活动介绍

Error(s) in loading state_dict for LeNet: size mismatch for conv1.weight: copying a param with shape torch.Size([10, 1, 5, 5]) from checkpoint, the shape in current model is torch.Size([6, 1, 5, 5]). size mismatch for conv1.bias: copying a param with shape torch.Size([10]) from checkpoint, the shape in current model is torch.Size([6]). size mismatch for conv2.weight: copying a param with shape torch.Size([20, 10, 5, 5]) from checkpoint, the shape in current model is torch.Size([16, 6, 5, 5]). size mismatch for conv2.bias: copying a param with shape torch.Size([20]) from checkpoint, the shape in current model is torch.Size([16]). size mismatch for fc1.weight: copying a param with shape torch.Size([50, 320]) from checkpoint, the shape in current model is torch.Size([120, 256]). size mismatch for fc1.bias: copying a param with shape torch.Size([50]) from checkpoint, the shape in current model is torch.Size([120]). size mismatch for fc2.weight: copying a param with shape torch.Size([10, 50]) from checkpoint, the shape in current model is torch.Size([84, 120]). size mismatch for fc2.bias: copying a param with shape torch.Size([10]) from checkpoint, the shape in current model is torch.Size([84]).

时间: 2024-02-02 10:15:29 浏览: 337
这个错误信息提示我们在加载预训练模型的权重时,发现模型中的部分参数形状与当前创建的模型不匹配,具体来说,就是: - `conv1.weight`的形状应该为`(6, 1, 5, 5)`,但是预训练模型中的形状为`(10, 1, 5, 5)`; - `conv1.bias`的形状应该为`(6,)`,但是预训练模型中的形状为`(10,)`; - `conv2.weight`的形状应该为`(16, 6, 5, 5)`,但是预训练模型中的形状为`(20, 10, 5, 5)`; - `conv2.bias`的形状应该为`(16,)`,但是预训练模型中的形状为`(20,)`; - `fc1.weight`的形状应该为`(120, 256)`,但是预训练模型中的形状为`(50, 320)`; - `fc1.bias`的形状应该为`(120,)`,但是预训练模型中的形状为`(50,)`; - `fc2.weight`的形状应该为`(84, 120)`,但是预训练模型中的形状为`(10, 50)`; - `fc2.bias`的形状应该为`(84,)`,但是预训练模型中的形状为`(10,)`。 这个问题通常是由于预训练模型的结构与当前创建的模型结构不一致导致的。解决方法是在当前模型中手动修改这些参数的形状,使其与预训练模型的结构一致。
相关问题

RuntimeError: Error(s) in loading state_dict for XceptionRGBD: size mismatch for conv1.weight: copying a param with shape torch.Size([32, 3, 3, 3]) from checkpoint, the shape in current model is torch.Size([32, 4, 3, 3])

这个错误是因为你的当前模型和加载的预训练模型中的某些参数形状不匹配,具体来说是conv1.weight的形状不匹配。在预训练模型中,conv1.weight的形状是 [32, 3, 3, 3],而在你的当前模型中,它的形状是 [32, 4, 3, 3]。这意味着你的当前模型中有4个输入通道,但是预训练模型中只有3个输入通道。 解决这个问题的方法是,你需要修改你的当前模型,使它与预训练模型的形状匹配。你可以通过在conv1.weight中添加一个额外的通道来实现这一点。具体来说,你可以执行以下操作: ```python import torch from torchvision.models import xception # 加载预训练模型 pretrained_model = xception(pretrained=True) # 创建一个新的模型 model = xception() # 将预训练模型的参数复制到新模型中 state_dict = pretrained_model.state_dict() model_dict = model.state_dict() for k, v in state_dict.items(): if k in model_dict: if v.shape != model_dict[k].shape: # 修改conv1.weight的形状 if k == 'conv1.weight': v = torch.cat([v, torch.zeros(32, 1, 3, 3)], dim=1) else: continue model_dict[k] = v model.load_state_dict(model_dict) ``` 在上面的代码中,我们首先加载预训练模型,然后创建一个新的模型。接着,我们将预训练模型的参数复制到新模型中。如果在复制参数时发现形状不匹配,我们就修改conv1.weight的形状。具体来说,我们在conv1.weight的第二个维度上添加了一个额外的通道。这个通道的值都是0,因为我们不知道这个通道应该包含什么信息。最后,我们使用修改后的参数来更新新模型的状态字典。

RuntimeError: Error(s) in loading state_dict for Xception: size mismatch for conv1.weight: copying a param with shape torch.Size([32, 3, 3, 3]) from checkpoint, the shape in current model is torch.Size([32, 4, 3, 3]).

这个错误是因为在加载预训练模型时,模型中某个参数的形状与当前模型中的形状不匹配。在这个例子中,Xception模型的conv1层预训练模型的权重形状是[32, 3, 3, 3],而当前模型中的形状是[32, 4, 3, 3]。这个问题可以通过在当前模型中手动修改该参数的形状来解决。具体来说,你需要在当前模型中找到conv1层的权重,然后将其形状改为[32, 3, 3, 3]。这个修改可以使用PyTorch的state_dict()函数来完成。
阅读全文

相关推荐

模型初始化成功 加载并转换预训练权重: checkpoints/M3FD.ckpt 找到 1 个需要转换的权重层 转换权重: first_stage_model.encoder.conv_in.weight 原始形状: torch.Size([128, 3, 3, 3]) 转换后形状: torch.Size([128, 1, 3, 3]) 权重加载完成: 成功加载 1830/1830 层 VAE输入层形状: torch.Size([128, 1, 3, 3]) 加载预训练权重: checkpoints/M3FD.ckpt 找到需要转换的层: ['first_stage_model.encoder.conv_in.weight'] 转换权重: first_stage_model.encoder.conv_in.weight 原始形状: torch.Size([128, 3, 3, 3]) 转换后形状: torch.Size([128, 1, 3, 3]) 权重加载完成: 缺失层 1, 不匹配层 0 缺失层: ['cond_stage_model.transformer.text_model.embeddings.position_ids'] 使用基础学习率: 1.00e-04 警告: 使用仅含权重的检查点,训练状态将重置: D:\work\AI\DiffV2IR\checkpoints\M3FD.ckpt 预处理检查点文件: D:\work\AI\DiffV2IR\checkpoints\M3FD.ckpt 已重置训练状态: epoch=0, global_step=0 警告: 检查点缺少 'cond_stage_model.transformer.text_model.embeddings.position_ids' 键 已添加 position_ids 到检查点 修复后的完整检查点已保存到: logs\experiment_20250703_181326\checkpoints\fixed_checkpoint.ckpt TensorBoard日志保存在: logs\experiment_20250703_181326\tensorboard 训练批次数: 8 最终训练器配置: default_root_dir: logs\experiment_20250703_181326 max_epochs: 200 gpus: 1 distributed_backend: None plugins: None precision: 16 accumulate_grad_batches: 1 callbacks: [, , <__main__.EnhancedImageLogger object at 0x000001F79D63F130>, <__main__.TQDMProgressBar object at 0x000001F79D63F040>, <__main__.PerformanceMonitor object at 0x000001F79D63F010>] logger: <__main__.TensorBoardLogger object at 0x000001F79BA61480> resume_from_checkpoint: logs\experiment_20250703_181326\checkpoints\fixed_checkpoint.ckpt fast_dev_run: False limit_val_batches: 1.0 num_sanity_val_steps: 0 log_every_n_steps: 10 check_val_every_n_epoch: 1 Using native 16bit precision. GPU available: True, used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs 开始训练... Restoring states from the checkpoint file at logs\experiment_20250703_181326\checkpoints\fixed_checkpoint.ckpt 训练出错: Error(s) in loading state_dict for CustomLatentDiffusion: size mismatch for first_stage_model.encoder.conv_in.weight: copying a param with shape torch.Size([128, 3, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 1, 3, 3]).

