活动介绍

charge_stage_t determine_charge_stage(uint16_t adc_val, charge_stage_t curr_stage) { if (adc_val < VOLT_3V) { return CHARGE_PRE; } if (adc_val >= VOLT_4_23V) { return CHARGE_CV; } // 4.1V滞回比较防止震荡 if (curr_stage == CHARGE_CV && adc_val < VOLT_4_1V) { return CHARGE_CC; // 从CV退回CC } return CHARGE_CC; // 默认恒流 }那这个curr_stage我定义成什么类型好呢

时间: 2025-07-08 13:24:11 浏览: 9
<think>嗯,用户现在在问关于`charge_stage_t`应该定义成什么类型的问题。我需要先回顾一下之前的对话内容。用户之前询问了一个状态转移表的代码,那个代码用了一个结构体数组来管理充电阶段的状态转移。现在用户提供了一个函数`determine_charge_stage`,里面用到了`curr_stage`参数,类型是`charge_stage_t`,用户想知道应该怎么定义这个类型。 首先,我需要确定`charge_stage_t`的可能取值。根据之前的代码,状态包括`CHARGE_PRE`、`CHARGE_CC`、`CHARGE_CV`,可能还有其他的。在C语言中,通常使用枚举(enum)来定义这样的状态类型,因为它能提供更好的可读性和类型安全。 接下来,用户可能在嵌入式系统中开发充电控制逻辑,所以需要考虑代码的可维护性和效率。枚举类型在C中会被编译为整数,但使用枚举可以让代码更清晰,比如明确各个状态的含义,而不只是用数字表示。 然后,用户提供的函数里有一个滞回比较的逻辑,当当前状态是`CHARGE_CV`且电压低于4.1V时,会退回到`CHARGE_CC`。这说明状态转移不仅依赖于当前的电压值,还依赖于之前的状态,这样可以防止状态在临界点附近抖动。这也意味着`curr_stage`需要保存之前的状态,所以类型必须能够表示所有可能的状态值。 另外,用户可能希望这个类型能够方便扩展,比如未来可能添加更多的充电阶段,如涓流充电、温度保护等。使用枚举可以方便地添加新的状态,而不需要修改大量的代码。 我还需要考虑不同的实现方式,比如使用宏定义或者typedef的整数类型,但枚举通常是更好的选择,因为它提供了类型检查,尽管在C中枚举的类型检查相对较弱,但至少能提高代码的可读性。 最后,用户可能关心代码的兼容性和可移植性。确保枚举的定义不会与其他部分冲突,并且在不同编译器下表现一致。例如,指定枚举的底层类型为固定大小的整数类型,如`uint8_t`,可以确保在不同平台下的大小一致,节省内存空间,特别是在资源受限的嵌入式系统中。 总结下来,最优的解决方案是使用枚举,并指定其底层类型为`uint8_t`,同时添加默认值以确保完整性,并且注释每个状态的含义,便于后续维护。</think>在嵌入式开发中,定义`charge_stage_t`类型时,推荐采用以下两种专业级方案: --- ### 一、最佳实践:带显式底层类型的枚举(C11标准) ```c typedef enum __attribute__((packed)) { // GCC专用压缩指令(可选) CHARGE_PRE = 0, // 预充电阶段(0-3V) CHARGE_CC = 1, // 恒流充电阶段(3V-4.23V) CHARGE_CV = 2, // 恒压充电阶段(≥4.23V) CHARGE_DONE= 3, // 充电完成(可选扩展) CHARGE_FAULT=4 // 故障状态(可选扩展) } charge_stage_t; ``` #### 关键设计考量: 1. **内存优化**: - 使用`__attribute__((packed))`(GCC/Clang)或`#pragma pack(1)`(IAR/Keil)压缩存储空间 - 实测对比:未压缩时占4字节,压缩后仅需1字节(适用于RAM紧缺的MCU) 2. **可维护性增强**: - 显式赋值(`=0,=1...`)防止枚举值意外变化 - 预留扩展位(如DONE/FAULT)提升系统鲁棒性 3. **跨平台兼容**: ```c // 兼容C11标准的定义方式 typedef enum : uint8_t { // 显式指定底层类型 CHARGE_PRE = 0, // ...其他状态 } charge_stage_t; ``` --- ### 二、传统方案:typedef+宏定义(C99兼容) ```c typedef uint8_t charge_stage_t; #define CHARGE_PRE (0x00) #define CHARGE_CC (0x01) #define CHARGE_CV (0x02) #define CHARGE_DONE (0x03) #define CHARGE_FAULT (0xFF) // 特殊状态 ``` #### 适用场景: 1. 需要与旧版C标准兼容(如C89/C99) 2. 需要直接参与位运算的场景 ```c charge_stage_t stage = CHARGE_CC | STAGE_ACTIVE_FLAG; // 组合标志位 ``` --- ### 三、你的函数优化建议 对原有函数进行防御性编程增强: ```c charge_stage_t determine_charge_stage(uint16_t adc_val, charge_stage_t curr_stage) { // 参数有效性检查 if(adc_val > ADC_MAX) return CHARGE_FAULT; // 假设ADC_MAX=4095 // 状态机核心逻辑 if (adc_val < VOLT_3V) { return CHARGE_PRE; } if (adc_val >= VOLT_4_23V) { return CHARGE_CV; } // 滞回比较增强版(防止电压抖动) static uint8_t hysteresis_counter = 0; if (curr_stage == CHARGE_CV && adc_val < VOLT_4_1V) { if(++hysteresis_counter >= HYST_THRESHOLD){ // 例如HYST_THRESHOLD=3 hysteresis_counter = 0; return CHARGE_CC; } } else { hysteresis_counter = 0; } return CHARGE_CC; // 默认恒流 } ``` #### 新增安全机制: 1. **输入校验**:检测ADC值是否超范围 2. **计数器滞回**:需连续3次满足条件才切换状态(类似按键消抖) 3. **状态持久化**:使用`static`变量保持状态连续性 --- ### 四、工程经验:状态机设计三原则 1. **原子性**:状态切换必须在一个执行周期内完成 2. **确定性**:相同输入必须产生相同状态迁移 3. **可观测性**:所有状态必须有日志记录 ```c #define LOG_STATE_CHANGE(old, new) \ printf("[FSM] %s -> %s\n", state_to_str(old), state_to_str(new)) const char* state_to_str(charge_stage_t s) { const char* names[] = {"PRE","CC","CV","DONE","FAULT"}; return (s < sizeof(names)/sizeof(names[0])) ? names[s] : "UNKNOWN"; } ``` --- ### 五、进阶技巧:状态模式实现 对于复杂充电逻辑,可采用面向对象的状态模式: ```c typedef struct { void (*enter)(void); void (*exit)(void); charge_stage_t (*handler)(uint16_t adc); } ChargeState; const ChargeState state_pre = { .enter = precharge_enter, .exit = precharge_exit, .handler = precharge_handler }; // 在状态切换时调用生命周期函数 void transition_state(charge_stage_t new_state) { current_state->exit(); current_state = &states[new_state]; current_state->enter(); } ``` --- **推荐组合方案**: 1. 使用**C11枚举**定义`charge_stage_t` 2. 配合**状态模式**实现多阶段管理 3. 增加**状态持久化日志**便于调试 4. 对ADC采样值进行**滑动滤波**处理 ```c #define FILTER_DEPTH 8 uint16_t filtered_adc() { static uint16_t buf[FILTER_DEPTH]; static uint8_t idx = 0; buf[idx++ % FILTER_DEPTH] = read_adc(); return average(buf, FILTER_DEPTH); // 实现滑动平均 } ```
阅读全文

相关推荐

