C:\anaconda\Lib\site-packages\transformers\utils\generic.py:260: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead. torch.utils._pytree._register_pytree_node(

时间: 2025-06-23 19:17:47 浏览: 19
<think>嗯,用户现在遇到了一个关于PyTorch的FutureWarning警告,具体是在使用transformers库的时候出现的。我需要先理解这个警告的含义以及可能的原因。 首先,警告信息中提到`torch.utils._pytree._register_pytree_node`已经被弃用,建议改用`torch.utils._pytree.register_pytree_node`。这说明transformers库中的某个部分还在使用旧版本的PyTorch的API,而PyTorch的新版本已经更新了这个方法,导致兼容性问题。 接下来,我需要考虑用户的环境。用户使用的是Anaconda,路径里有C:\anaconda\,说明可能是在Windows系统下。transformers库属于Hugging Face的库,常用于自然语言处理任务,依赖于PyTorch或者TensorFlow。这里出现的警告与PyTorch相关,所以用户可能安装了PyTorch的最新版本,而transformers库可能还没有完全适配这个最新版本。 用户可能想知道这个警告的影响以及如何解决。我需要分步骤来解答: 1. **警告原因**:解释为什么会出现这个警告,即API的变化导致。 2. **影响分析**:这个警告是FutureWarning,说明当前代码还能运行,但未来版本可能会移除旧方法,导致错误。 3. **解决方案**: - 方法一:升级transformers库到最新版本,可能已经修复了这个问题。 - 方法二:降级PyTorch到兼容的版本,避免使用被弃用的API。 - 方法三:如果问题依旧,可能需要等待库的更新,或者暂时忽略警告。 4. **具体操作步骤**:如何升级或降级库,使用conda或pip命令。 5. **验证解决**:如何检查问题是否解决,比如重新运行代码看是否还有警告。 6. **额外建议**:比如关注库的更新日志,虚拟环境的使用等。 在思考过程中,还需要确认这些步骤的正确性,比如检查transformers的官方文档或GitHub issues,看看是否有相关的问题和修复。可能用户使用的transformers版本较旧,而PyTorch已经更新,因此需要确认两者版本的兼容性。 另外,用户可能不太熟悉如何管理Python包的版本,所以需要给出具体的命令示例,比如使用`pip install --upgrade transformers`或者`conda install pytorch=1.11.0`等,并提醒版本号可能需要根据实际情况调整。 最后,要确保回答清晰,步骤明确,让用户能够一步步解决问题,同时解释背后的原因,帮助用户理解问题,避免未来类似的情况。</think>--- ### 一、警告含义解析 这个`FutureWarning`是**PyTorch版本兼容性提示**,表示当前代码调用的API(`_register_pytree_node`)已被标记为**弃用**,未来版本将被移除。核心问题如下: | 旧方法 | 新方法 | 触发场景 | |-------|-------|---------| | `torch.utils._pytree._register_pytree_node` | `torch.utils._pytree.register_pytree_node` | 新旧PyTorch版本与`transformers`库的兼容性问题 | --- ### 二、问题根源 1. **PyTorch更新机制** PyTorch新版(>=1.12)对内部API命名进行了规范化,移除了旧版的下划线前缀方法(`_register_pytree_node` → `register_pytree_node`)。 2. **三方库适配延迟** `transformers`库(Hugging Face)的部分代码可能**未及时更新**对PyTorch新API的调用方式,导致触发警告。 --- ### 三、解决方案 #### 方法1:升级`transformers`库(推荐) 最新版通常已修复兼容性问题: ```bash # 使用pip升级 pip install --upgrade transformers # 使用conda升级(如果通过conda安装) conda update -c huggingface transformers ``` #### 方法2:降级PyTorch版本(保守方案) 若升级后问题未解决,可回退到与当前`transformers`兼容的PyTorch版本: ```bash # 例如降级到PyTorch 1.11.0(需根据实际需求调整版本号) conda install pytorch==1.11.0 -c pytorch # 或使用pip pip install torch==1.11.0 ``` #### 方法3:临时忽略警告(非生产环境) 在代码开头添加警告过滤: ```python import warnings warnings.filterwarnings("ignore", category=FutureWarning) ``` --- ### 四、验证修复 1. 升级/降级后,重新运行触发警告的代码。 2. 检查是否输出以下提示: ✅ 无警告 → 修复成功 ❌ 仍有警告 → 需进一步检查版本匹配 --- ### 五、版本匹配参考 | `transformers`版本 | 兼容PyTorch版本 | 备注 | |--------------------|-----------------|------| | >=4.25.0 | >=1.12, <=2.0 | 推荐组合 | | <4.25.0 | <=1.11 | 需降级PyTorch | --- ### 六、深入建议 1. **虚拟环境管理**:使用`conda create -n myenv`隔离不同项目的依赖。 2. **跟踪更新日志**:关注[Hugging Face GitHub](https://github.com/huggingface/transformers)的版本发布说明。 3. **主动测试兼容性**:在升级PyTorch前,查阅`transformers`官方文档的版本要求。 --- 该警告不影响当前代码运行,但建议尽快升级以避免未来版本不兼容问题。
阅读全文

