通过反复的案例实践,可以加深对Java编程的理解,并逐步提升开发技能。这份集锦可能包含的案例可能涉及上述知识点的具体应用,能够帮助学习者更好地理解理论与实践的结合,从而快速提升个人的Java开发能力。
recommend-type

【VASP报错深度解析】:5大技巧识别并永久解决离子距离太近警告

# 1. VASP软件简介及离子距离太近问题概述 ## 1.1 VASP软件简介 **VASP(Vienna Ab initio Simulation Package)** 是一款广泛应用于计算材料科学的软件,它基于密度泛函理论(DFT)计算固体、表面和分子的电子结构和性质。
recommend-type

npm error A complete log of this run can be found in: D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log

<think>好的,我需要帮助用户找到npm的错误调试日志位置,并解决他们遇到的npm错误。首先,用户已经提供了一个具体的日志路径:'D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log',但看起来这个路径可能有问题,因为日期是2025年,这可能是一个示例或输入错误。我需要确认正确的日志路径生成方式。 根据npm的默认配置,日志文件通常位于npm的缓存目录下的_logs文件夹中。默认情况下,Windows系统中npm的缓存路径是%AppData%\npm-cache,而日志文件会以当前日期和
recommend-type

深入理解内存技术文档详解

由于文件内容无法查看,仅能根据文件的标题、描述、标签以及文件名称列表来构建相关知识点。以下是对“内存详解”这一主题的详细知识点梳理。 内存,作为计算机硬件的重要组成部分,负责临时存放CPU处理的数据和指令。理解内存的工作原理、类型、性能参数等对优化计算机系统性能至关重要。本知识点将从以下几个方面来详细介绍内存: 1. 内存基础概念 内存(Random Access Memory,RAM)是易失性存储器,这意味着一旦断电,存储在其中的数据将会丢失。内存允许计算机临时存储正在执行的程序和数据,以便CPU可以快速访问这些信息。 2. 内存类型 - 动态随机存取存储器(DRAM):目前最常见的RAM类型,用于大多数个人电脑和服务器。 - 静态随机存取存储器(SRAM):速度较快,通常用作CPU缓存。 - 同步动态随机存取存储器(SDRAM):在时钟信号的同步下工作的DRAM。 - 双倍数据速率同步动态随机存取存储器(DDR SDRAM):在时钟周期的上升沿和下降沿传输数据,大幅提升了内存的传输速率。 3. 内存组成结构 - 存储单元:由存储位构成的最小数据存储单位。 - 地址总线:用于选择内存中的存储单元。 - 数据总线:用于传输数据。 - 控制总线:用于传输控制信号。 4. 内存性能参数 - 存储容量:通常用MB(兆字节)或GB(吉字节)表示,指的是内存能够存储多少数据。 - 内存时序:指的是内存从接受到请求到开始读取数据之间的时间间隔。 - 内存频率:通常以MHz或GHz为单位,是内存传输数据的速度。 - 内存带宽:数据传输速率,通常以字节/秒为单位,直接关联到内存频率和数据位宽。 5. 内存工作原理 内存基于电容器和晶体管的工作原理,电容器存储电荷来表示1或0的状态,晶体管则用于读取或写入数据。为了保持数据不丢失,动态内存需要定期刷新。 6. 内存插槽与安装 - 计算机主板上有专用的内存插槽,常见的有DDR2、DDR3、DDR4和DDR5等不同类型。 - 安装内存时需确保兼容性,并按照正确的方向插入内存条,避免物理损坏。 7. 内存测试与优化 - 测试:可以使用如MemTest86等工具测试内存的稳定性和故障。 - 优化:通过超频来提高内存频率,但必须确保稳定性,否则会导致数据损坏或系统崩溃。 8. 内存兼容性问题 不同内存条可能由于制造商、工作频率、时序、电压等参数的不匹配而产生兼容性问题。在升级或更换内存时,必须检查其与主板和现有系统的兼容性。 9. 内存条的常见品牌与型号 诸如金士顿(Kingston)、海盗船(Corsair)、三星(Samsung)和芝奇(G.Skill)等知名品牌提供多种型号的内存条,针对不同需求的用户。 由于“内存详解.doc”是文件标题指定的文件内容,我们可以预期在该文档中将详细涵盖以上知识点,并有可能包含更多的实践案例、故障排查方法以及内存技术的最新发展等高级内容。在实际工作中,理解并应用这些内存相关的知识点对于提高计算机性能、解决计算机故障有着不可估量的价值。
recommend-type

【机械特性分析进阶秘籍】:频域与时域对比的全面研究

# 1. 机械特性分析的频域与时域概述 ## 1.1 频域与时域分析的基本概念 机械特性分析是通