--------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[24], line 298 295 else: 296 download_weights(backbone) --> 298 model = PSPNet(num_classes=num_classes, backbone=backbone, downsample_factor=downsample_factor, pretrained=pretrained, pretrained_model_path=pretrained_model_path, aux_branch=aux_branch) 299 if not pretrained: 300 weights_init(model) Cell In[5], line 145, in PSPNet.__init__(self, num_classes, downsample_factor, backbone, pretrained, pretrained_model_path, aux_branch) 143 norm_layer = nn.BatchNorm2d 144 if backbone=="resnet50": --> 145 self.backbone = Resnet(downsample_factor, pretrained, pretrained_model_path) 146 aux_channel = 1024 147 out_channel = 2048 Cell In[5], line 13, in Resnet.__init__(self, dilate_scale, pretrained, pretrained_model_path) 11 super(Resnet, self).__init__() 12 from functools import partial ---> 13 model = resnet50(pretrained, pretrained_model_path) 15 #--------------------------------------------------------------------------------------------# 16 # 根据下采样因子修改卷积的步长与膨胀系数 17 # 当downsample_factor=16的时候,我们最终获得两个特征层,shape分别是:30,30,1024和30,30,2048 18 #--------------------------------------------------------------------------------------------# 19 if dilate_scale == 8: Cell In[4], line 173, in resnet50(pretrained, pretrained_model_path, **kwargs) 170 state_dict = torch.load(pretrained_model_path, map_location=device) 171 # Load the state dictionary into the model 172 # 将加载的参数字典加载到模型中 --> 173 model.load_state_dict(state_dict, strict=False) 174 # 打印加载成功的信息 175 print("Model weights have been loaded.") File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:2041, in Module.load_state_dict(self, state_dict, strict) 2036 error_msgs.insert( 2037 0, 'Missing key(s) in state_dict: {}. '.format( 2038 ', '.join('"{}"'.format(k) for k in missing_keys))) 2040 if len(error_msgs) > 0: -> 2041 raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( 2042 self.__class__.__name__, "\n\t".join(error_msgs))) 2043 return _IncompatibleKeys(missing_keys, unexpected_keys) RuntimeError: Error(s) in loading state_dict for ResNet: size mismatch for bn1.weight: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for bn1.bias: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for bn1.running_mean: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for bn1.running_var: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer1.0.conv1.weight: copying a param with shape torch.Size([64, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]). size mismatch for layer1.0.downsample.0.weight: copying a param with shape torch.Size([256, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 128, 1, 1]).这个警告是哪里出错了

RuntimeError: Error(s) in loading state_dict for ActionModel: Missing key(s) in state_dict: "net.blocks.12.attn.qkv.weight", "net.blocks.12.attn.qkv.bias", "net.blocks.12.attn.proj.weight", "net.blocks.12.attn.proj. bias", "net.blocks.12.mlp.fc1.weight", "net.blocks.12.mlp.fc1.bias", "net.blocks.12.mlp.fc2.weight", "net.blocks.12.mlp.fc2.bias", "net.blocks.13.attn.qkv.weight ", "net.blocks.13.attn.qkv.bias", "net.blocks.13.attn.proj.weight", "net.blocks.13.attn.proj.bias", "net.blocks.13.mlp.fc1.weight", "net.blocks.13.mlp.fc1.bias", "net.blocks.13.mlp.fc2.weight", "net.blocks.13.mlp.fc2.bias", "net.blocks.14.attn.qkv.weight", "net.blocks.14.attn.qkv.bias", "net.blocks.14.attn.proj.weight", "net.blocks.14.attn.proj.bias", "net.blocks.14.mlp.fc1.weight", "net.blocks.14.mlp.fc1.bias", "net.blocks.14.mlp.fc2.weight", "net.blocks.14.mlp.fc2.bias", "net. blocks.15.attn.qkv.weight", "net.blocks.15.attn.qkv.bias", "net.blocks.15.attn.proj.weight", "net.blocks.15.attn.proj.bias", "net.blocks.15.mlp.fc1.weight", "net .blocks.15.mlp.fc1.bias", "net.blocks.15.mlp.fc2.weight", "net.blocks.15.mlp.fc2.bias", "net.blocks.16.attn.qkv.weight", "net.blocks.16.attn.qkv.bias", "net.bloc ks.16.attn.proj.weight", "net.blocks.16.attn.proj.bias", "net.blocks.16.mlp.fc1.weight", "net.blocks.16.mlp.fc1.bias", "net.blocks.16.mlp.fc2.weight", "net.block s.16.mlp.fc2.bias", "net.blocks.17.attn.qkv.weight", "net.blocks.17.attn.qkv.bias", "net.blocks.17.attn.proj.weight", "net.blocks.17.attn.proj.bias", "net.blocks .17.mlp.fc1.weight", "net.blocks.17.mlp.fc1.bias", "net.blocks.17.mlp.fc2.weight", "net.blocks.17.mlp.fc2.bias", "net.blocks.18.attn.qkv.weight", "net.blocks.18. attn.qkv.bias", "net.blocks.18.attn.proj.weight", "net.blocks.18.attn.proj.bias", "net.blocks.18.mlp.fc1.weight", "net.blocks.18.mlp.fc1.bias", "net.blocks.18.ml p.fc2.weight", "net.blocks.18.mlp.fc2.bias", "net.blocks.19.attn.qkv.weight", "net.blocks.19.attn.qkv.bias", "net.blocks.19.attn.proj.weight", "net.blocks.19.att n.proj.bias", "net.blocks.19.mlp.fc1.weight", "net.blocks.19.mlp.fc1.bias", "net.blocks.19.mlp.fc2.weight", "net.blocks.19.mlp.fc2.bias", "net.blocks.20.attn.qkv .weight", "net.blocks.20.attn.qkv.bias", "net.blocks.20.attn.proj.weight", "net.blocks.20.attn.proj.bias", "net.blocks.20.mlp.fc1.weight", "net.blocks.20.mlp.fc1 .bias", "net.blocks.20.mlp.fc2.weight", "net.blocks.20.mlp.fc2.bias", "net.blocks.21.attn.qkv.weight", "net.blocks.21.attn.qkv.bias", "net.blocks.21.attn.proj.we ight", "net.blocks.21.attn.proj.bias", "net.blocks.21.mlp.fc1.weight", "net.blocks.21.mlp.fc1.bias", "net.blocks.21.mlp.fc2.weight", "net.blocks.21.mlp.fc2.bias" , "net.blocks.22.attn.qkv.weight", "net.blocks.22.attn.qkv.bias", "net.blocks.22.attn.proj.weight", "net.blocks.22.attn.proj.bias", "net.blocks.22.mlp.fc1.weight ", "net.blocks.22.mlp.fc1.bias", "net.blocks.22.mlp.fc2.weight", "net.blocks.22.mlp.fc2.bias", "net.blocks.23.attn.qkv.weight", "net.blocks.23.attn.qkv.bias", "n et.blocks.23.attn.proj.weight", "net.blocks.23.attn.proj.bias", "net.blocks.23.mlp.fc1.weight", "net.blocks.23.mlp.fc1.bias", "net.blocks.23.mlp.fc2.weight", "ne t.blocks.23.mlp.fc2.bias". size mismatch for net.positional_embedding: copying a param with shape torch.Size([17, 768]) from checkpoint, the shape in current model is torch.Size([1 7, 1024]). size mismatch for net.history_embedder.linear.weight: copying a param with shape torch.Size([768, 7]) from checkpoint, the shape in current model is torc h.Size([1024, 7]). size mismatch for net.history_embedder.linear.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Siz e([1024]). size mismatch for net.x_embedder.linear.weight: copying a param with shape torch.Size([768, 7]) from checkpoint, the shape in current model is torch.Size ([1024, 7]). size mismatch for net.x_embedder.linear.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([102 4]). size mismatch for net.t_embedder.mlp.0.weight: copying a param with shape torch.Size([768, 256]) from checkpoint, the shape in current model is torch.Siz e([1024, 256]).怎么解决