相关推荐

A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "C:\Users\31035\PycharmProjects\pythonProject1\main.py", line 1, in <module> from transformers import T5Tokenizer, T5ForConditionalGeneration File "C:\Anaconda\envs\pytorch\lib\site-packages\transformers\__init__.py", line 26, in <module> from . import dependency_versions_check File "C:\Anaconda\envs\pytorch\lib\site-packages\transformers\dependency_versions_check.py", line 16, in <module> from .utils.versions import require_version, require_version_core File "C:\Anaconda\envs\pytorch\lib\site-packages\transformers\utils\__init__.py", line 27, in <module> from .chat_template_utils import DocstringParsingException, TypeHintParsingException, get_json_schema File "C:\Anaconda\envs\pytorch\lib\site-packages\transformers\utils\chat_template_utils.py", line 40, in <module> from torch import Tensor File "C:\Anaconda\envs\pytorch\lib\site-packages\torch\__init__.py", line 1477, in <module> from .functional import * # noqa: F403 File "C:\Anaconda\envs\pytorch\lib\site-packages\torch\functional.py", line 9, in <module> import torch.nn.functional as F File "C:\Anaconda\envs\pytorch\lib\site-packages\torch\nn\__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "C:\Anaconda\envs\pytorch\lib\site-packages\torch\nn\modules\__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "C:\Anaconda\envs\pytorch\lib\site-packages\torch\nn\modules\transformer.py", line 20, in <module> devic

AttributeError Traceback (most recent call last) Cell In[16], line 2 1 #os.environ["HF_ENDPOINT"] = "http://localhost:8000" ----> 2 trainer.train() File d:\anaconda\lib\site-packages\transformers\trainer.py:2241, in Trainer.train(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs) 2239 hf_hub_utils.enable_progress_bars() 2240 else: -> 2241 return inner_training_loop( 2242 args=args, 2243 resume_from_checkpoint=resume_from_checkpoint, 2244 trial=trial, 2245 ignore_keys_for_eval=ignore_keys_for_eval, 2246 ) File d:\anaconda\lib\site-packages\transformers\trainer.py:2639, in Trainer._inner_training_loop(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval) 2636 self.control.should_training_stop = True 2638 self.control = self.callback_handler.on_epoch_end(args, self.state, self.control) -> 2639 self._maybe_log_save_evaluate(tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time) 2641 if DebugOption.TPU_METRICS_DEBUG in self.args.debug: 2642 if is_torch_xla_available(): 2643 # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) File d:\anaconda\lib\site-packages\transformers\trainer.py:3085, in Trainer._maybe_log_save_evaluate(self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time) ... 169 else: --> 170 if not chunk.startswith(('B-', 'I-', 'E-', 'S-')): 171 warnings.warn('{} seems not to be NE tag.'.format(chunk)) AttributeError: 'numpy.int64' object has no attribute 'startswith'