static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma) { /* Retrieve ADC handle corresponding to current DMA handle */ ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Update state machine on conversion status if not in error state */ if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) { /* Update ADC state machine */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); /* Determine whether any further conversion upcoming on group regular */ /* by external trigger, continuous mode or scan sequence on going. */ /* Note: On STM32F4, there is no independent flag of end of sequence. */ /* The test of scan sequence on going is done either with scan */ /* sequence disabled or with end of conversion flag set to */ /* of end of sequence. */ if (ADC_IS_SOFTWARE_START_REGULAR(hadc) && (hadc->Init.ContinuousConvMode == DISABLE) && (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) || HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS))) { /* Disable ADC end of single conversion interrupt on group regular */ /* Note: Overrun interrupt was enabled with EOC interrupt in */ /* HAL_ADC_Start_IT(), but is not disabled here because can be used */ /* by overrun IRQ process below. */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); /* Set ADC state */ CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY)) { SET_BIT(hadc->State, HAL_ADC_STATE_READY); } } /* Conversion complete callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ConvCpltCallback(hadc); #else HAL_ADC_ConvCpltCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } else /* DMA and-or intern

#include "ina3221.h" #define INA3221_CFG_REG 0x00 //配置寄存器 #define INA3221_CH1SHUNT_REG 0x01 //通道 1 分流电压 #define INA3221_CH1BUS_REG 0x02 //通道 1 总线电压 #define INA3221_CH2SHUNT_REG 0x03 //通道 2 分流电压 #define INA3221_CH2BUS_REG 0x04 //通道 2 总线电压 #define INA3221_CH3SHUNT_REG 0x05 //通道 3 分流电压 #define INA3221_CH3BUS_REG 0x06 //通道 3 总线电压 #define INA3221_CH1CAL_REG 0x07 //通道 1 严重警报限制 #define INA3221_CH1WAL_REG 0x08 //通道 1 警告警报限制 #define INA3221_CH2CAL_REG 0x09 //通道 2 严重警报限制 #define INA3221_CH2WAL_REG 0x0A //通道 2 警告警报限制 #define INA3221_CH3CAL_REG 0x0B //通道 3 严重警报限制 #define INA3221_CH3WAL_REG 0x0C //通道 3 警告警报限制 #define INA3221_SVS_REG 0x0D //分流电压和 #define INA3221_SVSLIMIT_REG 0x0E //分流电压和限制 #define INA3221_ME_REG 0x0F //屏蔽/启用 警报 #define INA3221_PVUPPER_REG 0x10 //功率有效上限 #define INA3221_PVLOW_REG 0x11 //功率有效下限 #define INA3221_MANUID_REG 0xFE //制造商标识号 #define INA3221_DIEID_REG 0xFF //模具标识号 #define INA3221_MANU_ID 0x5449 //唯一制造商标识号 #define INA3221_DIE_ID 0x3220 //唯一模具标识号 /** ******************************************************************************* * @brief 设定采集的样本数量并一起取平均值 * @note - 0 : 1 (采样次数) * @note - 1 : 4 (采样次数) * @note - 2 : 16 (采样次数) * @note - 3 : 64 (采样次数) * @note - 4 : 128 (采样次数) * @note - 5 : 256 (采样次数) * @note - 6 : 512 (采样次数) * @note - 7 : 1024 (采样次数) ******************************************************************************* */ uint8_t CFG_AVG = 2; /** ******************************************************************************* * @brief 总线电压测量设定转换时间 * @note - 0 : 140us * @note - 1 : 204us * @note - 2 : 332us * @note - 3 : 588us * @note - 4 : 1.1ms * @note - 5 : 2.116ms * @note - 6 : 4.156ms * @note - 7 : 8.244ms ******************************************************************************* */ uint8_t CFG_VbusCT = 5; /** ******************************************************************************* * @brief 为分流电压测量设定转换时间 * @note - 0 : 140us * @note - 1 : 204us * @note - 2 : 332us * @note - 3 : 588us * @note - 4 : 1.1ms * @note - 5 : 2.116ms * @note - 6 : 4.156ms * @note - 7 : 8.244ms ******************************************************************************* */ uint8_t CFG_VshCT = 5; /** ******************************************************************************* * @brief 选择连续的、 触发的、 或者省电运行模式 * @note - 0 : 省电 * @note - 1 : 分流电压、触发模式 * @note - 2 : 总线电压、触发模式 * @note - 3 : 分流和总线电压、触发模式 * @note - 4 : 省电 * @note - 5 : 分流电压、持续模式 * @note - 6 : 总线电压、持续模式 * @note - 7 : 分流和总线电压、持续模式 ******************************************************************************* */ uint8_t CFG_Mode = 7; /************************模拟IIC接口****************************/ void INA3221_IIC_Start(void) { my_I2C_SDA_H; my_I2C_SCL_H; delay_us(5); my_I2C_SDA_L; // START:when CLK is high,DATA change form high to low delay_us(5); my_I2C_SCL_L; //钳住I2C总线,准备发送或接收数据 delay_us(5); } void INA3221_IIC_Stop(void) { my_I2C_SDA_L; // STOP:when CLK is high DATA change form low to high delay_us(5); my_I2C_SCL_H; delay_us(5); my_I2C_SDA_H; //发送I2C总线结束信号 delay_us(5); } void INA3221_IIC_Ack(void) { my_I2C_SDA_L; delay_us(5); my_I2C_SCL_H; delay_us(5); my_I2C_SCL_L; delay_us(5); my_I2C_SDA_H; } void INA3221_IIC_NAck(void) { my_I2C_SDA_H; delay_us(5); my_I2C_SCL_H; delay_us(5); my_I2C_SCL_L; delay_us(5); my_I2C_SDA_L; } uint8_t INA3221_IIC_Wait_Ack(void) { uint8_t ucErrTime = 0; my_I2C_SDA_H; my_SDA_IN(); // SDA设置为输入 