import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # 0=INFO, 1=WARNING, 2=ERROR, 3=FATAL os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' # 禁用oneDNN日志 import sys import glob import time import json import torch import pickle import shutil import argparse import datetime import torchvision import numpy as np from tqdm import tqdm from PIL import Image import torch.nn as nn from packaging import version from functools import partial import pytorch_lightning as pl from omegaconf import OmegaConf, DictConfig import torch.distributed as dist from typing import List, Dict, Any, Optional, Union, Tuple from ldm.util import instantiate_from_config from pytorch_lightning import seed_everything from pytorch_lightning.trainer import Trainer from torch.utils.data import DataLoader, Dataset from ldm.data.base import Txt2ImgIterableBaseDataset from pytorch_lightning.plugins import DDPPlugin from pytorch_lightning.utilities import rank_zero_info from pytorch_lightning.utilities.distributed import rank_zero_only from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor from torch.cuda.amp import autocast, GradScaler # 模型路径 current_dir = os.path.dirname(os.path.abspath(__file__)) for path in ["download", "download/CLIP", "download/k-diffusion", "download/stable_diffusion", "download/taming-transformers"]: sys.path.append(os.path.join(current_dir, path)) class ConfigManager: """配置管理类,统一处理配置加载和解析""" def __init__(self, config_files: Union[str, List[str]], cli_args: Optional[List[str]] = None): # 将单个字符串路径转换为列表 if isinstance(config_files, str): config_files = [config_files] # 验证配置文件存在 self.configs = [] for cfg in config_files: if not os.path.exists(cfg): raise FileNotFoundError(f"配置文件不存在: {cfg}") self.configs.append(OmegaConf.load(cfg)) # 解析命令行参数 self.cli = OmegaConf.from_dotlist(cli_args) if cli_args else OmegaConf.create() # 合并所有配置 self.config = OmegaConf.merge(*self.configs, self.cli) def get_model_config(self) -> DictConfig: """获取模型配置""" if "model" not in self.config: raise KeyError("配置文件中缺少'model'部分") return self.config.model def get_data_config(self) -> DictConfig: """获取数据配置""" if "data" not in self.config: raise KeyError("配置文件中缺少'data'部分") return self.config.data def get_training_config(self) -> DictConfig: """获取训练配置,提供默认值""" training_config = self.config.get("training", OmegaConf.create()) # 设置默认值 defaults = { "max_epochs": 200, "gpus": torch.cuda.device_count(), "accumulate_grad_batches": 1, "learning_rate": 1e-4, "precision": 32 } for key, value in defaults.items(): if key not in training_config: training_config[key] = value return training_config def get_logging_config(self) -> DictConfig: """获取日志配置""" return self.config.get("logging", OmegaConf.create({"logdir": "logs"})) def get_callbacks_config(self) -> DictConfig: """获取回调函数配置""" return self.config.get("callbacks", OmegaConf.create()) def save_config(self, save_path: str) -> None: """保存配置到文件""" os.makedirs(os.path.dirname(save_path), exist_ok=True) OmegaConf.save(self.config, save_path) print(f"配置已保存到: {save_path}") class DataModuleFromConfig(pl.LightningDataModule): def __init__(self, batch_size, num_workers, train=None, validation=None, test=None): super().__init__() self.batch_size = batch_size self.num_workers = num_workers self.dataset_configs = dict() if train is not None: self.dataset_configs["train"] = train if validation is not None: self.dataset_configs["validation"] = validation if test is not None: self.dataset_configs["test"] = test def setup(self, stage=None): self.datasets = { k: instantiate_from_config(cfg) for k, cfg in self.dataset_configs.items() } def _get_dataloader(self, dataset_name, shuffle=False): dataset = self.datasets.get(dataset_name) if dataset is None: raise ValueError(f"数据集 {dataset_name} 未配置") return DataLoader( dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=shuffle, pin_memory=True ) def train_dataloader(self): return self._get_dataloader("train", shuffle=True) def val_dataloader(self): return self._get_dataloader("validation") def test_dataloader(self): return self._get_dataloader("test") def worker_init_fn(worker_id: int) -> None: """数据加载器工作进程初始化函数""" worker_info = torch.utils.data.get_worker_info() if worker_info is None: return dataset = worker_info.dataset worker_id = worker_info.id if isinstance(dataset, Txt2ImgIterableBaseDataset): # 对可迭代数据集进行分片 split_size = dataset.num_records // worker_info.num_workers dataset.sample_ids = dataset.valid_ids[worker_id * split_size:(worker_id + 1) * split_size] # 设置随机种子 seed = torch.initial_seed() % 2**32 + worker_id np.random.seed(seed) torch.manual_seed(seed) class EnhancedImageLogger(Callback): """增强的图像日志记录器,支持多平台日志输出""" def __init__(self, batch_frequency: int, max_images: int, clamp: bool = True, rescale: bool = True, loggers: Optional[List] = None, log_first_step: bool = False, log_images_kwargs: Optional[Dict] = None): super().__init__() self.batch_frequency = max(1, batch_frequency) self.max_images = max_images self.clamp = clamp self.rescale = rescale self.loggers = loggers or [] self.log_first_step = log_first_step self.log_images_kwargs = log_images_kwargs or {} self.log_steps = [2 ** n for n in range(6, int(np.log2(self.batch_frequency)) + 1)] if self.batch_frequency > 1 else [] def check_frequency(self, step: int) -> bool: """检查是否达到记录频率""" if step == 0 and self.log_first_step: return True if step % self.batch_frequency == 0: return True if step in self.log_steps: if len(self.log_steps) > 0: self.log_steps.pop(0) return True return False def log_images(self, pl_module: pl.LightningModule, batch: Any, step: int, split: str = "train") -> None: """记录图像并发送到所有日志记录器""" if not self.check_frequency(step) or not hasattr(pl_module, "log_images"): return is_train = pl_module.training if is_train: pl_module.eval() # 切换到评估模式 with torch.no_grad(): try: images = pl_module.log_images(batch, split=split, **self.log_images_kwargs) except Exception as e: print(f"记录图像时出错: {e}") images = {} # 处理图像数据 for k in list(images.keys()): if not isinstance(images[k], torch.Tensor): continue N = min(images[k].shape[0], self.max_images) images[k] = images[k][:N] # 分布式环境下收集所有图像 if torch.distributed.is_initialized() and torch.distributed.get_world_size() > 1: images[k] = torch.cat(all_gather(images[k])) images[k] = images[k].detach().cpu() if self.clamp: images[k] = torch.clamp(images[k], -1., 1.) if self.rescale: images[k] = (images[k] + 1.0) / 2.0 # 缩放到[0,1] # 发送到所有日志记录器 for logger in self.loggers: if hasattr(logger, 'log_images'): try: logger.log_images(images, step, split) except Exception as e: print(f"日志记录器 {type(logger).