C:\Program Files\jqxxrj\Lib\site-packages\bitsandbytes\cuda_setup\main.py:166: UserWarning: Welcome to bitsandbytes. For bug reports, please run python -m bitsandbytes warn(msg) C:\Program Files\jqxxrj\Lib\site-packages\bitsandbytes\cuda_setup\main.py:166: UserWarning: C:\Program Files\jqxxrj did not contain ['libcudart.so', 'libcudart.so.11.0', 'libcudart.so.12.0'] as expected! Searching further paths... warn(msg) --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[1], line 1 ----> 1 import bitsandbytes as bnb 2 print(bnb.cuda_setup.main()) File C:\Program Files\jqxxrj\Lib\site-packages\bitsandbytes\__init__.py:6 1 # Copyright (c) Facebook, Inc. and its affiliates. 2 # 3 # This source code is licensed under the MIT license found in the 4 # LICENSE file in the root directory of this source tree. ----> 6 from . import cuda_setup, utils, research 7 from .autograd._functions import ( 8 MatmulLtState, 9 bmm_cublas, (...) 13 matmul_4bit 14 ) 15 from .cextension import COMPILED_WITH_CUDA File C:\Program Files\jqxxrj\Lib\site-packages\bitsandbytes\research\__init__.py:1 ----> 1 from . import nn 2 from .autograd._functions import ( 3 switchback_bnb, 4 matmul_fp8_global, 5 matmul_fp8_mixed, 6 ) File C:\Program Files\jqxxrj\Lib\site-packages\bitsandbytes\research\nn\__init__.py:1 ----> 1 from .modules import LinearFP8Mixed, LinearFP8Global File C:\Program Files\jqxxrj\Lib\site-packages\bitsandbytes\research\nn\modules.py:8 5 from torch import Tensor, device, dtype, nn 7 import bitsandbytes as bnb ----> 8 from bitsandbytes.optim import GlobalOptimManager 9 from bitsandbytes.utils import OutlierTracer, find_outlier_dims 11 T = TypeVar("T", bound="torch.nn.Module") File C:\Program Files\jqxxrj\Lib\site-packages\bitsandby

/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:441: FutureWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead. _torch_pytree._register_pytree_node( /home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:309: FutureWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead. _torch_pytree._register_pytree_node( hornetq Traceback (most recent call last): File "/home/ls_lunwen/KEPT-main/Kept/trace/main/./train_trace_rapt.py", line 28, in <module> main() File "/home/ls_lunwen/KEPT-main/Kept/trace/main/./train_trace_rapt.py", line 19, in main preprocess_dataset(args.data_dir,args.project) File "/home/ls_lunwen/KEPT-main/Kept/trace/main/../../common/data_processing.py", line 314, in preprocess_dataset process_project(base_dir,project) File "/home/ls_lunwen/KEPT-main/Kept/trace/main/../../common/data_processing.py", line 301, in process_project bug_reports_pd, links_pd, file_diffs_pd = process_data(issue_path, commit_path,data_type) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/KEPT-main/Kept/trace/main/../../common/data_processing.py", line 205, in process_data issue_pd = pd.read_csv(issue_path) ^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/pandas/io/parsers/readers.py", line 912, in read_csv return _read(filepath_or_buffer, kwds) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/pandas/io/parsers/readers.py", line 577, in _read parser = TextFileReader(filepath_or_buffer, **kwds) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/pandas/io/parsers/readers.py", line 1407, in __init__ self._engine = self._make_engine(f, self.engine) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/pandas/io/parsers/readers.py", line 1661, in _make_engine self.handles = get_handle( ^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/pandas/io/common.py", line 859, in get_handle handle = open( ^^^^^ FileNotFoundError: [Errno 2] No such file or directory: '/home/yueli/HuYworks1/kept/input_data/raw/issue/hornetq.csv' /home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:441: FutureWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead. _torch_pytree._register_pytree_node( /home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:309: FutureWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead. _torch_pytree._register_pytree_node( eval parameters %s Namespace(project='hornetq', code_kg_mode='inner', data_dir='/home/yueli/HuYworks1/kept/input_data/', model_path='./output/hornetq', no_cuda=False, test_num=None, output_dir='./result/', overwrite=False, code_bert='../unixCoder', chunk_query_num=-1, per_gpu_eval_batch_size=32, code_kg_location='/home/yueli/HuYworks1/kept/input_data/hornetq/', text_kg_location='/home/yueli/HuYworks1/kept/input_data/hornetq/', length_limit=256, tqdm_interval=300.0, data_name='hornetq') Traceback (most recent call last): File "/home/ls_lunwen/KEPT-main/Kept/trace/main/eval_trace_rapt.py", line 25, in <module> model = Rapt(BertConfig(), args.code_bert) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/KEPT-main/Kept/trace/main/../../common/models.py", line 84, in __init__ self.ctokneizer = AutoTokenizer.from_pretrained(cbert_model, local_files_only=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/models/auto/tokenization_auto.py", line 752, in from_pretrained config = AutoConfig.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py", line 1082, in from_pretrained config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/configuration_utils.py", line 644, in get_config_dict config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/configuration_utils.py", line 699, in _get_config_dict resolved_config_file = cached_file( ^^^^^^^^^^^^ File "/home/ls_lunwen/anaconda3/envs/llm/lib/python3.11/site-packages/transformers/utils/hub.py", line 360, in cached_file raise EnvironmentError( OSError: ../unixCoder does not appear to have a file named config.json. Checkout 'https://huggingface.co/../unixCoder/None' for available files.

