MATAB粒子爱心代码
时间: 2024-11-07 09:11:23 浏览: 58
MATLAB(矩阵实验室)是一款流行的数学软件,它并非专门用于编写“粒子爱心”代码,这是一种通常在图形用户界面环境中创建的艺术效果,比如游戏或编程教学示例中可能会见到。"粒子爱心"通常是通过动画粒子系统来实现的,其中每个粒子独立移动并可能改变形状,当它们聚集在一起时呈现出心形。
在MATLAB中,你可以使用`scatter`函数结合一些绘图技巧来模拟这种效果,或者利用`ParticleSystem`组件来创建更复杂的粒子系统。以下是一个简单的例子:
```matlab
% 创建一个粒子系统
particles = particleSystem('Position', [rand(100, 2) - 0.5], 'LifeSpan', 0.5);
% 绘制爱心形状
figure;
hold on;
scatter(particles.Position(:, 1), particles.Position(:, 2), [], 'o', 'filled');
fill([0, 1, 1, 0, 0], [0, 0, 1, 1, 0], 'r'); % 简单的心形填充
% 更新粒子位置
while isvalid(particles)
positions = particles.Position;
% 这里可以添加随机移动或其他变化规则
particles.Position = positions + randn(size(positions)) * 0.1; % 移动粒子
drawnow; % 每次循环都更新显示
end
```
相关问题
matlab粒子爱心代码
```
<!DOCTYPE html>
<html>
<head>
<title></title>
</head>
<style>
* {
padding: 0;
margin: 0;
}
html,
body {
height: 100%;
padding: 0;
margin: 0;
background: #000;
}
canvas {
position: absolute;
width: 100%;
height: 100%;
}
.aa {
position: fixed;
left: 50%;
bottom: 10px;
color: #ccc;
}
</style>
<body>
<canvas id="pinkboard"></canvas>
<script>
/*
* Settings
*/
var settings = {
particles: {
length: 500, // maximum amount of particles
duration: 2, // particle duration in sec
velocity: 100, // particle velocity in pixels/sec
effect: -0.75, // play with this for a nice effect
size: 30 // particle size in pixels
}
};
/*
* RequestAnimationFrame polyfill by Erik M?ller
*/
(function () {
var b = 0;
var c = ["ms", "moz", "webkit", "o"];
for (var a = 0; a < c.length && !window.requestAnimationFrame; ++a) {
window.requestAnimationFrame = window[c[a] + "RequestAnimationFrame"];
window.cancelAnimationFrame =
window[c[a] + "CancelAnimationFrame"] ||
window[c[a] + "CancelRequestAnimationFrame"];
}
if (!window.requestAnimationFrame) {
window.requestAnimationFrame = function (h, e) {
var d = new Date().getTime();
var f = Math.max(0, 16 - (d - b));
var g = window.setTimeout(function () {
h(d + f);
}, f);
b = d + f;
return g;
};
}
if (!window.cancelAnimationFrame) {
window.cancelAnimationFrame = function (d) {
clearTimeout(d);
};
}
})();
/*
* Point class
*/
var Point = (function () {
function Point(x, y) {
this.x = typeof x !== "undefined" ? x : 0;
this.y = typeof y !== "undefined" ? y : 0;
}
Point.prototype.clone = function () {
return new Point(this.x, this.y);
};
Point.prototype.length = function (length) {
if (typeof length == "undefined")
return Math.sqrt(this.x * this.x + this.y * this.y);
this.normalize();
this.x *= length;
this.y *= length;
return this;
};
Point.prototype.normalize = function () {
var length = this.length();
this.x /= length;
this.y /= length;
return this;
};
return Point;
})();
/*
* Particle class
*/
var Particle = (function () {
function Particle() {
this.position = new Point();
this.velocity = new Point();
this.acceleration = new Point();
this.age = 0;
}
Particle.prototype.initialize = function (x, y, dx, dy) {
this.position.x = x;
this.position.y = y;
this.velocity.x = dx;
this.velocity.y = dy;
this.acceleration.x = dx * settings.particles.effect;
this.acceleration.y = dy * settings.particles.effect;
this.age = 0;
};
Particle.prototype.update = function (deltaTime) {
this.position.x += this.velocity.x * deltaTime;
this.position.y += this.velocity.y * deltaTime;
this.velocity.x += this.acceleration.x * deltaTime;
this.velocity.y += this.acceleration.y * deltaTime;
this.age += deltaTime;
};
Particle.prototype.draw = function (context, image) {
function ease(t) {
return --t * t * t + 1;
}
var size = image.width * ease(this.age / settings.particles.duration);
context.globalAlpha = 1 - this.age / settings.particles.duration;
context.drawImage(
image,
this.position.x - size / 2,
this.position.y - size / 2,
size,
size
);
};
return Particle;
})();
/*
* ParticlePool class
*/
var ParticlePool = (function () {
var particles,
firstActive = 0,
firstFree = 0,
duration = settings.particles.duration;
function ParticlePool(length) {
// create and populate particle pool
particles = new Array(length);
for (var i = 0; i < particles.length; i++)
particles[i] = new Particle();
}
ParticlePool.prototype.add = function (x, y, dx, dy) {
particles[firstFree].initialize(x, y, dx, dy);
// handle circular queue
firstFree++;
if (firstFree == particles.length) firstFree = 0;
if (firstActive == firstFree) firstActive++;
if (firstActive == particles.length) firstActive = 0;
};
ParticlePool.prototype.update = function (deltaTime) {