__name__} 记录图像失败: {e}") if is_train: pl_module.train() # 恢复训练模式 def on_train_batch_end(self, trainer: Trainer, pl_module: pl.LightningModule, outputs: Any, batch: Any, batch_idx: int) -> None: """训练批次结束时记录图像""" if trainer.global_step % trainer.log_every_n_steps == 0: self.log_images(pl_module, batch, pl_module.global_step, "train") def on_validation_batch_end(self, trainer: Trainer, pl_module: pl.LightningModule, outputs: Any, batch: Any, batch_idx: int) -> None: """验证批次结束时记录图像""" if batch_idx == 0: # 只记录第一个验证批次 self.log_images(pl_module, batch, pl_module.global_step, "val") class TensorBoardLogger: """TensorBoard日志记录器,完整实现PyTorch Lightning日志记录器接口""" def __init__(self, save_dir: str): from torch.utils.tensorboard import SummaryWriter os.makedirs(save_dir, exist_ok=True) self.save_dir = save_dir self.writer = SummaryWriter(save_dir) self._name = "TensorBoard" # 日志记录器名称 self._version = "1.0" # 版本信息 self._experiment = self.writer # 实验对象 print(f"TensorBoard日志保存在: {save_dir}") @property def name(self) -> str: return self._name @property def version(self) -> str: return self._version @property def experiment(self) -> Any: return self._experiment def log_hyperparams(self, params: Dict) -> None: """记录超参数到TensorBoard""" try: # 将嵌套字典展平 flat_params = {} for key, value in params.items(): if isinstance(value, dict): for sub_key, sub_value in value.items(): flat_params[f"{key}/{sub_key}"] = sub_value else: flat_params[key] = value # 记录超参数 self.writer.add_hparams( {k: v for k, v in flat_params.items() if isinstance(v, (int, float, str))}, {}, run_name="." ) print("已记录超参数到TensorBoard") except Exception as e: print(f"记录超参数失败: {e}") def log_graph(self, model: torch.nn.Module, input_array: Optional[torch.Tensor] = None) -> None: """记录模型计算图到TensorBoard""" try: # 扩散模型通常有复杂的前向传播,跳过图记录 print("跳过扩散模型的计算图记录") return except Exception as e: print(f"记录模型计算图失败: {e}") def log_metrics(self, metrics: Dict[str, float], step: int) -> None: """记录指标到TensorBoard""" for name, value in metrics.items(): try: self.writer.add_scalar(name, value, global_step=step) except Exception as e: print(f"添加标量失败: {name}, 错误: {e}") def log_images(self, images: Dict[str, torch.Tensor], step: int, split: str) -> None: """记录图像到TensorBoard""" for k, img in images.items(): if img.numel() == 0: continue try: grid = torchvision.utils.make_grid(img, nrow=min(8, img.shape[0])) self.writer.add_image(f"{split}/{k}", grid, global_step=step) except Exception as e: print(f"添加图像失败: {k}, 错误: {e}") def save(self) -> None: """保存日志(TensorBoard自动保存,这里无需额外操作)""" pass def finalize(self, status: str) -> None: """完成日志记录并关闭写入器""" self.close() def close(self) -> None: """关闭日志写入器""" if hasattr(self, 'writer') and self.writer is not None: self.writer.flush() self.writer.close() self.writer = None print(f"TensorBoard日志已关闭") class TQDMProgressBar(Callback): """使用tqdm显示训练进度,兼容不同版本的PyTorch Lightning""" def __init__(self): self.progress_bar = None self.epoch_bar = None def on_train_start(self, trainer: Trainer, pl_module: pl.LightningModule) -> None: """训练开始时初始化进度条""" # 兼容不同版本的步数估计 total_steps = self._get_total_steps(trainer) self.progress_bar = tqdm( total=total_steps, desc="Training Steps", position=0, leave=True, dynamic_ncols=True ) self.epoch_bar = tqdm( total=trainer.max_epochs, desc="Epochs", position=1, leave=True, dynamic_ncols=True ) def _get_total_steps(self, trainer: Trainer) -> int: """获取训练总步数,兼容不同版本的PyTorch Lightning""" # 尝试使用新版本属性 if hasattr(trainer, 'estimated_stepping_batches'): return trainer.estimated_stepping_batches # 尝试使用旧版本属性 if hasattr(trainer, 'estimated_steps'): return trainer.estimated_steps # 回退到手动计算 try: if hasattr(trainer, 'num_training_batches'): num_batches = trainer.num_training_batches else: num_batches = len(trainer.train_dataloader) if hasattr(trainer, 'accumulate_grad_batches'): accumulate = trainer.accumulate_grad_batches else: accumulate = 1 steps_per_epoch = num_batches // accumulate total_steps = trainer.max_epochs * steps_per_epoch print(f"回退计算训练总步数: {total_steps} = {trainer.max_epochs} epochs × {steps_per_epoch} steps/epoch") return total_steps except Exception as e: print(f"无法确定训练总步数: {e}, 使用默认值10000") return 10000 def on_train_batch_end(self, trainer: Trainer, pl_module: pl.LightningModule, outputs: Any, batch: Any, batch_idx: int) -> None: """每个训练批次结束时更新进度条""" if self.progress_bar: # 防止进度条超过总步数 if self.progress_bar.n < self.progress_bar.total: self.progress_bar.update(1) try: # 尝试从输出中获取损失 loss = outputs.get('loss') if loss is not None: if isinstance(loss, torch.Tensor): loss = loss.item() self.progress_bar.set_postfix({"loss": loss}) except Exception: pass def on_train_epoch_end(self, trainer: Trainer, pl_module: pl.LightningModule) -> None: """每个训练轮次结束时更新轮次进度条""" if self.epoch_bar: self.epoch_bar.update(1) self.epoch_bar.set_postfix({"epoch": trainer.current_epoch}) def on_train_end(self, trainer: Trainer, pl_module: pl.LightningModule) -> None: """训练结束时关闭进度条""" if self.progress_bar: self.progress_bar.close() if self.epoch_bar: self.epoch_bar.close() class PerformanceMonitor(Callback): """性能监控回调,记录内存使用和训练速度""" def __init__(self): self.epoch_start_time = 0 self.batch_times = [] def on_train_epoch_start(self, trainer: Trainer, pl_module: pl.LightningModule) -> None: """每个训练轮次开始时记录时间和重置内存统计""" self.epoch_start_time = time.time() self.batch_times = [] if torch.cuda.is_available(): torch.cuda.reset_peak_memory_stats() torch.cuda.synchronize() # 修改1:添加dataloader_idx参数 def on_train_batch_start(self, trainer: Trainer, pl_module: pl.LightningModule, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> None: """每个训练批次开始时记录时间""" self.batch_start_time = time.time() # 修改2:添加dataloader_idx参数 def on_train_batch_end(self, trainer: Trainer, pl_module: pl.LightningModule, outputs: Any, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> None: """每个训练批次结束时记录时间""" self.batch_times.append(time.time() - self.batch_start_time) def on_train_epoch_end(self, trainer: Trainer, pl_module: pl.LightningModule) -> None: """每个训练轮次结束时计算并记录性能指标""" epoch_time = time.time() - self.epoch_start_time if self.batch_times: avg_batch_time = sum(self.batch_times) / len(self.batch_times) batches_per_second = 1.0 / avg_batch_time else: avg_batch_time = 0 batches_per_second = 0 memory_info = "" if torch.cuda.is_available(): max_memory = torch.cuda.max_memory_allocated() / 2 ** 20 # MiB memory_info = f", 峰值显存: {max_memory:.2f} MiB" rank_zero_info( f"Epoch {trainer.current_epoch} | " f"耗时: {epoch_time:.2f}s | " f"Batch耗时: {avg_batch_time:.4f}s ({batches_per_second:.2f} batches/s)" f"{memory_info}" ) def get_world_size() -> int: """获取分布式训练中的总进程数""" if dist.is_initialized(): return dist.get_world_size() return 1 def all_gather(data: torch.Tensor) -> List[torch.Tensor]: """在分布式环境中收集所有进程的数据""" world_size = get_world_size() if world_size == 1: return [data] # 获取各进程的Tensor大小 local_size = torch.tensor([data.numel()], device=data.device) size_list = [torch.zeros_like(local_size) for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # 收集数据 tensor_list = [] for size in size_list: tensor_list.append(torch.empty((max_size,), dtype=data.dtype, device=data.device)) if local_size < max_size: padding = torch.zeros(max_size - local_size, dtype=data.dtype, device=data.device) data = torch.cat((data.view(-1), padding)) dist.all_gather(tensor_list, data.view(-1)) # 