data_collator = DataCollatorForTokenClassification(tokenizer) train_loader = DataLoader(train_encodings, shuffle=True, collate_fn=data_collator, batch_size=BATCH_SIZE) for batch in train_loader: print("Batch sample:") # 假设这个 batch 是一个字典,键的情况可能根据 data_collator 的实现有所不同 for key, value in batch.items(): print(f"{key}: {value.shape}") # 打印每个字段及其形状 break # 只打印第一个批次以避免过长输出Traceback (most recent call last): File "D:\Anaconda\envs\pytorch\Lib\site-packages\transformers\tokenization_utils_base.py", line 759, in convert_to_tensors tensor = as_tensor(value) ^^^^^^^^^^^^^^^^ File "D:\Anaconda\envs\pytorch\Lib\site-packages\transformers\tokenization_utils_base.py", line 721, in as_tensor return torch.tensor(value) ^^^^^^^^^^^^^^^^^^^ ValueError: too many dimensions 'str' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "C:\Users\HTL的笔记本\Desktop\Graduation project\Question\src\data_loader.py", line 88, in <module> for batch in train_loader: File "D:\Anaconda\envs\pytorch\Lib\site-packages\torch\utils\data\dataloader.py", line 631, in __next__ data = self._next_data() ^^^^^^^^^^^^^^^^^ File "D:\Anaconda\envs\pytorch\Lib\site-packages\torch\utils\data\dataloader.py", line 675, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\Anaconda\envs\pytorch\Lib\site-packages\torch\utils\data\_utils\fetch.py", line 54, in fetch return self.collate_fn(data) ^^^^^^^^^^^^^^^^^^^^^ File "D:\Anaconda\envs\pytorch\Lib\site-packages\transformers\data\data_collator.py", line 45, in __call__ return self.torch_call(features) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\Anaconda\envs\pytorch\Lib\site-packages\transformers\data\data_collator.py", line 333, in torch_call batch = pad_without_fast_tokenizer_warning( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\Anaconda\envs\pytorch\Lib\site-packages\transformers\data\data_collator.py", line 66, in pad_without_fast_tokenizer_warning padded = tokenizer.pad(*pad_args, **pad_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\Anaconda\envs\pytorch\Lib\site-packages\transformers\tokenization_utils_base.py", line 3380, in pad return BatchEncoding(batch_outputs, tensor_type=return_tensors) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\Anaconda\envs\pytorch\Lib\site-packages\transformers\tokenization_utils_base.py", line 224, in __init__ self.convert_to_tensors(tensor_type=tensor_type, prepend_batch_axis=prepend_batch_axis) File "D:\Anaconda\envs\pytorch\Lib\site-packages\transformers\tokenization_utils_base.py", line 775, in convert_to_tensors raise ValueError( ValueError: Unable to create tensor, you should probably activate truncation and/or padding with 'padding=True' 'truncation=True' to have batched tensors with the same length. Perhaps your features (tokens in this case) have excessive nesting (inputs type list where type int is expected).