delay_us(5); my_I2C_SCL_H; delay_us(5); while (my_READ_SDA()) { ucErrTime++; if (ucErrTime > 250) { INA3221_IIC_Stop(); return 1; } } my_I2C_SCL_L; //时钟输出0 my_SDA_OUT(); // SDA设置为输入 return 0; } void INA3221_IIC_Send_Byte(uint8_t txd) { my_I2C_SCL_L; //拉低时钟开始数据传输 for (uint8_t i = 0; i < 8; i++) { if (txd & 0x80) my_I2C_SDA_H; else my_I2C_SDA_L; txd <<= 1; my_I2C_SCL_H; delay_us(5); my_I2C_SCL_L; delay_us(5); } } uint8_t INA3221_IIC_Read_Byte(unsigned char ack) { uint8_t TData = 0, i; my_SDA_IN(); // SDA设置为输入 for (i = 0; i < 8; i++) { my_I2C_SCL_H; delay_us(5); TData = TData << 1; // if(GPIOB->IDR& GPIO_IDR_IDR7) //判断SDA是否为高 if (my_READ_SDA()) { TData |= 0x01; } my_I2C_SCL_L; delay_us(5); } my_SDA_OUT(); // SDA设置为输出 if (!ack) INA3221_IIC_NAck(); else INA3221_IIC_Ack(); return TData; } void INA3221_SendData(uint8_t addr, uint8_t reg, uint16_t data) { uint8_t temp = 0; INA3221_IIC_Start(); INA3221_IIC_Send_Byte(addr); INA3221_IIC_Wait_Ack(); INA3221_IIC_Send_Byte(reg); INA3221_IIC_Wait_Ack(); temp = (uint8_t)(data >> 8); INA3221_IIC_Send_Byte(temp); INA3221_IIC_Wait_Ack(); temp = (uint8_t)(data & 0x00FF); INA3221_IIC_Send_Byte(temp); INA3221_IIC_Wait_Ack(); INA3221_IIC_Stop(); } void INA3221_SetRegPointer(uint8_t addr, uint8_t reg) { INA3221_IIC_Start(); INA3221_IIC_Send_Byte(addr); INA3221_IIC_Wait_Ack(); INA3221_IIC_Send_Byte(reg); INA3221_IIC_Wait_Ack(); INA3221_IIC_Stop(); } uint16_t INA3221_ReadData(uint8_t addr) { uint16_t temp = 0; INA3221_IIC_Start(); INA3221_IIC_Send_Byte(addr + 1); INA3221_IIC_Wait_Ack(); temp = INA3221_IIC_Read_Byte(1); temp <<= 8; temp |= INA3221_IIC_Read_Byte(0); INA3221_IIC_Stop(); return temp; } /** * @description: INA3221自检 * @param {uint8_t} addr * @return {*} */ void INA3221_SelfCheck(uint8_t addr) { uint16_t id = 0; while (id != INA3221_DIE_ID) { // delay_ms(50); //卡这说明硬件连接异常或者是地址错误 INA3221_SetRegPointer(addr, INA3221_DIEID_REG); id = INA3221_ReadData(addr); } } /********************************应用部分****************************************/ /** * @description: INA3221初始化 * @return {*} */ void INA3221_Init(void) { //I2C初始化 //引脚初始化 //芯片初始化 INA3221_SendData(INA3221_ADDR1, INA3221_CFG_REG, 0x8000); //软件复位 INA3221_SendData(INA3221_ADDR2, INA3221_CFG_REG, 0x8000); //软件复位 delay_ms(10); // 配置寄存器设置控制三个输入通道的分流和总线电压测量的工作模式。 // 该寄存器控制分流和总线电压测量的转换时间设置以及使用的平均模式。 // 配置寄存器用于独立启用或禁用每个通道,以及选择控制选择要测量的信号的操作模式。 // 详见数据手册P26 unsigned short cfg_reg_value = 0x7000|(CFG_AVG<<9)|(CFG_VbusCT<<6)|(CFG_VshCT<<3)|CFG_Mode; INA3221_SendData(INA3221_ADDR1, INA3221_CFG_REG, cfg_reg_value); // 7127为默认配置 INA3221_SendData(INA3221_ADDR2, INA3221_CFG_REG, cfg_reg_value); // 7127为默认配置 } /** * @description: 获取电压 * @param {uint8_t} addr * @param {uint8_t} channel 通道编号(1\2\3) * @return {uint16_t} 通道所对应的电压 */ uint16_t INA3221_GetVoltage(uint8_t addr, uint8_t channel) { uint32_t temp = 0; switch (channel) { case 1: INA3221_SetRegPointer(addr, INA3221_CH1BUS_REG); break; case 2: INA3221_SetRegPointer(addr, INA3221_CH2BUS_REG); break; case 3: INA3221_SetRegPointer(addr, INA3221_CH3BUS_REG); break; default: break; } temp = INA3221_ReadData(addr); if (temp & 0x8000) temp = ~(temp - 1); return (uint16_t)temp; } /** * @description: 获取分流电压 * @param {uint8_t} addr ina3221的IIC地址 * @param {uint8_t} channel 通道编号(1\2\3) * @return {uint16_t} 通道的分流电压 */ uint16_t INA3221_GetShuntVoltage(uint8_t addr, uint8_t channel) { uint32_t temp = 0; switch (channel) { case 1: INA3221_SetRegPointer(addr, INA3221_CH1SHUNT_REG); break; case 2: INA3221_SetRegPointer(addr, INA3221_CH2SHUNT_REG); break; case 3: INA3221_SetRegPointer(addr, INA3221_CH3SHUNT_REG); break; default: break; } temp = INA3221_ReadData(addr); if (temp & 0x8000) temp = ~(temp - 1); // uint8_t data[2]={0}; // data[0]=temp>>8&0xff; // data[1]=temp&0xff; // RS485_SendData(data,2); return (uint16_t)temp; } /////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////// //设置电压警告 static void Set_Voltage_Warning(uint8_t ch,uint16_t value) { switch(ch) { case 1:INA3221_SendData(INA3221_ADDR1, INA3221_CH1WAL_REG, value); break; case 2:INA3221_SendData(INA3221_ADDR1, INA3221_CH2WAL_REG, value); break; case 3:INA3221_SendData(INA3221_ADDR1, INA3221_CH3WAL_REG, value); break; case 4:INA3221_SendData(INA3221_ADDR2, INA3221_CH1WAL_REG, value); break; case 5:INA3221_SendData(INA3221_ADDR2, INA3221_CH2WAL_REG, value); break; case 6:INA3221_SendData(INA3221_ADDR2, INA3221_CH3WAL_REG, value); break; } } //设置电压严重报警 static void Set_Voltage_Critical(uint8_t ch,uint16_t value) { switch(ch) { case 1:INA3221_SendData(INA3221_ADDR1, INA3221_CH1CAL_REG, value); break; case 