截断到实际大小 results = [] for tensor, size in zip(tensor_list, size_list): results.append(tensor[:size].reshape(data.shape)) return results def create_experiment_directories(logging_config: DictConfig, experiment_name: str) -> Tuple[str, str, str]: """创建实验目录结构""" now = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") logdir = os.path.join(logging_config.logdir, f"{experiment_name}_{now}") ckptdir = os.path.join(logdir, "checkpoints") cfgdir = os.path.join(logdir, "configs") os.makedirs(ckptdir, exist_ok=True) os.makedirs(cfgdir, exist_ok=True) print(f"实验目录: {logdir}") print(f"检查点目录: {ckptdir}") print(f"配置目录: {cfgdir}") return logdir, ckptdir, cfgdir def setup_callbacks(config_manager: ConfigManager, ckptdir: str, tb_logger: TensorBoardLogger) -> List[Callback]: """设置训练回调函数""" callbacks = [] # 模型检查点 checkpoint_callback = ModelCheckpoint( dirpath=ckptdir, filename='{epoch}-{step}-{val_loss:.2f}', monitor='val_loss', save_top_k=3, mode='min', save_last=True, save_on_train_epoch_end=True, # 确保在epoch结束时保存完整状态 save_weights_only=False, # 明确设置为False,保存完整检查点 every_n_train_steps=1000 # 每1000步保存一次 ) callbacks.append(checkpoint_callback) # 学习率监控 lr_monitor = LearningRateMonitor(logging_interval="step") callbacks.append(lr_monitor) # 图像日志记录 image_logger_cfg = config_manager.get_callbacks_config().get("image_logger", {}) image_logger = EnhancedImageLogger( batch_frequency=image_logger_cfg.get("batch_frequency", 500), max_images=image_logger_cfg.get("max_images", 4), loggers=[tb_logger] ) callbacks.append(image_logger) # 进度条 progress_bar = TQDMProgressBar() callbacks.append(progress_bar) # 性能监控 perf_monitor = PerformanceMonitor() callbacks.append(perf_monitor) return callbacks def preprocess_checkpoint(checkpoint_path: str, model: pl.LightningModule) -> Dict[str, Any]: """预处理检查点文件,确保包含所有必要的键,并添加缺失的训练状态""" print(f"预处理检查点文件: {checkpoint_path}") # 加载检查点 try: checkpoint = torch.load(checkpoint_path, map_location="cpu") except Exception as e: print(f"加载检查点失败: {e}") raise # 强制重置训练状态 checkpoint['epoch'] = 0 checkpoint['global_step'] = 0 checkpoint['lr_schedulers'] = [] checkpoint['optimizer_states'] = [] print("已重置训练状态: epoch=0, global_step=0") # 检查是否缺少关键训练状态 required_keys = ['optimizer_states', 'lr_schedulers', 'epoch', 'global_step'] missing_keys = [k for k in required_keys if k not in checkpoint] if missing_keys: print(f"警告: 检查点缺少训练状态字段 {missing_keys},将创建伪训练状态") # 创建伪训练状态 checkpoint.setdefault('optimizer_states', []) checkpoint.setdefault('lr_schedulers', []) checkpoint.setdefault('epoch', 0) checkpoint.setdefault('global_step', 0) # 检查是否缺少 position_ids state_dict = checkpoint.get("state_dict", {}) if "cond_stage_model.transformer.text_model.embeddings.position_ids" not in state_dict: print("警告: 检查点缺少 'cond_stage_model.transformer.text_model.embeddings.position_ids' 键") # 获取模型中的 position_ids 形状 if hasattr(model, "cond_stage_model") and hasattr(model.cond_stage_model, "transformer"): try: max_position_embeddings = model.cond_stage_model.transformer.text_model.config.max_position_embeddings position_ids = torch.arange(max_position_embeddings).expand((1, -1)) state_dict["cond_stage_model.transformer.text_model.embeddings.position_ids"] = position_ids print("已添加 position_ids 到检查点") except Exception as e: print(f"无法添加 position_ids: {e}") # 确保有 state_dict if "state_dict" not in checkpoint: checkpoint["state_dict"] = state_dict return checkpoint # 正确继承原始模型类 from ldm.models.diffusion.ddpm import LatentDiffusion class CustomLatentDiffusion(LatentDiffusion): """自定义 LatentDiffusion 类,处理检查点加载问题""" def on_load_checkpoint(self, checkpoint): """在加载检查点时自动处理缺失的键""" state_dict = checkpoint["state_dict"] # 检查是否缺少 position_ids if "cond_stage_model.transformer.text_model.embeddings.position_ids" not in state_dict: print("警告: 检查点缺少 'cond_stage_model.transformer.text_model.embeddings.position_ids' 键") # 获取模型中的 position_ids 形状 max_position_embeddings = self.cond_stage_model.transformer.text_model.config.max_position_embeddings position_ids = torch.arange(max_position_embeddings).expand((1, -1)) state_dict["cond_stage_model.transformer.text_model.embeddings.position_ids"] = position_ids print("已添加 position_ids 到 state_dict") # 使用非严格模式加载 self.load_state_dict(state_dict, strict=False) print("模型权重加载完成") def filter_kwargs(cls, kwargs, log_prefix=""): # 关键参数白名单 - 这些参数必须保留 ESSENTIAL_PARAMS = { 'unet_config', 'first_stage_config', 'cond_stage_config', 'scheduler_config', 'ckpt_path', 'linear_start', 'linear_end' } # 特殊处理:允许所有包含"config"的参数 filtered_kwargs = {} for k, v in kwargs.items(): if k in ESSENTIAL_PARAMS or 'config' in k: filtered_kwargs[k] = v else: print(f"{log_prefix}过滤参数: {k}") print(f"{log_prefix}保留参数: {list(filtered_kwargs.keys())}") return filtered_kwargs def check_checkpoint_content(checkpoint_path): """打印检查点包含的键,确认是否有训练状态""" checkpoint = torch.load(checkpoint_path, map_location="cpu") print("检查点包含的键:", list(checkpoint.keys())) if "state_dict" in checkpoint: print("模型权重存在") if "optimizer_states" in checkpoint: print("优化器状态存在") if "epoch" in checkpoint: print(f"保存的epoch: {checkpoint['epoch']}") if "global_step" in checkpoint: print(f"保存的global_step: {checkpoint['global_step']}") def main() -> None: """主函数,训练和推理流程的入口点""" # 启用Tensor Core加速 torch.set_float32_matmul_precision('high') # 解析命令行参数 parser = argparse.ArgumentParser(description="扩散模型训练框架") parser.add_argument("--config", type=str, default="configs/train.yaml", help="配置文件路径") parser.add_argument("--name", type=str, default="experiment", help="实验名称") parser.add_argument("--resume", action="store_true", default=True, help="恢复训练") parser.add_argument("--debug", action="store_true", help="调试模式") parser.add_argument("--seed", type=int, default=42, help="随机种子") parser.add_argument("--scale_lr", action="store_true", help="根据GPU数量缩放学习率") parser.add_argument("--precision", type=str, default="32", choices=["16", "32", "bf16"], help="训练精度") args, unknown = parser.parse_known_args() # 设置随机种子 seed_everything(args.seed, workers=True) print(f"设置随机种子: {args.seed}") # 初始化配置管理器 try: config_manager = ConfigManager(args.config, unknown) config = config_manager.config except Exception as e: print(f"加载配置失败: {e}") sys.exit(1) # 创建日志目录 logging_config = config_manager.get_logging_config() logdir, ckptdir, cfgdir = create_experiment_directories(logging_config, args.name) # 保存配置 config_manager.save_config(os.path.join(cfgdir, "config.yaml")) # 配置日志记录器 tb_logger = TensorBoardLogger(os.path.join(logdir, "tensorboard")) # 配置回调函数 callbacks = setup_callbacks(config_manager, ckptdir, tb_logger) # 初始化数据模块 try: print("初始化数据模块...") data_config = config_manager.get_data_config() data_module = instantiate_from_config(data_config) data_module.setup() print("可用数据集:", list(data_module.datasets.keys())) except Exception as e: print(f"数据模块初始化失败: {str(e)}") return # 创建模型 try: model_config = config_manager.get_model_config() model_params = model_config.get("params", {}) # 创建模型实例 model = CustomLatentDiffusion(**model_config.get("params", {})) print("模型初始化成功") # 检查并转换预训练权重 ckpt_path = model_config.params.get("ckpt_path", "") if ckpt_path and os.path.exists(ckpt_path): print(f"加载预训练权重: {ckpt_path}") checkpoint = torch.load(ckpt_path, map_location="cpu") state_dict = checkpoint.get("state_dict", checkpoint) # 查找所有与conv_in.weight相关的键 conv_in_keys = [] for key in state_dict.keys(): if "conv_in.weight" in key and "first_stage_model" in key: conv_in_keys.append(key) # 转换找到的权重 for conv_in_key in conv_in_keys: if state_dict[conv_in_key].shape[1] == 3: # 原始是3通道 print(f"转换权重: {conv_in_key} 从3通道到1通道") # 取RGB三通道的平均值作为单通道权重 rgb_weights = state_dict[conv_in_key] ir_weights = rgb_weights.mean(dim=1, keepdim=True) state_dict[conv_in_key] = ir_weights print(f"转换前形状: {rgb_weights.shape}") print(f"转换后形状: {ir_weights.shape}") print(f"模型层形状: {model.first_stage_model.encoder.conv_in.weight.shape}") # 非严格模式加载(允许其他层不匹配) missing, unexpected = model.load_state_dict(state_dict, strict=False) print(f"权重加载完成: 缺失层 {len(missing)}, 不匹配层 {len(unexpected)}") if missing: print("缺失层:", missing) if unexpected: print("意外层:", unexpected) except Exception as e: print(f"模型初始化失败: {str(e)}") return print("VAE输入层形状:", model.first_stage_model.encoder.conv_in.weight.shape) # 权重转换 if ckpt_path and os.path.exists(ckpt_path): print(f"加载预训练权重: {ckpt_path}") checkpoint = torch.load(ckpt_path, map_location="cpu") state_dict = checkpoint.get("state_dict", checkpoint) # 增强:查找所有需要转换的层(包括可能的变体) conversion_keys = [] for key in state_dict.keys(): if "conv_in" in key or "conv_out" in key or "nin_shortcut" in key: if state_dict[key].ndim == 4 and state_dict[key].shape[1] == 3: conversion_keys.append(key) print(f"找到需要转换的层: {conversion_keys}") # 转换权重 for key in conversion_keys: print(f"转换权重: {key}") print(f"原始形状: {state_dict[key].shape}") # RGB权重 [out_c, in_c=3, kH, kW] rgb_weights = state_dict[key] # 转换为单通道权重 [out_c, 1, kH, kW] if rgb_weights.shape[1] == 3: ir_weights = rgb_weights.mean(dim=1, keepdim=True) state_dict[key] = ir_weights print(f"转换后形状: {state_dict[key].shape}") # 加载转换后的权重 try: # 使用非严格模式加载 missing, unexpected = model.load_state_dict(state_dict, strict=False) print(f"权重加载完成: 缺失层 {len(missing)}, 不匹配层 {len(unexpected)}") # 打印重要信息 if missing: print("缺失层:", missing[:5]) # 只显示前5个避免过多输出 if unexpected: print("意外层:", unexpected[:5]) # 特别检查conv_in层 if "first_stage_model.encoder.conv_in.weight" in missing: print("警告: conv_in.weight未加载,需要手动初始化") # 手动初始化单通道卷积层 with torch.no_grad(): model.first_stage_model.encoder.conv_in.weight.data.normal_(mean=0.0, std=0.02) print("已手动初始化conv_in.weight") except RuntimeError as e: print(f"加载权重时出错: {e}") print("尝试仅加载兼容的权重...") # 创建新的状态字典只包含兼容的键 model_state = model.state_dict() compatible_dict = {} for k, v in state_dict.items(): if k in model_state and v.shape == model_state[k].shape: compatible_dict[k] = v # 加载兼容的权重 model.load_state_dict(compatible_dict, strict=False) print(f"部分权重加载完成: {len(compatible_dict)}/{len(state_dict)}") # 配置学习率 training_config = config_manager.get_training_config() bs = data_config.params.batch_size base_lr = model_config.base_learning_rate ngpu = training_config.get("gpus", 1) accumulate_grad_batches = training_config.get("accumulate_grad_batches", 1) if args.scale_lr: model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr print(f"学习率缩放至: {model.learning_rate:.2e} = {accumulate_grad_batches} × {ngpu} × {bs} × {base_lr:.2e}") else: model.learning_rate = base_lr print(f"使用基础学习率: {model.learning_rate:.2e}") # 检查是否恢复训练 resume_from_checkpoint = None if args.resume: # 优先使用自动保存的last.ckpt last_ckpt = os.path.join(ckptdir, "last.ckpt") if os.path.exists(last_ckpt): print(f"恢复训练状态: {last_ckpt}") resume_from_checkpoint = last_ckpt else: # 回退到指定检查点 fallback_ckpt = os.path.join(current_dir, "checkpoints", "M3FD.ckpt") if os.path.exists(fallback_ckpt): print(f"警告: 使用仅含权重的检查点,训练状态将重置: {fallback_ckpt}") resume_from_checkpoint = fallback_ckpt else: print("未找到可用的检查点,从头开始训练") # 如果需要恢复训练,预处理检查点 if resume_from_checkpoint and os.path.exists(resume_from_checkpoint): try: # 预处理检查点 - 添加缺失的状态 checkpoint = preprocess_checkpoint(resume_from_checkpoint, model) # 创建新的完整检查点文件 fixed_ckpt_path = os.path.join(ckptdir, "fixed_checkpoint.ckpt") torch.save(checkpoint, fixed_ckpt_path) print(f"修复后的完整检查点已保存到: {fixed_ckpt_path}") # 使用修复后的检查点 resume_from_checkpoint = fixed_ckpt_path except Exception as e: print(f"预处理检查点失败: {e}") print("将尝试使用默认方式加载检查点") # 配置日志记录器 tb_logger = TensorBoardLogger(os.path.join(logdir, "tensorboard")) # 配置回调函数 callbacks = setup_callbacks(config_manager, ckptdir, tb_logger) # 检查是否有验证集 has_validation = hasattr(data_module, 'datasets') and 'validation' in data_module.datasets # 计算训练批次数 try: train_loader = data_module.train_dataloader() num_train_batches = len(train_loader) print(f"训练批次数: {num_train_batches}") except Exception as e: print(f"计算训练批次数失败: {e}") num_train_batches = 0 # 设置训练器参数(先设置基础参数) trainer_config = { "default_root_dir": logdir, "max_epochs": training_config.max_epochs, "gpus": ngpu, "distributed_backend": "ddp" if ngpu > 1 else None, "plugins": [DDPPlugin(find_unused_parameters=False)] if ngpu > 1 else None, "precision": 16, "accumulate_grad_batches": accumulate_grad_batches, "callbacks": callbacks, "logger": tb_logger, # 添加日志记录器 "resume_from_checkpoint": resume_from_checkpoint, "fast_dev_run": args.debug, "limit_val_batches": 0 if not has_validation else 1.0, "num_sanity_val_steps": 0, # 跳过初始验证加速恢复 "log_every_n_steps": 10 # 更频繁的日志记录 } # 动态调整验证配置 if has_validation: if num_train_batches < 50: # 小数据集:使用epoch验证 trainer_config["check_val_every_n_epoch"] = 1 # 确保移除步数验证参数 if "val_check_interval" in trainer_config: del trainer_config["val_check_interval"] else: # 大数据集:使用步数验证 val_check_interval = min(2000, num_train_batches) if num_train_batches < 100: val_check_interval = max(1, num_train_batches // 4) trainer_config["val_check_interval"] = val_check_interval # 创建训练器 try: print("最终训练器配置:") for k, v in trainer_config.items(): print(f" {k}: {v}") trainer = Trainer(**trainer_config) except Exception as e: print(f"创建训练器失败: {e}") tb_logger.close() sys.exit(1) # 执行训练 try: print("开始训练...") trainer.fit(model, data_module) print("训练完成!") except KeyboardInterrupt: print("训练被用户中断") if trainer.global_rank == 0 and trainer.model is not None: trainer.save_checkpoint(os.path.join(ckptdir, "interrupted.ckpt")) except Exception as e: print(f"训练出错: {e}") if trainer.global_rank == 0 and hasattr(trainer, 'model') and trainer.model is not None: trainer.save_checkpoint(os.path.join(ckptdir, "error.ckpt")) raise finally: # 关闭日志记录器 tb_logger.close() # 打印性能分析报告 if trainer.global_rank == 0 and hasattr(trainer, 'profiler'): print("训练摘要:") print(trainer.profiler.summary()) if __name__ == "__main__": main()运行报错:模型初始化失败: Error(s) in loading state_dict for CustomLatentDiffusion: size mismatch for first_stage_model.encoder.conv_in.weight: copying a param with shape torch.Size([128, 3, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 1, 3, 3]).