/home/ustc/anaconda3/lib/python3.12/site-packages/transformers/utils/hub.py:105: FutureWarning: Using TRANSFORMERS_CACHE is deprecated and will be removed in v5 of Transformers. Use HF_HOME instead. warnings.warn( The following values were not passed to accelerate launch and had defaults used instead: More than one GPU was found, enabling multi-GPU training. If this was unintended please pass in --num_processes=1. --num_machines was set to a value of 1 --mixed_precision was set to a value of 'no' --dynamo_backend was set to a value of 'no' To avoid this warning pass in values for each of the problematic parameters or run accelerate config. /home/ustc/anaconda3/lib/python3.12/site-packages/pydub/utils.py:170: RuntimeWarning: Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work warn("Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work", RuntimeWarning) /home/ustc/anaconda3/lib/python3.12/site-packages/torch/nn/utils/weight_norm.py:134: FutureWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm. WeightNorm.apply(module, name, dim) /home/ustc/anaconda3/lib/python3.12/site-packages/transformers/utils/hub.py:105: FutureWarning: Using TRANSFORMERS_CACHE is deprecated and will be removed in v5 of Transformers. Use HF_HOME instead. warnings.warn( [rank0]: Traceback (most recent call last): [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/hydra/_internal/instantiate/_instantiate2.py", line 92, in _call_target [rank0]: return _target_(*args, **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/桌面/seed-vc-main-v2/modules/astral_quantization/default_model.py", line 22, in __init__ [rank0]: self.tokenizer = WhisperProcessor.from_pretrained( [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/transformers/processing_utils.py", line 1079, in from_pretrained [rank0]: args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/transformers/processing_utils.py", line 1143, in _get_arguments_from_pretrained [rank0]: args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs)) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/transformers/feature_extraction_utils.py", line 384, in from_pretrained [rank0]: feature_extractor_dict, kwargs = cls.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/transformers/feature_extraction_utils.py", line 510, in get_feature_extractor_dict [rank0]: resolved_feature_extractor_file = cached_file( [rank0]: ^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/transformers/utils/hub.py", line 266, in cached_file [rank0]: file = cached_files(path_or_repo_id=path_or_repo_id, filenames=[filename], **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/transformers/utils/hub.py", line 381, in cached_files [rank0]: raise OSError( [rank0]: OSError: ./checkpoints/hf_cache does not appear to have a file named preprocessor_config.json. Checkout 'https://huggingface.co/./checkpoints/hf_cache/tree/main' for available files. [rank0]: The above exception was the direct cause of the following exception: [rank0]: Traceback (most recent call last): [rank0]: File "/home/ustc/桌面/seed-vc-main-v2/train_v2.py", line 345, in <module> [rank0]: main(args) [rank0]: File "/home/ustc/桌面/seed-vc-main-v2/train_v2.py", line 314, in main [rank0]: trainer = Trainer( [rank0]: ^^^^^^^^ [rank0]: File "/home/ustc/桌面/seed-vc-main-v2/train_v2.py", line 75, in __init__ [rank0]: self._init_models(train_cfm=train_cfm, train_ar=train_ar) [rank0]: File "/home/ustc/桌面/seed-vc-main-v2/train_v2.py", line 106, in _init_models [rank0]: self._init_main_model(train_cfm=train_cfm, train_ar=train_ar) [rank0]: File "/home/ustc/桌面/seed-vc-main-v2/train_v2.py", line 116, in _init_main_model [rank0]: self.model = hydra.utils.instantiate(cfg).to(self.device) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/hydra/_internal/instantiate/_instantiate2.py", line 226, in instantiate [rank0]: return instantiate_node( [rank0]: ^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/hydra/_internal/instantiate/_instantiate2.py", line 342, in instantiate_node [rank0]: value = instantiate_node( [rank0]: ^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/hydra/_internal/instantiate/_instantiate2.py", line 347, in instantiate_node [rank0]: return _call_target(_target_, partial, args, kwargs, full_key) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/ustc/anaconda3/lib/python3.12/site-packages/hydra/_internal/instantiate/_instantiate2.py", line 97, in _call_target [rank0]: raise InstantiationException(msg) from e [rank0]: hydra.errors.InstantiationException: Error in call to target 'modules.astral_quantization.default_model.AstralQuantizer': [rank0]: OSError("./checkpoints/hf_cache does not appear to have a file named preprocessor_config.json. Checkout 'https://huggingface.co/./checkpoints/hf_cache/tree/main' for available files.") [rank0]: full_key: content_extractor_narrow [rank0]:[W514 21:22:23.005946238 ProcessGroupNCCL.cpp:1168] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) W0514 21:22:24.285000 132883023812096 torch/distributed/elastic/multiprocessing/api.py:858] Sending process 3125405 closing signal SIGTERM W0514 21:22:24.285000 132883023812096 torch/distributed/elastic/multiprocessing/api.py:858] Sending process 3125406 closing signal SIGTERM W0514 21:22:24.285000 132883023812096 torch/distributed/elastic/multiprocessing/api.py:858] Sending process 3125407 closing signal SIGTERM E0514 21:22:24.500000 132883023812096 torch/distributed/elastic/multiprocessing/api.py:833] failed (exitcode: 1) local_rank: 0 (pid: 3125404) of binary: /home/ustc/anaconda3/bin/python Traceback (most recent call last): File "/home/ustc/anaconda3/bin/accelerate", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/ustc/anaconda3/lib/python3.12/site-packages/accelerate/commands/accelerate_cli.py", line 50, in main args.func(args) File "/home/ustc/anaconda3/lib/python3.12/site-packages/accelerate/commands/launch.py", line 1204, in launch_command multi_gpu_launcher(args) File "/home/ustc/anaconda3/lib/python3.12/site-packages/accelerate/commands/launch.py", line 825, in multi_gpu_launcher distrib_run.run(args) File "/home/ustc/anaconda3/lib/python3.12/site-packages/torch/distributed/run.py", line 892, in run elastic_launch( File "/home/ustc/anaconda3/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 133, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ustc/anaconda3/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 264, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ train_v2.py FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-05-14_21:22:24 host : ustc-SYS-740GP-TNRT rank : 0 (local_rank: 0) exitcode : 1 (pid: 3125404) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ 分析原因