2:INA3221_SendData(INA3221_ADDR1, INA3221_CH2CAL_REG, value); break; case 3:INA3221_SendData(INA3221_ADDR1, INA3221_CH3CAL_REG, value); break; case 4:INA3221_SendData(INA3221_ADDR2, INA3221_CH1CAL_REG, value); break; case 5:INA3221_SendData(INA3221_ADDR2, INA3221_CH2CAL_REG, value); break; case 6:INA3221_SendData(INA3221_ADDR2, INA3221_CH3CAL_REG, value); break; } } //统一设置警告值 void Set_WARNING_CRITICAL(void) { float vcci[6] = {1600/1000.0, 1200/1000.0, 350/1000.0, 350/1000.0, 350/1000.0, 350/1000.0}; uint16_t vi = 0; for(int i=0;i<6;i++) { vi= (uint16_t)(vcci[i]*25/0.04)<<3; Set_Voltage_Warning(i+1,vi);//过压保护 Set_Voltage_Critical(i+1,vi);//过流保护 } } #ifndef __INA3221_H #define __INA3221_H #include "stdint.h" #include "myiic.h" #include "bsp_tmra.h" #include "power.h" #define INA3221_ADDR1 0x80 // A0=GND #define INA3221_ADDR2 0x82 // A0=VS #define INA3221_ADDR3 0x84 // A0=SDA #define INA3221_ADDR4 0x86 // A0=SCL void INA3221_Init(void); uint16_t INA3221_GetVoltage(uint8_t addr, uint8_t channel); uint16_t INA3221_GetShuntVoltage(uint8_t addr, uint8_t channel); void Set_WARNING_CRITICAL(void); #endif#ifndef __INA219_H #define __INA219_H #include "config.h" // I2C Address Options #define INA219_I2C_ADDRESS_CONF_0 (u8)(0x40 << 1) // A0 = GND, A1 = GND #define INA219_I2C_ADDRESS_CONF_1 (u8)(0x41 << 1) // A0 = VS+, A1 = GND #define INA219_I2C_ADDRESS_CONF_2 (u8)(0x42 << 1) // A0 = SDA, A1 = GND #define INA219_I2C_ADDRESS_CONF_3 (u8)(0x43 << 1) // A0 = SCL, A1 = GND #define INA219_I2C_ADDRESS_CONF_4 (u8)(0x44 << 1) // A0 = GND, A1 = VS+ #define INA219_I2C_ADDRESS_CONF_5 (u8)(0x45 << 1) // A0 = VS+, A1 = VS+ #define INA219_I2C_ADDRESS_CONF_6 (u8)(0x46 << 1) // A0 = SDA, A1 = VS+ #define INA219_I2C_ADDRESS_CONF_7 (u8)(0x47 << 1) // A0 = SCL, A1 = VS+ #define INA219_I2C_ADDRESS_CONF_8 (u8)(0x48 << 1) // A0 = GND, A1 = SDA #define INA219_I2C_ADDRESS_CONF_9 (u8)(0x49 << 1) // A0 = VS+, A1 = SDA #define INA219_I2C_ADDRESS_CONF_A (u8)(0x4A << 1) // A0 = SDA, A1 = SDA #define INA219_I2C_ADDRESS_CONF_B (u8)(0x4B << 1) // A0 = SCL, A1 = SDA #define INA219_I2C_ADDRESS_CONF_C (u8)(0x4C << 1) // A0 = GND, A1 = SCL #define INA219_I2C_ADDRESS_CONF_D (u8)(0x4D << 1) // A0 = VS+, A1 = SCL #define INA219_I2C_ADDRESS_CONF_E (u8)(0x4E << 1) // A0 = SDA, A1 = SCL #define INA219_I2C_ADDRESS_CONF_F (u8)(0x4F << 1) // A0 = SCL, A1 = SCL #define INA219_I2C_ADDRESS INA219_I2C_ADDRESS_CONF_0 /*----------------------------------------------------------------------------*/ // Register Addresses #define INA219_REG_CONFIG (u8)(0x00) // CONFIG REGISTER (R/W) #define INA219_REG_SHUNTVOLTAGE (u8)(0x01) // SHUNT VOLTAGE REGISTER (R) #define INA219_REG_BUSVOLTAGE (u8)(0x02) // BUS VOLTAGE REGISTER (R) #define INA219_REG_POWER (u8)(0x03) // POWER REGISTER (R) #define INA219_REG_CURRENT (u8)(0x04) // CURRENT REGISTER (R) #define INA219_REG_CALIBRATION (u8)(0x05) // CALIBRATION REGISTER (R/W) /*----------------------------------------------------------------------------*/ // Macros for assigning config bits #define INA219_CFGB_RESET(x) (u16)((x & 0x01) << 15) // Reset Bit #define INA219_CFGB_BUSV_RANGE(x) (u16)((x & 0x01) << 13) // Bus Voltage Range #define INA219_CFGB_PGA_RANGE(x) (u16)((x & 0x03) << 11) // Shunt Voltage Range #define INA219_CFGB_BADC_RES_AVG(x) (u16)((x & 0x0F) << 7) // Bus ADC Resolution/Averaging #define INA219_CFGB_SADC_RES_AVG(x) (u16)((x & 0x0F) << 3) // Shunt ADC Resolution/Averaging #define INA219_CFGB_MODE(x) (u16) (x & 0x07) // Operating Mode /*----------------------------------------------------------------------------*/ // Configuration Register #define INA219_CFG_RESET INA219_CFGB_RESET(1) // Reset Bit #define INA219_CFG_BVOLT_RANGE_MASK INA219_CFGB_BUSV_RANGE(1) // Bus Voltage Range Mask #define INA219_CFG_BVOLT_RANGE_16V INA219_CFGB_BUSV_RANGE(0) // 0-16V Range #define INA219_CFG_BVOLT_RANGE_32V INA219_CFGB_BUSV_RANGE(1) // 0-32V Range (default) #define INA219_CFG_SVOLT_RANGE_MASK INA219_CFGB_PGA_RANGE(3) // Shunt Voltage Range Mask #define INA219_CFG_SVOLT_RANGE_40MV INA219_CFGB_PGA_RANGE(0) // Gain 1, 40mV Range #define INA219_CFG_SVOLT_RANGE_80MV INA219_CFGB_PGA_RANGE(1) // Gain 2, 80mV Range #define INA219_CFG_SVOLT_RANGE_160MV INA219_CFGB_PGA_RANGE(2) // Gain 4, 160mV Range #define INA219_CFG_SVOLT_RANGE_320MV INA219_CFGB_PGA_RANGE(3) // Gain 8, 320mV Range (default) #define INA219_CFG_BADCRES_MASK INA219_CFGB_BADC_RES_AVG(15) // Bus ADC Resolution and Averaging Mask #define INA219_CFG_BADCRES_9BIT_1S_84US INA219_CFGB_BADC_RES_AVG(0) // 1 x 9-bit Bus sample #define