var i;
// update active particles
if (firstActive < firstFree) {
for (i = firstActive; i < firstFree; i++)
particles[i].update(deltaTime);
}
if (firstFree < firstActive) {
for (i = firstActive; i < particles.length; i++)
particles[i].update(deltaTime);
for (i = 0; i < firstFree; i++) particles[i].update(deltaTime);
}
// remove inactive particles
while (
particles[firstActive].age >= duration &&
firstActive != firstFree
) {
firstActive++;
if (firstActive == particles.length) firstActive = 0;
}
};
ParticlePool.prototype.draw = function (context, image) {
// draw active particles
if (firstActive < firstFree) {
for (i = firstActive; i < firstFree; i++)
particles[i].draw(context, image);
}
if (firstFree < firstActive) {
for (i = firstActive; i < particles.length; i++)
particles[i].draw(context, image);
for (i = 0; i < firstFree; i++) particles[i].draw(context, image);
}
};
return ParticlePool;
})();
/*
* Putting it all together
*/
(function (canvas) {
var context = canvas.getContext("2d"),
particles = new ParticlePool(settings.particles.length),
particleRate =
settings.particles.length / settings.particles.duration, // particles/sec
time;
// get point on heart with -PI <= t <= PI
function pointOnHeart(t) {
return new Point(
160 * Math.pow(Math.sin(t), 3),
130 * Math.cos(t) -
50 * Math.cos(2 * t) -
20 * Math.cos(3 * t) -
10 * Math.cos(4 * t) +
25
);
}
// creating the particle image using a dummy canvas
var image = (function () {
var canvas = document.createElement("canvas"),
context = canvas.getContext("2d");
canvas.width = settings.particles.size;
canvas.height = settings.particles.size;
// helper function to create the path
function to(t) {
var point = pointOnHeart(t);
point.x =
settings.particles.size / 2 +
(point.x * settings.particles.size) / 350;
point.y =
settings.particles.size / 2 -
(point.y * settings.particles.size) / 350;
return point;
}
// create the path
context.beginPath();
var t = -Math.PI;
var point = to(t);
context.moveTo(point.x, point.y);
while (t < Math.PI) {
t += 0.01; // baby steps!
point = to(t);
context.lineTo(point.x, point.y);
}
context.closePath();
// create the fill
context.fillStyle = "#ea80b0";
context.fill();
// create the image
var image = new Image();
image.src = canvas.toDataURL();
return image;
})();
// render that thing!
function render() {
// next animation frame
requestAnimationFrame(render);
// update time
var newTime = new Date().getTime() / 1000,
deltaTime = newTime - (time || newTime);
time = newTime;
// clear canvas
context.clearRect(0, 0, canvas.width, canvas.height);
// create new particles
var amount = particleRate * deltaTime;
for (var i = 0; i < amount; i++) {
var pos = pointOnHeart(Math.PI - 2 * Math.PI * Math.random());
var dir = pos.clone().length(settings.particles.velocity);
particles.add(
canvas.width / 2 + pos.x,
canvas.height / 2 - pos.y,
dir.x,
-dir.y
);
}
// update and draw particles
particles.update(deltaTime);
particles.draw(context, image);
}
// handle (re-)sizing of the canvas
function onResize() {
canvas.width = canvas.clientWidth;
canvas.height = canvas.clientHeight;
}
window.onresize = onResize;
// delay rendering bootstrap
setTimeout(function () {
onResize();
render();
}, 10);
})(document.getElementById("pinkboard"));
</script>
</body>
</html>
```

粒子爱心代码matlab
### MATLAB 实现粒子心形图像绘制
在MATLAB中创建粒子心形图像是一个有趣的应用实例。通过利用参数方程定义心脏形状并结合随机分布的粒子来增强视觉效果,可以实现这一目标。
以下是具体实现方法:
#### 使用参数方程生成心形曲线
心形可以通过以下参数方程表示:
\[ x(t) = 16 \sin^3(t),\quad y(t) = 13 \cos(t)-5 \cos(2t)-2 \cos(3t)-\cos(4t) \]
```matlab
% 定义时间变量 t 的范围
t = linspace(-pi, pi, 1000);
% 计算心形坐标 (x,y)
x = 16 * sin(t).^3;
y = 13*cos(t)-5*cos(2*t)-2*cos(3*t)-cos(4*t);
```
#### 添加随机分布的粒子
为了模拟粒子效果,在心形内部均匀撒点,并调整透明度使整体看起来更加自然[^1]。
```matlab
figure('Color', 'w'); % 创建白色背景的新窗口
hold on;
% 绘制心形轮廓线
plot(x, y, '-r', 'LineWidth', 2);
% 设置绘图区域比例一致
axis equal; axis off;
% 随机生成大量位于心形内的点作为“粒子”
numParticles = 5e3;
particlesX = zeros(numParticles, 1);
particlesY = particlesX;
for i=1:numParticles
while true
theta = rand()*2*pi-pi;
r = sqrt(rand());
px = 16*sin(theta)^3*r;
py = (13*cos(theta)-5*cos(2*theta)-...
2*cos(3*theta)-cos(4*theta))*r;
if all([px.^2./max(x).^2 + py.^2./max(y).^2 <= 1])
break;
end
end
particlesX(i)=px;
particlesY(i)=py;
end
scatter(particlesX, particlesY, .8, 'filled');
colormap winter;
alpha(.7); % 调整透明度
```
此段代码首先计算了心形边界上的点集,接着在一个循环内不断尝试直到找到满足条件的位置放置每一个新粒子,最后使用`scatter()`函数一次性画出所有的粒子位置。
阅读全文
相关推荐