flashinfer not found, use triton for linux Traceback (most recent call last): File "/home/yujia/anaconda3/envs/kt/lib/python3.10/site-packages/transformers/utils/hub.py", line 402, in cached_file resolved_file = hf_hub_download( File "/home/yujia/anaconda3/envs/kt/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 106, in _inner_fn validate_repo_id(arg_value) File "/home/yujia/anaconda3/envs/kt/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 154, in validate_repo_id raise HFValidationError( huggingface_hub.errors.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name': '/root/autodl-tmp/DeepSeek-R1'. Use repo_type argument if needed. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/yujia/autod1-tmp/ktransformers/./ktransformers/local_chat.py", line 183, in <module> fire.Fire(local_chat) File "/home/yujia/anaconda3/envs/kt/lib/python3.10/site-packages/fire/core.py", line 135, in Fire component_trace = _Fire(component, args, parsed_flag_args, context, name) File "/home/yujia/anaconda3/envs/kt/lib/python3.10/site-packages/fire/core.py", line 468, in _Fire component, remaining_args = _CallAndUpdateTrace( File "/home/yujia/anaconda3/envs/kt/lib/python3.10/site-packages/fire/core.py", line 684, in _CallAndUpdateTrace component = fn(*varargs, **kwargs) File "/home/yujia/autod1-tmp/ktransformers/./ktransformers/local_chat.py", line 71, in local_chat tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) File "/home/yujia/anaconda3/envs/kt/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py", line 833, in from_pretrained tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs) File "/home/yujia/anaconda3/envs/kt/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py", line 665, in get_tok