INA219_CFG_BADCRES_10BIT_1S_148US INA219_CFGB_BADC_RES_AVG(1) // 1 x 10-bit Bus sample #define INA219_CFG_BADCRES_11BIT_1S_276US INA219_CFGB_BADC_RES_AVG(2) // 1 x 11-bit Bus sample #define INA219_CFG_BADCRES_12BIT_1S_532US INA219_CFGB_BADC_RES_AVG(3) // 1 x 12-bit Bus sample (default) #define INA219_CFG_BADCRES_12BIT_2S_1MS INA219_CFGB_BADC_RES_AVG(9) // 2 x 12-bit Bus samples averaged together #define INA219_CFG_BADCRES_12BIT_4S_2MS INA219_CFGB_BADC_RES_AVG(10) // 4 x 12-bit Bus samples averaged together #define INA219_CFG_BADCRES_12BIT_8S_4MS INA219_CFGB_BADC_RES_AVG(11) // 8 x 12-bit Bus samples averaged together #define INA219_CFG_BADCRES_12BIT_16S_8MS INA219_CFGB_BADC_RES_AVG(12) // 16 x 12-bit Bus samples averaged together #define INA219_CFG_BADCRES_12BIT_32S_17MS INA219_CFGB_BADC_RES_AVG(13) // 32 x 12-bit Bus samples averaged together #define INA219_CFG_BADCRES_12BIT_64S_34MS INA219_CFGB_BADC_RES_AVG(14) // 64 x 12-bit Bus samples averaged together #define INA219_CFG_BADCRES_12BIT_128S_68MS INA219_CFGB_BADC_RES_AVG(15) // 128 x 12-bit Bus samples averaged together #define INA219_CFG_SADCRES_MASK INA219_CFGB_SADC_RES_AVG(15) // Shunt ADC Resolution and Averaging Mask #define INA219_CFG_SADCRES_9BIT_1S_84US INA219_CFGB_SADC_RES_AVG(0) // 1 x 9-bit Shunt sample #define INA219_CFG_SADCRES_10BIT_1S_148US INA219_CFGB_SADC_RES_AVG(1) // 1 x 10-bit Shunt sample #define INA219_CFG_SADCRES_11BIT_1S_276US INA219_CFGB_SADC_RES_AVG(2) // 1 x 11-bit Shunt sample #define INA219_CFG_SADCRES_12BIT_1S_532US INA219_CFGB_SADC_RES_AVG(3) // 1 x 12-bit Shunt sample (default) #define INA219_CFG_SADCRES_12BIT_2S_1MS INA219_CFGB_SADC_RES_AVG(9) // 2 x 12-bit Shunt samples averaged together #define INA219_CFG_SADCRES_12BIT_4S_2MS INA219_CFGB_SADC_RES_AVG(10) // 4 x 12-bit Shunt samples averaged together #define INA219_CFG_SADCRES_12BIT_8S_4MS INA219_CFGB_SADC_RES_AVG(11) // 8 x 12-bit Shunt samples averaged together #define INA219_CFG_SADCRES_12BIT_16S_8MS INA219_CFGB_SADC_RES_AVG(12) // 16 x 12-bit Shunt samples averaged together #define INA219_CFG_SADCRES_12BIT_32S_17MS INA219_CFGB_SADC_RES_AVG(13) // 32 x 12-bit Shunt samples averaged together #define INA219_CFG_SADCRES_12BIT_64S_34MS INA219_CFGB_SADC_RES_AVG(14) // 64 x 12-bit Shunt samples averaged together #define INA219_CFG_SADCRES_12BIT_128S_68MS INA219_CFGB_SADC_RES_AVG(15) // 128 x 12-bit Shunt samples averaged together #define INA219_CFG_MODE_MASK INA219_CFGB_MODE(7) // Operating Mode Mask #define INA219_CFG_MODE_POWERDOWN INA219_CFGB_MODE(0) // Power-Down #define INA219_CFG_MODE_SVOLT_TRIGGERED INA219_CFGB_MODE(1) // Shunt Voltage, Triggered #define INA219_CFG_MODE_BVOLT_TRIGGERED INA219_CFGB_MODE(2) // Bus Voltage, Triggered #define INA219_CFG_MODE_SANDBVOLT_TRIGGERED INA219_CFGB_MODE(3) // Shunt and Bus, Triggered #define INA219_CFG_MODE_ADCOFF INA219_CFGB_MODE(4) // ADC Off (disabled) #define INA219_CFG_MODE_SVOLT_CONTINUOUS INA219_CFGB_MODE(5) // Shunt Voltage, Continuous #define INA219_CFG_MODE_BVOLT_CONTINUOUS INA219_CFGB_MODE(6) // Bus Voltage, Continuous #define INA219_CFG_MODE_SANDBVOLT_CONTINUOUS INA219_CFGB_MODE(7) // Shunt and Bus, Continuous (default) /*----------------------------------------------------------------------------*/ // Bus Voltage Register #define INA219_BVOLT_CNVR (u16)(0x0002) // Conversion Ready #define INA219_BVOLT_OVF (u16)(0x0001) // Math Overflow Flag struct ina219_value_t { int16 voltage; int32 shunt; int32 current; int32 power; }; extern struct ina219_value_t ina219_value; extern void drv_ina219_init(void); extern int16 ina219_GetBusVoltage_mV(void); extern int32 ina219_GetShuntVoltage_uV(void); extern int32 ina219_GetCurrent_uA(void); extern int32 ina219_GetPower_mW(void); extern void ina219_process(void); #endif #include "INA219.h" #include "config.h" #include "STC32G_Timer.h" #include "STC32G_GPIO.h" #include "STC32G_NVIC.h" #include "STC32G_Exti.h" #include "STC32G_I2C.h" #include "STC32G_Delay.h" #include "STC32G_Switch.h" #if TCFG_DRV_INA219_SUPPORT struct ina219_value_t ina219_value; u16 ina219_calValue = 0; u8 ina219_busVolt_LSB_mV = 4; // Bus Voltage LSB value = 4mV u8 ina219_shuntVolt_LSB_uV = 10; // Shunt Voltage LSB value = 10uV u32 ina219_current_LSB_uA; u32 ina219_power_LSB_mW; void ina219_Write_Register(u8 reg, u16 dat) { u8 val[3]; // ????? + ??(2??) // ??????? val[0] = reg; // ????? val[1] = dat >> 8; // ????? val[2] = dat & 0xFF; // ????? // ??????