yolo11小目标识别改进
时间: 2025-09-15 14:40:25 AIGC 浏览: 4
YOLO11在小目标识别方面有多种改进方法。一方面,它本身作为一款尖端且先进的模型,在之前YOLO版本成功的基础上构建,引入了新功能和改进,设计上快速、准确且易于使用,可提升各种目标检测任务包括小目标识别的性能和灵活性,适用于物体检测和跟踪、实例分割、图像分类以及姿态估计等任务,从整体架构和设计上为小目标识别提供了更好的基础[^1]。
另一方面,为进一步优化小目标检测精度,可加入CBAM(Convolutional Block Attention Module)注意力机制。CBAM通过在空间和通道两个维度上强调重要特征,有助于模型更加专注于关键区域,能有效提高小目标检测的准确率[^3]。
```python
# 以下为简单示意如何在代码中加入CBAM模块(伪代码)
import torch
import torch.nn as nn
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
self.relu1 = nn.ReLU()
self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
class CBAM(nn.Module):
def __init__(self, in_planes):
super(CBAM, self).__init__()
self.ca = ChannelAttention(in_planes)
self.sa = SpatialAttention()
def forward(self, x):
x = self.ca(x) * x
x = self.sa(x) * x
return x
# 假设YOLO11某个层需要加入CBAM
# 这里简单示意在一个卷积层后加入CBAM
class YOLO11WithCBAM(nn.Module):
def __init__(self):
super(YOLO11WithCBAM, self).__init__()
self.conv = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.cbam = CBAM(64)
def forward(self, x):
x = self.conv(x)
x = self.cbam(x)
return x
```
阅读全文
相关推荐




