最新推荐

recommend-type

(完整版)网络大集体备课的心得与体会(最新整理).pdf

(完整版)网络大集体备课的心得与体会(最新整理).pdf
recommend-type

2.2-导数的基本公式与运算法则省名师优质课赛课获奖课件.ppt

2.2-导数的基本公式与运算法则省名师优质课赛课获奖课件.ppt
recommend-type

098L产品网络推广策略.pptx

098L产品网络推广策略.pptx
recommend-type

前端分析-202307110078988

前端分析-202307110078988
recommend-type

构建基于ajax, jsp, Hibernate的博客网站源码解析

根据提供的文件信息,本篇内容将专注于解释和阐述ajax、jsp、Hibernate以及构建博客网站的相关知识点。 ### AJAX AJAX(Asynchronous JavaScript and XML)是一种用于创建快速动态网页的技术,它允许网页在不重新加载整个页面的情况下,与服务器交换数据并更新部分网页内容。AJAX的核心是JavaScript中的XMLHttpRequest对象,通过这个对象,JavaScript可以异步地向服务器请求数据。此外,现代AJAX开发中,常常用到jQuery中的$.ajax()方法,因为其简化了AJAX请求的处理过程。 AJAX的特点主要包括: - 异步性:用户操作与数据传输是异步进行的,不会影响用户体验。 - 局部更新:只更新需要更新的内容,而不是整个页面,提高了数据交互效率。 - 前后端分离:AJAX技术允许前后端分离开发,让前端开发者专注于界面和用户体验,后端开发者专注于业务逻辑和数据处理。 ### JSP JSP(Java Server Pages)是一种动态网页技术标准,它允许开发者将Java代码嵌入到HTML页面中,从而实现动态内容的生成。JSP页面在服务器端执行,并将生成的HTML发送到客户端浏览器。JSP是Java EE(Java Platform, Enterprise Edition)的一部分。 JSP的基本工作原理: - 当客户端首次请求JSP页面时,服务器会将JSP文件转换为Servlet。 - 服务器上的JSP容器(如Apache Tomcat)负责编译并执行转换后的Servlet。 - Servlet生成HTML内容,并发送给客户端浏览器。 JSP页面中常见的元素包括: - 指令(Directives):如page、include、taglib等。 - 脚本元素:脚本声明(Script declarations)、脚本表达式(Scriptlet)和脚本片段(Expression)。 - 标准动作:如jsp:useBean、jsp:setProperty、jsp:getProperty等。 - 注释:在客户端浏览器中不可见的注释。 ### Hibernate Hibernate是一个开源的对象关系映射(ORM)框架,它提供了从Java对象到数据库表的映射,简化了数据库编程。通过Hibernate,开发者可以将Java对象持久化到数据库中,并从数据库中检索它们,而无需直接编写SQL语句或掌握复杂的JDBC编程。 Hibernate的主要优点包括: - ORM映射:将对象模型映射到关系型数据库的表结构。 - 缓存机制:提供了二级缓存,优化数据访问性能。 - 数据查询:提供HQL(Hibernate Query Language)和Criteria API等查询方式。 - 延迟加载:可以配置对象或对象集合的延迟加载,以提高性能。 ### 博客网站开发 构建一个博客网站涉及到前端页面设计、后端逻辑处理、数据库设计等多个方面。使用ajax、jsp、Hibernate技术栈,开发者可以更高效地构建功能完备的博客系统。 #### 前端页面设计 前端主要通过HTML、CSS和JavaScript来实现,其中ajax技术可以用来异步获取文章内容、用户评论等,无需刷新页面即可更新内容。 #### 后端逻辑处理 JSP可以在服务器端动态生成HTML内容,根据用户请求和数据库中的数据渲染页面。Hibernate作为ORM框架,可以处理Java对象与数据库表之间的映射,并提供数据库的CRUD(创建、读取、更新、删除)操作。 #### 数据库设计 博客网站的数据库设计通常包含多个表,如用户表(存储用户信息)、文章表(存储文章信息)、评论表(存储用户评论信息)等。使用Hibernate框架可以简化数据库操作,同时确保数据的一致性和安全性。 #### 安全性和性能优化 安全性是构建网站时需要考虑的重要方面,包括但不限于SQL注入防护、XSS攻击防护、会话管理等。性能优化方面,可以利用Hibernate的缓存机制,以及对JSP页面和ajax请求进行适当的缓存处理。 ### 结论 ajax、jsp、Hibernate技术结合可以构建出高效、动态、易于维护的博客网站。在开发过程中,应当关注前后端分离、用户体验优化、系统性能和安全性等关键要素,确保博客网站的稳定和长期可用性。通过本篇文章,读者应该已经对这些技术有了初步了解,并能够结合文件提供的源码开始进行相关开发实践。
recommend-type

【Unity Sunny Land关卡设计高级指南】:打造完美关卡的8大技巧

# 1. Unity关卡设计概述 ## 1.1 关卡设计的核心要素 关卡设计作为游戏开发中不可或缺的一环,承担着构建游戏世界、呈现故事背景、引导玩家体验和激发玩家兴趣的责任。一个优秀的关卡不仅需要有吸引人的视觉效果和有趣的挑战,还需平衡玩家体验,提供连贯的游戏故事。 ## 1.2 关卡设计师的角色 在Unity引擎的环境下,关卡设计师需要具备对场景布局、角色互动、剧情
recommend-type

C++ 模版

<think>我们正在讨论C++模板的使用和常见问题。根据用户要求,所有行内数学表达式使用$...$,独立公式使用$$...$$,用中文回答,并生成相关问题。同时,回答要结构清晰,帮助用户逐步解决问题。 首先,回顾用户的问题:用户想了解C++模板的使用和常见问题。我们将从以下几个方面展开: 1. 模板的基本概念和用途 2. 函数模板和类模板 3. 模板特化和偏特化 4. 模板元编程简介 5. 常见问题及解决方案 注意:在回答中,我们会引用站内提供的引用内容(引用[1]和引用[2])作为参考,但主要围绕模板展开。 ### 1. 模板的基本概念和用途 C++模板是一种支持泛型编程的特性,允许
recommend-type

