deepseek 1.5b离线模型微调
时间: 2025-03-03 11:27:58 浏览: 56
### 对 DeepSeek 1.5B 离线模型进行微调
为了对 DeepSeek 1.5B 离线模型进行微调,可以遵循以下方法:
#### 准备环境
确保安装了必要的库和工具包。这通常涉及 Python 和 PyTorch 的安装以及 Hugging Face Transformers 库的引入。
```bash
pip install torch transformers datasets evaluate accelerate
```
#### 加载数据集
使用 `datasets` 库来加载所需的数据集,并对其进行预处理以便于后续训练过程中的应用[^2]。
```python
from datasets import load_dataset
dataset = load_dataset('path_to_your_data')
train_testvalid = dataset['train'].train_test_split(test_size=0.1, seed=42)
tokenized_datasets = train_testvalid.map(
tokenize_function,
batched=True,
num_proc=4,
remove_columns=["text"]
)
```
#### 初始化模型与分词器
从本地路径加载已有的 DeepSeek 模型及其对应的分词器实例化对象。
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name_or_path = "path/to/deepseek-r1-1.5b"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path)
```
#### 设置训练参数
定义用于控制训练行为的各种超参数配置项,比如批量大小、学习率等。
```python
batch_size = 8
learning_rate = 5e-5
weight_decay = 0.01
num_train_epochs = 3
gradient_accumulation_steps = 4
max_length = 512
lr_scheduler_type = "cosine"
warmup_ratio = 0.1
output_dir = "./results"
training_args = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=batch_size,
learning_rate=learning_rate,
weight_decay=weight_decay,
fp16=True,
gradient_checkpointing=True,
max_grad_norm=None,
num_train_epochs=num_train_epochs,
logging_strategy="steps",
evaluation_strategy="epoch",
save_strategy="epoch",
warmup_ratio=warmup_ratio,
lr_scheduler_type=lr_scheduler_type,
report_to='tensorboard',
push_to_hub=False,
hub_model_id=model_name_or_path.split('/')[-1],
gradient_accumulation_steps=gradient_accumulation_steps,
optim="adamw_torch_fused",
ddp_find_unused_parameters=False,
group_by_length=True,
do_train=True,
do_eval=True,
predict_with_generate=True,
generation_max_length=max_length * 2,
save_total_limit=1,
disable_tqdm=False,
dataloader_num_workers=4,
load_best_model_at_end=True,
metric_for_best_model="eval_loss",
greater_is_better=False,
label_names=['labels']
)
```
#### 创建Trainer并启动训练
利用上述设置创建 Trainer 实例,并开始执行实际的微调操作。
```python
trainer = Trainer(
model=model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics_fn,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
)
trainer.train()
```
完成以上步骤之后,即实现了基于特定任务需求下的 DeepSeek 1.5B 模型微调工作流。
阅读全文
相关推荐


