zip

最新推荐

recommend-type

langchain4j-anthropic-spring-boot-starter-0.31.0.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

TMS320F28335电机控制程序详解:BLDC、PMSM无感有感及异步VF源代码与开发资料

TMS320F28335这款高性能数字信号处理器(DSP)在电机控制领域的应用,涵盖了BLDC(无刷直流电机)、PMSM(永磁同步电机)的无感有感控制以及异步VF(变频调速)程序。文章不仅解释了各类型的电机控制原理,还提供了完整的开发资料,包括源代码、原理图和说明文档,帮助读者深入了解其工作原理和编程技巧。 适合人群:从事电机控制系统开发的技术人员,尤其是对TMS320F28335感兴趣的工程师。 使用场景及目标:适用于需要掌握TMS320F28335在不同电机控制应用场景下具体实现方法的专业人士,旨在提高他们对该微控制器的理解和实际操作能力。 其他说明:文中提供的开发资料为读者提供了从硬件到软件的全面支持,有助于加速项目开发进程并提升系统性能。
recommend-type

基于爬山搜索法的风力发电MPPT控制Simulink仿真:定步长与变步长算法性能对比 - 爬山搜索法 最新版

基于爬山搜索法的风力发电最大功率点追踪(MPPT)控制的Simulink仿真模型,重点比较了定步长和变步长算法在不同风速条件下的表现。文中展示了两种算法的具体实现方法及其优缺点。定步长算法虽然结构简单、计算量小,但在风速突变时响应较慢,存在明显的稳态振荡。相比之下,变步长算法能够根据功率变化动态调整步长,表现出更快的响应速度和更高的精度,尤其在风速突变时优势明显。实验数据显示,变步长算法在风速从8m/s突增至10m/s的情况下,仅用0.3秒即可稳定,功率波动范围仅为±15W,而定步长算法则需要0.8秒,功率波动达到±35W。 适合人群:从事风力发电研究的技术人员、对MPPT控制感兴趣的工程技术人员以及相关专业的高校师生。 使用场景及目标:适用于风力发电系统的设计与优化,特别是需要提高系统响应速度和精度的场合。目标是在不同风速条件下,选择合适的MPPT算法以最大化风能利用率。 其他说明:文章还讨论了定步长算法在风速平稳情况下的优势,提出了根据不同应用场景灵活选择或组合使用这两种算法的建议。
recommend-type

基于MatlabSimulink的风电场调频策略研究:虚拟惯性、超速减载与下垂控制的协调优化

内容概要:本文详细探讨了在Matlab/Simulink环境下,针对风电场调频的研究,尤其是双馈风机调频策略的应用及其与其他调频策略的协调工作。文中介绍了三种主要的调频策略——虚拟惯性、超速减载和下垂控制,并基于三机九节点系统进行了改进,模拟了四组风电机组的协同调频过程。研究指出,虚拟惯性的应用虽然可以提供短期频率支持,但也可能导致频率二次跌落的问题。因此,需要通过超速减载和下垂控制来进行补偿,以维持电网的稳定。此外,文章还展示了在变风速条件下,风电机组对电网频率支撑能力的显著提升,尤其是在高比例风电并网渗透的情况下,频率最低点提高了50%,验证了调频策略的有效性。 适合人群:从事电力系统、风电场运营管理和调频技术研发的专业人士,以及对风电调频感兴趣的科研人员和技术爱好者。 使用场景及目标:适用于希望深入理解风电场调频机制及其优化方法的人群。目标是掌握不同调频策略的工作原理及其协调工作的关键点,提高风电场的运行效率和稳定性。 其他说明:本文通过具体的案例研究和仿真数据,展示了调频策略的实际效果,强调了合理运用调频策略对于风电场稳定运行的重要意义。同时,也为未来的风电调频技术创新提供了理论依据和实践经验。
recommend-type

三菱QL系列PLC在3C-FPC组装机中的定位与伺服控制及触摸屏应用解析

三菱Q系列和L系列PLC在3C-FPC组装机中的具体应用,涵盖硬件架构、软件编程以及实际操作技巧。主要内容包括:使用QX42数字输入模块和QY42P晶体管输出模块进行高效信号处理;采用JE系列伺服控制系统实现高精度四轴联动;利用SFC(顺序功能图)和梯形图编程方法构建稳定可靠的控制系统;通过触摸屏实现多用户管理和权限控制;并分享了一些实用的调试和维护技巧,如流水线节拍控制和工程师模式进入方法。最终,该系统的设备综合效率(OEE)达到了92%以上。 适合人群:从事自动化控制领域的工程师和技术人员,尤其是对三菱PLC有初步了解并希望深入了解其高级应用的人群。 使用场景及目标:适用于需要高精度、高效能的工业生产设备控制场合,旨在帮助用户掌握三菱PLC及其相关组件的应用技能,提高生产效率和产品质量。 其他说明:文中提供了详细的编程实例和操作指南,有助于读者更好地理解和实践。同时提醒使用者在调试过程中应注意伺服刚性参数调整,避免不必要的机械损伤。
recommend-type