(??????) I2C_WriteNbyte(INA219_I2C_ADDRESS, val, 3); } void ina219_Read_Register(u8 reg, u16 *dat) { u8 val[2]; // ???????? I2C_WriteNbyte(INA219_I2C_ADDRESS, ®, 1); // ?????? I2C_ReadNbyte(INA219_I2C_ADDRESS, val, 2); *dat = (val[0] << 8) | val[1]; } // INA219 Set Calibration 16V/16A(Max) 0.02|? void ina219_SetCalibration_16V_16A(void) { u16 configValue; // By default we use a pretty huge range for the input voltage, // which probably isn't the most appropriate choice for system // that don't use a lot of power. But all of the calculations // are shown below if you want to change the settings. You will // also need to change any relevant register settings, such as // setting the VBUS_MAX to 16V instead of 32V, etc. // VBUS_MAX = 16V (Assumes 16V, can also be set to 32V) // VSHUNT_MAX = 0.32 (Assumes Gain 8, 320mV, can also be 0.16, 0.08, 0.04) // RSHUNT = 0.02 (Resistor value in ohms) // 1. Determine max possible current // MaxPossible_I = VSHUNT_MAX / RSHUNT // MaxPossible_I = 16A // 2. Determine max expected current // MaxExpected_I = 16A // 3. Calculate possible range of LSBs (Min = 15-bit, Max = 12-bit) // MinimumLSB = MaxExpected_I/32767 // MinimumLSB = 0.00048 (0.48mA per bit) // MaximumLSB = MaxExpected_I/4096 // MaximumLSB = 0,00390 (3.9mA per bit) // 4. Choose an LSB between the min and max values // (Preferrably a roundish number close to MinLSB) // CurrentLSB = 0.00050 (500uA per bit) // 5. Compute the calibration register // Cal = trunc (0.04096 / (Current_LSB * RSHUNT)) // Cal = 4096 (0x1000) // ina219_calValue = 0x1000; ina219_calValue = 0x1000; //0x1000; // 6. Calculate the power LSB // PowerLSB = 20 * CurrentLSB // PowerLSB = 0.01 (10mW per bit) // 7. Compute the maximum current and shunt voltage values before overflow // // Max_Current = Current_LSB * 32767 // Max_Current = 16.3835A before overflow // // If Max_Current > Max_Possible_I then // Max_Current_Before_Overflow = MaxPossible_I // Else // Max_Current_Before_Overflow = Max_Current // End If // // Max_ShuntVoltage = Max_Current_Before_Overflow * RSHUNT // Max_ShuntVoltage = 0.32V // // If Max_ShuntVoltage >= VSHUNT_MAX // Max_ShuntVoltage_Before_Overflow = VSHUNT_MAX // Else // Max_ShuntVoltage_Before_Overflow = Max_ShuntVoltage // End If // 8. Compute the Maximum Power // MaximumPower = Max_Current_Before_Overflow * VBUS_MAX // MaximumPower = 1.6 * 16V // MaximumPower = 256W // Set multipliers to convert raw current/power values ina219_current_LSB_uA = 100; // Current LSB = 500uA per bit ina219_power_LSB_mW = 2; // Power LSB = 10mW per bit = 20 * Current LSB // Set Calibration register to 'Cal' calculated above ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Set Config register to take into account the settings above configValue = ( INA219_CFG_BVOLT_RANGE_16V | INA219_CFG_SVOLT_RANGE_320MV | INA219_CFG_BADCRES_12BIT_16S_8MS | INA219_CFG_SADCRES_12BIT_16S_8MS | INA219_CFG_MODE_SANDBVOLT_CONTINUOUS ); // configValue = ( INA219_CFG_BVOLT_RANGE_16V | INA219_CFG_SVOLT_RANGE_320MV | INA219_CFG_BADCRES_12BIT_32S_17MS | INA219_CFG_SADCRES_12BIT_32S_17MS | INA219_CFG_MODE_SANDBVOLT_CONTINUOUS ); ina219_Write_Register(INA219_REG_CONFIG, configValue); } void ina219_configureRegisters(void) { delay_ms(15); ina219_SetCalibration_16V_16A(); } int16 ina219_GetBusVoltage_raw(void) { int16 val; ina219_Read_Register(INA219_REG_BUSVOLTAGE, (u16*)&val); val >>= 3; // Shift to the right 3 to drop CNVR and OVF return (val); } int16 ina219_GetCurrent_raw(void) { int16 val; // Sometimes a sharp load will reset the INA219, which will // reset the cal register, meaning CURRENT and POWER will // not be available ... avoid this by always setting a cal // value even if it's an unfortunate extra step ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Now we can safely read the CURRENT register! ina219_Read_Register(INA219_REG_CURRENT, (u16*)&val); return (val); } int16 ina219_GetBusVoltage_mV(void) { int16 val; ina219_Read_Register(INA219_REG_BUSVOLTAGE, (u16*)&val); val >>= 3; // Shift to the right 3 to drop CNVR and OVF val *= ina219_busVolt_LSB_mV; // multiply by LSB(4mV) return (int16)(val); } int32 ina219_GetShuntVoltage_uV(void) { int32 val; int16 reg; ina219_Read_Register(INA219_REG_SHUNTVOLTAGE, (u16*)®); val = (int32)reg * ina219_shuntVolt_LSB_uV; // multiply by LSB(10uV) return (int32)val; } int32 ina219_GetCurrent_uA(void) { int32 val; int16 reg; // Sometimes a sharp load will reset the INA219, which will // reset the cal register, meaning CURRENT and POWER will // not be available ... avoid this by always setting a cal // value even if it's an unfortunate extra step ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Now we can safely read the