C#随机数摇奖系统功能及隐藏开关揭秘

### C#摇奖系统知识点梳理 #### 1. C#语言基础 C#(发音为“看井”)是由微软开发的一种面向对象的、类型安全的编程语言。它是.NET框架的核心语言之一,广泛用于开发Windows应用程序、ASP.NET网站、Web服务等。C#提供丰富的数据类型、控制结构和异常处理机制,这使得它在构建复杂应用程序时具有很强的表达能力。 #### 2. 随机数的生成 在编程中,随机数生成是常见的需求之一,尤其在需要模拟抽奖、游戏等场景时。C#提供了System.Random类来生成随机数。Random类的实例可以生成一个伪随机数序列,这些数在统计学上被认为是随机的,但它们是由确定的算法生成,因此每次运行程序时产生的随机数序列相同,除非改变种子值。 ```csharp using System; class Program { static void Main() { Random rand = new Random(); for(int i = 0; i < 10; i++) { Console.WriteLine(rand.Next(1, 101)); // 生成1到100之间的随机数 } } } ``` #### 3. 摇奖系统设计 摇奖系统通常需要以下功能: - 用户界面:显示摇奖结果的界面。 - 随机数生成:用于确定摇奖结果的随机数。 - 动画效果:模拟摇奖的视觉效果。 - 奖项管理:定义摇奖中可能获得的奖品。 - 规则设置:定义摇奖规则,比如中奖概率等。 在C#中,可以使用Windows Forms或WPF技术构建用户界面,并集成上述功能以创建一个完整的摇奖系统。 #### 4. 暗藏的开关(隐藏控制) 标题中提到的“暗藏的开关”通常是指在程序中实现的一个不易被察觉的控制逻辑,用于在特定条件下改变程序的行为。在摇奖系统中,这样的开关可能用于控制中奖的概率、启动或停止摇奖、强制显示特定的结果等。 #### 5. 测试 对于摇奖系统来说,测试是一个非常重要的环节。测试可以确保程序按照预期工作,随机数生成器的随机性符合要求,用户界面友好,以及隐藏的控制逻辑不会被轻易发现或利用。测试可能包括单元测试、集成测试、压力测试等多个方面。 #### 6. System.Random类的局限性 System.Random虽然方便使用,但也有其局限性。其生成的随机数序列具有一定的周期性,并且如果使用不当(例如使用相同的种子创建多个实例),可能会导致生成相同的随机数序列。在安全性要求较高的场合,如密码学应用,推荐使用更加安全的随机数生成方式,比如RNGCryptoServiceProvider。 #### 7. Windows Forms技术 Windows Forms是.NET框架中用于创建图形用户界面应用程序的库。它提供了一套丰富的控件,如按钮、文本框、标签等,以及它们的事件处理机制,允许开发者设计出视觉效果良好且功能丰富的桌面应用程序。 #### 8. WPF技术 WPF(Windows Presentation Foundation)是.NET框架中用于构建桌面应用程序用户界面的另一种技术。与Windows Forms相比,WPF提供了更现代化的控件集,支持更复杂的布局和样式,以及3D图形和动画效果。WPF的XAML标记语言允许开发者以声明性的方式设计用户界面,与C#代码分离,易于维护和更新。 #### 9. 压缩包子文件TransBallDemo分析 从文件名“TransBallDemo”可以推测,这可能是一个C#的示例程序或者演示程序,其中“TransBall”可能表示旋转的球体,暗示该程序包含了动画效果,可能是用来模拟转动的球体(如转盘或摇奖球)。该文件可能是用来展示如何实现一个带有视觉动画效果的摇奖系统的C#程序。 总结以上内容,我们可以得出构建一个C#摇奖系统需要深入理解C#语言及其随机数生成机制,设计用户界面,集成动画效果,确保隐藏控制逻辑的安全性,以及全面测试系统以保证其正确性和公平性。通过掌握Windows Forms或WPF技术,可以进一步增强系统的视觉和交互体验。
recommend-type

【数据驱动的力量】:管道缺陷判别方法论与实践经验

# 摘要 数据驱动技术在管道缺陷检测领域展现出强大的力量,本文首先概述了数据驱动的力量和管道缺陷判别的基础理论。接着,重点探讨了管道缺陷的类型与特征、数据采集与预处理、数据驱动模型的选择与构建。在实践技巧章节,本文详述了实战数据集的准备与处理、缺陷识别算法的应用、以及性能评估与模型优化。此外,高级应用章节深入讨论了实时数据处理分析、多模态数据融合技术、以及深度学习在缺
recommend-type

FatalError: `Segmentation fault` is detected by the operating system. [TimeInfo: *** Aborted at 1752568501 (unix time) try "date -d @1752568501" if you are using GNU date ***] [SignalInfo: *** SIGSEGV (@0x0) received by PID 3203 (TID 0x7f8a04143340) from PID 0 ***],训练模型中出现上述错误,怎么解决

<think>我们面对的是一个模型训练过程中出现的Segmentation fault错误。根据引用[1],Segmentation Fault通常是由非法内存访问引起的,常见原因包括空指针解引用、数组越界、使用未初始化指针等。在深度学习训练场景中,还可能涉及显存溢出、CUDA内核错误等。 引用[2]展示了一个具体案例:在PaddlePaddle框架中遇到Segmentation fault,并提示了C++ Traceback。这通常表明底层C++代码出现了问题。而引用[3]则提到Python环境下的Segmentation fault,可能涉及Python扩展模块的错误。 解决步骤: 1