Visual C++.NET编程技术实战指南

根据提供的文件信息,可以生成以下知识点: ### Visual C++.NET编程技术体验 #### 第2章 定制窗口 - **设置窗口风格**:介绍了如何通过编程自定义窗口的外观和行为。包括改变窗口的标题栏、边框样式、大小和位置等。这通常涉及到Windows API中的`SetWindowLong`和`SetClassLong`函数。 - **创建六边形窗口**:展示了如何创建一个具有特殊形状边界的窗口,这类窗口不遵循标准的矩形形状。它需要使用`SetWindowRgn`函数设置窗口的区域。 - **创建异形窗口**:扩展了定制窗口的内容,提供了创建非标准形状窗口的方法。这可能需要创建一个不规则的窗口区域,并将其应用到窗口上。 #### 第3章 菜单和控制条高级应用 - **菜单编程**:讲解了如何创建和修改菜单项,处理用户与菜单的交互事件,以及动态地添加或删除菜单项。 - **工具栏编程**:阐述了如何使用工具栏,包括如何创建工具栏按钮、分配事件处理函数,并实现工具栏按钮的响应逻辑。 - **状态栏编程**:介绍了状态栏的创建、添加不同类型的指示器(如文本、进度条等)以及状态信息的显示更新。 - **为工具栏添加皮肤**:展示了如何为工具栏提供更加丰富的视觉效果,通常涉及到第三方的控件库或是自定义的绘图代码。 #### 第5章 系统编程 - **操作注册表**:解释了Windows注册表的结构和如何通过程序对其进行读写操作,这对于配置软件和管理软件设置非常关键。 - **系统托盘编程**:讲解了如何在系统托盘区域创建图标,并实现最小化到托盘、从托盘恢复窗口的功能。 - **鼠标钩子程序**:介绍了钩子(Hook)技术,特别是鼠标钩子,如何拦截和处理系统中的鼠标事件。 - **文件分割器**:提供了如何将文件分割成多个部分,并且能够重新组合文件的技术示例。 #### 第6章 多文档/多视图编程 - **单文档多视**:展示了如何在同一个文档中创建多个视图,这在文档编辑软件中非常常见。 #### 第7章 对话框高级应用 - **实现无模式对话框**:介绍了无模式对话框的概念及其应用场景,以及如何实现和管理无模式对话框。 - **使用模式属性表及向导属性表**:讲解了属性表的创建和使用方法,以及如何通过向导性质的对话框引导用户完成多步骤的任务。 - **鼠标敏感文字**:提供了如何实现点击文字触发特定事件的功能,这在阅读器和编辑器应用中很有用。 #### 第8章 GDI+图形编程 - **图像浏览器**:通过图像浏览器示例,展示了GDI+在图像处理和展示中的应用,包括图像的加载、显示以及基本的图像操作。 #### 第9章 多线程编程 - **使用全局变量通信**:介绍了在多线程环境下使用全局变量进行线程间通信的方法和注意事项。 - **使用Windows消息通信**:讲解了通过消息队列在不同线程间传递信息的技术,包括发送消息和处理消息。 - **使用CriticalSection对象**:阐述了如何使用临界区(CriticalSection)对象防止多个线程同时访问同一资源。 - **使用Mutex对象**:介绍了互斥锁(Mutex)的使用,用以同步线程对共享资源的访问,保证资源的安全。 - **使用Semaphore对象**:解释了信号量(Semaphore)对象的使用,它允许一个资源由指定数量的线程同时访问。 #### 第10章 DLL编程 - **创建和使用Win32 DLL**:介绍了如何创建和链接Win32动态链接库(DLL),以及如何在其他程序中使用这些DLL。 - **创建和使用MFC DLL**:详细说明了如何创建和使用基于MFC的动态链接库,适用于需要使用MFC类库的场景。 #### 第11章 ATL编程 - **简单的非属性化ATL项目**:讲解了ATL(Active Template Library)的基础使用方法,创建一个不使用属性化组件的简单项目。 - **使用ATL开发COM组件**:详细阐述了使用ATL开发COM组件的步骤,包括创建接口、实现类以及注册组件。 #### 第12章 STL编程 - **list编程**:介绍了STL(标准模板库)中的list容器的使用,讲解了如何使用list实现复杂数据结构的管理。 #### 第13章 网络编程 - **网上聊天应用程序**:提供了实现基本聊天功能的示例代码,包括客户端和服务器的通信逻辑。 - **简单的网页浏览器**:演示了如何创建一个简单的Web浏览器程序,涉及到网络通信和HTML解析。 - **ISAPI服务器扩展编程**:介绍了如何开发ISAPI(Internet Server API)服务器扩展来扩展IIS(Internet Information Services)的功能。 #### 第14章 数据库编程 - **ODBC数据库编程**:解释了ODBC(开放数据库互联)的概念,并提供了使用ODBC API进行数据库访问的示例。 - **ADO编程**:介绍了ADO(ActiveX Data Objects)技术,讲解了如何使用ADO进行数据库的增删改查等操作。 #### 第15章 HTML帮助系统编程 - **创建HTML帮助文件**:讲解了如何创建HTML帮助文件(.chm),这是微软帮助系统的一种形式。 - **区分上下文帮助**:提供了在应用程序中实现上下文敏感帮助的技术示例。 #### 第16章 安装和部署项目 - **用安装程序向导创建安装项目**:介绍了如何使用Visual Studio中的安装和部署项目向导,快速创建安装程序。 - **部署应用程序**:阐述了部署应用程序到目标系统的过程,以及如何确保应用程序的正确安装和运行。 以上内容涵盖了Visual C++.NET编程技术体验一书中涉及的各个技术点,并对每个章节中的示例做了详细的说明。这些知识点对于理解和掌握Visual C++.NET编程非常重要,并能够帮助读者在实际项目开发中应用这些技术。
recommend-type

HarmonyOS内核深度探秘:优化自由行旅游系统的策略

# 1. HarmonyOS内核概述与旅游系统需求分析 ## 1.1 HarmonyOS内核概述 HarmonyOS(鸿蒙操作系统)是由华为开发的一个分布式操作系统,旨在提供跨多种设备的无缝体验。其内核设计理念强调高效、安全和模块化,以微内核架构和分布式能力
recommend-type

tkinter模块所有控件

<think>好的,我现在需要回答用户关于Tkinter模块中所有控件列表的问题。首先,我需要回忆Tkinter的基础知识,确保自己了解各个控件的名称和用途。用户希望得到所有支持的控件列表,所以必须全面覆盖,不能遗漏。 首先,我应该从Tkinter的标准控件开始。常见的控件包括Label、Button、Entry这些基础部件。然后是Frame,用于布局,还有Canvas用于绘图。接下来是Checkbutton、Radiobutton,这些属于选择类控件。Listbox和Scrollbar通常一起使用,处理滚动内容。还有Scale(滑块)、Spinbox、Menu、Menubutton这些可能
recommend-type

局域网五子棋游戏:娱乐与聊天的完美结合

标题“网络五子棋”和描述“适合于局域网之间娱乐和聊天!”以及标签“五子棋 网络”所涉及的知识点主要围绕着五子棋游戏的网络版本及其在局域网中的应用。以下是详细的知识点: 1. 五子棋游戏概述: 五子棋是一种两人对弈的纯策略型棋类游戏,又称为连珠、五子连线等。游戏的目标是在一个15x15的棋盘上,通过先后放置黑白棋子,使得任意一方先形成连续五个同色棋子的一方获胜。五子棋的规则简单,但策略丰富,适合各年龄段的玩家。 2. 网络五子棋的意义: 网络五子棋是指可以在互联网或局域网中连接进行对弈的五子棋游戏版本。通过网络版本,玩家不必在同一地点即可进行游戏,突破了空间限制,满足了现代人们快节奏生活的需求,同时也为玩家们提供了与不同对手切磋交流的机会。 3. 局域网通信原理: 局域网(Local Area Network,LAN)是一种覆盖较小范围如家庭、学校、实验室或单一建筑内的计算机网络。它通过有线或无线的方式连接网络内的设备,允许用户共享资源如打印机和文件,以及进行游戏和通信。局域网内的计算机之间可以通过网络协议进行通信。 4. 网络五子棋的工作方式: 在局域网中玩五子棋,通常需要一个客户端程序(如五子棋.exe)和一个服务器程序。客户端负责显示游戏界面、接受用户输入、发送落子请求给服务器,而服务器负责维护游戏状态、处理玩家的游戏逻辑和落子请求。当一方玩家落子时,客户端将该信息发送到服务器,服务器确认无误后将更新后的棋盘状态传回给所有客户端,更新显示。 5. 五子棋.exe程序: 五子棋.exe是一个可执行程序,它使得用户可以在个人计算机上安装并运行五子棋游戏。该程序可能包含了游戏的图形界面、人工智能算法(如果支持单机对战AI的话)、网络通信模块以及游戏规则的实现。 6. put.wav文件: put.wav是一个声音文件,很可能用于在游戏进行时提供声音反馈,比如落子声。在网络环境中,声音文件可能被用于提升玩家的游戏体验,尤其是在局域网多人游戏场景中。当玩家落子时,系统会播放.wav文件中的声音,为游戏增添互动性和趣味性。 7. 网络五子棋的技术要求: 为了确保多人在线游戏的顺利进行,网络五子棋需要具备一些基本的技术要求,包括但不限于稳定的网络连接、高效的数据传输协议(如TCP/IP)、以及安全的数据加密措施(如果需要的话)。此外,还需要有一个良好的用户界面设计来提供直观和舒适的用户体验。 8. 社交与娱乐: 网络五子棋除了是一个娱乐游戏外,它还具有社交功能。玩家可以通过游戏内的聊天系统进行交流,分享经验和策略,甚至通过网络寻找新的朋友。这使得网络五子棋不仅是一个个人娱乐工具,同时也是一种社交活动。 总结来说,网络五子棋结合了五子棋游戏的传统魅力和现代网络技术,使得不同地区的玩家能够在局域网内进行娱乐和聊天,既丰富了人们的娱乐生活,又加强了人际交流。而实现这一切的基础在于客户端程序的设计、服务器端的稳定运行、局域网的高效通信,以及音效文件增强的游戏体验。
recommend-type

自由行旅游新篇章:HarmonyOS技术融合与系统架构深度解析

# 1. HarmonyOS技术概述 ## 1.1 HarmonyOS的起源与发展 HarmonyOS(鸿蒙操作系统)由华为公司开发,旨在构建全场景分布式OS,以应对不同设备间的互联问题。自从2019年首次发布以来,HarmonyOS迅速成长,并迅速应用于智能手机、平板、智能穿戴、车载设备等多种平台。该系