foul ciou损失函数
时间: 2025-03-05 07:40:25 浏览: 43
### YOLO中的Focal CIoU损失函数
在YOLO系列的目标检测算法中,为了提升边界框回归的准确性并处理类别不平衡问题,引入了多种改进型损失函数。其中一种组合方式是将Focal Loss与CIoU (Complete Intersection over Union) 结合起来形成所谓的 **Focal CIoU** 损失函数。
#### Focal CIoU损失函数的作用
该损失函数不仅能够有效减少正负样本之间的数量差异带来的影响,还能更精确地衡量预测框和真实框之间位置关系的质量[^3]。具体来说:
- **Focal Loss部分**: 主要用于解决前景背景极度不均衡的问题,通过调整难易分类样本权重来改善模型学习效果;
- **CIoU部分**: 则专注于提高边框回归质量,相比传统的IoU或GIoU, CIoU考虑到了更多几何特性因素如中心点距离以及宽高比例等因素的影响;
两者结合可以更好地服务于目标检测任务,在保持较高召回率的同时降低误检概率。
#### 实现代码示例
以下是基于PyTorch框架下实现的一个简单版`focal_ciou_loss()` 函数:
```python
import torch
from torchvision.ops import box_iou
def focal_ciou_loss(pred_boxes, target_boxes, alpha=0.25, gamma=2.0):
"""
计算Focal CIoU损失
参数:
pred_boxes: 预测框坐标 Tensor[N, 4], xyxy格式
target_boxes: 真实框坐标 Tensor[N, 4], xyxy格式
alpha: Focal loss 的alpha参数,默认为0.25
gamma: Focal loss 的gamma参数,默认为2
返回:
float: 平均后的总损失值
"""
# 获取iou矩阵
ious = box_iou(pred_boxes, target_boxes).diag()
# 计算ciou
cious = compute_ciou(pred_boxes, target_boxes)
# 计算focal factor
p_t = ious * ((target_boxes[:, None]).eq(1)).float().sum(dim=-1)
modulating_factor = (p_t / (1 - p_t + 1e-8)) ** gamma
weighting_factor = alpha * target_boxes.new_ones(target_boxes.size()) + \
(1-alpha)*((pred_boxes[:,None]-target_boxes)**2).mean(-1).sqrt()
# 综合计算最终loss
final_loss = -(weighting_factor * modulating_factor * torch.log(cious.clamp(min=1e-9))).mean()
return final_loss
def compute_ciou(bboxes1, bboxes2):
"""Compute the CIOU of two sets of boxes."""
rows = bboxes1.shape[0]
cols = bboxes2.shape[0]
center_x1 = (bboxes1[..., 0] + bboxes1[..., 2]) / 2.
center_y1 = (bboxes1[..., 1] + bboxes1[..., 3]) / 2.
center_x2 = (bboxes2[..., 0] + bboxes2[..., 2]) / 2.
center_y2 = (bboxes2[..., 1] + bboxes2[..., 3]) / 2.
inter_max_xy = torch.min(bboxes1[:, 2:], bboxes2[:, 2:])
inter_min_xy = torch.max(bboxes1[:, :2], bboxes2[:, :2])
out_max_xy = torch.max(bboxes1[:, 2:], bboxes2[:, 2:])
out_min_xy = torch.min(bboxes1[:, :2], bboxes2[:, :2])
inter = torch.clamp((inter_max_xy - inter_min_xy), min=0)
inter_area = inter[:, 0] * inter[:, 1]
inter_diag = (center_x2 - center_x1) ** 2 + (center_y2 - center_y1) ** 2
outer = torch.clamp((out_max_xy - out_min_xy), min=0)
outer_diagonal = (outer[:, 0] ** 2) + (outer[:, 1] ** 2)
union = area1 + area2 - inter_area
u = (inter_diag) / outer_diagonal
w1 = bboxes1[..., 2] - bboxes1[..., 0]
h1 = bboxes1[..., 3] - bboxes1[..., 1]
w2 = bboxes2[..., 2] - bboxes2[..., 0]
h2 = bboxes2[..., 3] - bboxes2[..., 1]
v = (4 / math.pi ** 2) * torch.pow(
torch.atan(w2 / h2) - torch.atan(w1 / h1),
2
)
with torch.no_grad():
S = 1 - inter_area / union
alpha = v / (S + v)
ciou_term = v * alpha
ciou = iou - u - ciou_term
return ciou.mean()
if __name__ == '__main__':
pass
```
此段代码实现了针对给定的真实标签框(`target_boxes`)及其对应的预测框(`pred_boxes`)计算其间的平均Focal CIoU损失。注意这里简化了一些细节以便理解核心逻辑[^2]。
阅读全文
相关推荐