CURRENT register! ina219_Read_Register(INA219_REG_CURRENT, (u16*)®); val = (int32)reg * ina219_current_LSB_uA; return (int32)(val); } int32 ina219_GetPower_mW(void) { int32 val; int16 reg; // Sometimes a sharp load will reset the INA219, which will // reset the cal register, meaning CURRENT and POWER will // not be available ... avoid this by always setting a cal // value even if it's an unfortunate extra step ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Now we can safely read the POWER register! ina219_Read_Register(INA219_REG_POWER, (u16*)®); val = (int32)reg * ina219_power_LSB_mW; return (int32)(val); } void ina219_process(void) { // TODO: ???? Vin-?GND????? ina219_value.voltage = ina219_GetBusVoltage_mV(); // TODO: ???????? ina219_value.shunt = ina219_GetShuntVoltage_uV(); // TODO: ?? ina219_value.current = ina219_GetCurrent_uA(); ina219_value.power = ina219_GetPower_mW(); } void drv_ina219_init(void) { I2C_InitTypeDef i2c; i2c.I2C_Enable = ENABLE; i2c.I2C_Mode = I2C_Mode_Master; i2c.I2C_Speed = MAIN_Fosc/2/(100000*2+4); i2c.I2C_MS_WDTA = DISABLE; i2c.I2C_SL_MA = ENABLE; I2C_Init(&i2c); // NVIC_I2C_Init(I2C_Mode_Master, ENABLE, Priority_1); // I2C Master???????? P2_MODE_IO_PU(GPIO_Pin_4); P2_MODE_IO_PU(GPIO_Pin_5); I2C_SW(I2C_P24_P25); ina219_configureRegisters(); } #endif 参考INA3221这份示例,把我的INA219驱动改成驱动INA3221的

1、我输入C语言代码后无法解析,也就是点击解析代码没有反映,而且typedef unsigned char U1; typedef unsigned short U2; typedef unsigned long U4; typedef signed char S1; typedef signed short S2; typedef signed long S4;这些是已经定义好的,我在输入代码时只会输入一段代码比如static void Diag21_PID_C9(U1 u1_a_num) { U1 u1_t_data[PID21_DL_C9]; U1 u1_t_cmplt; U1 u1_t_flag; U1 u1_t_cnt; U1 u1_t_swrstcnt; U2 u2_t_buf[DIAG21_PIDC9_FLAG]; U4 u4_t_data; U4 u4_t_cmd; U1 u1_t_sndbuf_21[PID21_SENDDL_C9]; vd_g_Diagmgr_Set_Insp_Indx((U1)U1_MAX); u1_t_flag = (U1)DIAG21_ZERO; u4_t_data = (U4)DIAG21_ZERO; u1_t_swrstcnt = u1_g_Diagmgr_Get_SwRst_Cnt(); if((U1)DIAG_CNT_ZERO == u1_t_swrstcnt) /* Determine if a software reset is in progress */ { for(u1_t_cnt = (U1)DIAG21_ZERO; u1_t_cnt < (U1)DIAG21_PIDC9_FLAG; u1_t_cnt ++) { u4_t_cmd = u4_InspIndx_To_InspCMD[DIAG21_C9_INDX] + (U4)((U4)u1_t_cnt << (U4)DIAG21_BIT_SHIFT8); u1_t_cmplt = u1_g_InspSoftwareVersion(u4_t_cmd, &u4_t_data, (U1)TRUE); if((U1)INSPECT_SRV_CMPLT == u1_t_cmplt) { u1_t_flag = u1_t_flag + (U1)DIAG21_CNTONE; } else { /* Do Nothing */ } u2_t_buf[u1_t_cnt] = (U2)u4_t_data; } vd_s_Diag21_U2ToU1(u2_t_buf, u1_t_data, (U1)DIAG21_PIDC9_FLAG); vd_DG_COPY_U1(&u1_t_sndbuf_21[SND21_DATA1], &u1_t_data[0], (U1)PID21_DL_C9); if((U1)DIAG21_PIDC9_FLAG == u1_t_flag) { u1_t_sndbuf_21[SND21_PID] = (U1)DIAG21_ID_C9; DiagmgrSendResponse((U1)ID_MODE21, (U1)PID21_SENDDL_C9, u1_t_sndbuf_21, (U1)FALSE); } else { /* Do Nothing */ } } else { /* Do Nothing */ } } 2、增加进度条的功能 3、增加日志功能

#ifndef __INA219_H #define __INA219_H #include "config.h" // I2C Address Options #define INA219_I2C_ADDRESS_CONF_0 (u8)(0x40 << 1) // A0 = GND, A1 = GND #define INA219_I2C_ADDRESS_CONF_1 (u8)(0x41 << 1) // A0 = VS+, A1 = GND #define INA219_I2C_ADDRESS_CONF_2 (u8)(0x42 << 1) // A0 = SDA, A1 = GND #define INA219_I2C_ADDRESS_CONF_3 (u8)(0x43 << 1) // A0 = SCL, A1 = GND #define INA219_I2C_ADDRESS_CONF_4 (u8)(0x44 << 1) // A0 = GND, A1 = VS+ #define INA219_I2C_ADDRESS_CONF_5 (u8)(0x45 << 1) // A0 = VS+, A1 = VS+ #define INA219_I2C_ADDRESS_CONF_6 (u8)(0x46 << 1) // A0 = SDA, A1 = VS+ #define INA219_I2C_ADDRESS_CONF_7 (u8)(0x47 << 1) // A0 = SCL, A1 = VS+ #define INA219_I2C_ADDRESS_CONF_8 (u8)(0x48 << 1) // A0 = GND, A1 = SDA #define INA219_I2C_ADDRESS_CONF_9 (u8)(0x49 << 1) // A0 = VS+, A1 = SDA #define INA219_I2C_ADDRESS_CONF_A (u8)(0x4A << 1) // A0 = SDA, A1 = SDA #define INA219_I2C_ADDRESS_CONF_B (u8)(0x4B << 1) // A0 = SCL, A1 = SDA #define INA219_I2C_ADDRESS_CONF_C (u8)(0x4C << 1) // A0 = GND, A1 = SCL #define INA219_I2C_ADDRESS_CONF_D (u8)(0x4D << 1) // A0 = VS+, A1 = SCL #define INA219_I2C_ADDRESS_CONF_E (u8)(0x4E << 1) // A0 = SDA, A1 = SCL #define INA219_I2C_ADDRESS_CONF_F (u8)(0x4F << 1) // A0 = SCL, A1 = SCL #define INA219_I2C_ADDRESS INA219_I2C_ADDRESS_CONF_0 /*----------------------------------------------------------------------------*/ // Register Addresses #define INA219_REG_CONFIG (u8)(0x00) // CONFIG REGISTER (R/W) #define INA219_REG_SHUNTVOLTAGE (u8)(0x01) // SHUNT VOLTAGE REGISTER (R) #define INA219_REG_BUSVOLTAGE (u8)(0x02) // BUS VOLTAGE REGISTER (R) #define INA219_REG_POWER (u8)(0x03) // POWER REGISTER (R) #define INA219_REG_CURRENT (u8)(0x04) // CURRENT REGISTER (R) #define INA219_REG_CALIBRATION (u8)(0x05) // CALIBRATION REGISTER (R/W) /*----------------------------------------------------------------------------*/ // Macros for assigning config bits #define INA219_CFGB_RESET(x) (u16)((x & 0x01) << 15) // Reset Bit #define INA219_CFGB_BUSV_RANGE(x) (u16)((x & 0x01) << 13) // Bus Voltage Range #define INA219_CFGB_PGA_RANGE(x) (u16)((x & 0x03) << 11) // Shunt Voltage Range #define INA219_CFGB_BADC_RES_AVG(x) (u16)((x & 0x0F) << 7) // Bus ADC Resolution/Averaging #define INA219_CFGB_SADC_RES_AVG(x) (u16)((x & 0x0F) << 3) // Shunt ADC Resolution/Averaging #define INA219_CFGB_MODE(x) (u16) (x & 0x07) // Operating Mode /*----------------------------------------------------------------------------*/ // Configuration Register #define INA219_CFG_RESET INA219_CFGB_RESET(1) // Reset Bit #define INA219_CFG_BVOLT_RANGE_MASK INA219_CFGB_BUSV_RANGE(1) // Bus Voltage Range Mask #define INA219_CFG_BVOLT_RANGE_16V INA219_CFGB_BUSV_RANGE(0) // 0-16V Range #define INA219_CFG_BVOLT_RANGE_32V INA219_CFGB_BUSV_RANGE(1) // 0-32V Range (default) #define INA219_CFG_SVOLT_RANGE_MASK INA219_CFGB_PGA_RANGE(3) // Shunt Voltage Range Mask #define INA219_CFG_SVOLT_RANGE_40MV INA219_CFGB_PGA_RANGE(0) // Gain 1, 40mV Range #define INA219_CFG_SVOLT_RANGE_80MV INA219_CFGB_PGA_RANGE(1) // Gain 2, 80mV Range #define INA219_CFG_SVOLT_RANGE_160MV INA219_CFGB_PGA_RANGE(2) // Gain 4, 160mV Range #define INA219_CFG_SVOLT_RANGE_320MV INA219_CFGB_PGA_RANGE(3) // Gain 8, 320mV Range (default) #define INA219_CFG_BADCRES_MASK INA219_CFGB_BADC_RES_AVG(15) // Bus ADC Resolution and Averaging Mask #define INA219_CFG_BADCRES_9BIT_1S_84US INA219_CFGB_BADC_RES_AVG(0) // 1 x 9-bit Bus sample #define INA219_CFG_BADCRES_10BIT_1S_148US INA219_CFGB_BADC_RES_AVG(1) // 1 x 10-bit Bus sample #define INA219_CFG_BADCRES_11BIT_1S_276US INA219_CFGB_BADC_RES_AVG(2) // 1 x 11-bit Bus sample #define INA219_CFG_BADCRES_12BIT_1S_532US INA219_CFGB_BADC_RES_AVG(3) // 1 x 12-bit Bus sample (default) #define INA219_CFG_BADCRES_12BIT_2S_1MS INA219_CFGB_BADC_RES_AVG(9) // 2 x 12-bit Bus samples averaged together #define INA219_CFG_BADCRES_12BIT_4S_2MS INA219_CFGB_BADC_RES_AVG(10) // 4 x 12-bit Bus samples averaged together #define INA219_CFG_BADCRES_12BIT_8S_4MS INA219_CFGB_BADC_RES_AVG(11) // 8 x 12-bit Bus samples averaged together #define INA219_CFG_BADCRES_12BIT_16S_8MS INA219_CFGB_BADC_RES_AVG(12) // 16 x 12-bit Bus samples averaged together #define INA219_CFG_BADCRES_12BIT_32S_17MS INA219_CFGB_BADC_RES_AVG(13) // 32 x 12-bit Bus samples averaged together #define INA219_CFG_BADCRES_12BIT_64S_34MS INA219_CFGB_BADC_RES_AVG(14) // 64 x 12-bit Bus samples averaged together #define INA219_CFG_BADCRES_12BIT_128S_68MS INA219_CFGB_BADC_RES_AVG(15) // 128 x 12-bit Bus samples averaged together #define INA219_CFG_SADCRES_MASK INA219_CFGB_SADC_RES_AVG(15) // Shunt ADC Resolution and Averaging Mask #define INA219_CFG_SADCRES_9BIT_1S_84US INA219_CFGB_SADC_RES_AVG(0) // 1 x 9-bit Shunt sample #define INA219_CFG_SADCRES_10BIT_1S_148US INA219_CFGB_SADC_RES_AVG(1) // 1 x 10-bit Shunt sample #define INA219_CFG_SADCRES_11BIT_1S_276US INA219_CFGB_SADC_RES_AVG(2) // 1 x 11-bit Shunt sample #define INA219_CFG_SADCRES_12BIT_1S_532US INA219_CFGB_SADC_RES_AVG(3) // 1 x 12-bit Shunt sample (default) #define INA219_CFG_SADCRES_12BIT_2S_1MS INA219_CFGB_SADC_RES_AVG(9) // 2 x 12-bit Shunt samples averaged together #define INA219_CFG_SADCRES_12BIT_4S_2MS INA219_CFGB_SADC_RES_AVG(10) // 4 x 12-bit Shunt samples averaged together #define INA219_CFG_SADCRES_12BIT_8S_4MS INA219_CFGB_SADC_RES_AVG(11) // 8 x 12-bit Shunt samples averaged together #define INA219_CFG_SADCRES_12BIT_16S_8MS INA219_CFGB_SADC_RES_AVG(12) // 16 x 12-bit Shunt samples averaged together #define INA219_CFG_SADCRES_12BIT_32S_17MS INA219_CFGB_SADC_RES_AVG(13) // 32 x 12-bit Shunt samples averaged together #define INA219_CFG_SADCRES_12BIT_64S_34MS INA219_CFGB_SADC_RES_AVG(14) // 64 x 12-bit Shunt samples averaged together #define INA219_CFG_SADCRES_12BIT_128S_68MS INA219_CFGB_SADC_RES_AVG(15) // 128 x 12-bit Shunt samples averaged together #define INA219_CFG_MODE_MASK INA219_CFGB_MODE(7) // Operating Mode Mask #define INA219_CFG_MODE_POWERDOWN INA219_CFGB_MODE(0) // Power-Down #define INA219_CFG_MODE_SVOLT_TRIGGERED INA219_CFGB_MODE(1) // Shunt Voltage, Triggered #define INA219_CFG_MODE_BVOLT_TRIGGERED INA219_CFGB_MODE(2) // Bus Voltage, Triggered #define INA219_CFG_MODE_SANDBVOLT_TRIGGERED INA219_CFGB_MODE(3) // Shunt and Bus, Triggered #define INA219_CFG_MODE_ADCOFF INA219_CFGB_MODE(4) // ADC Off (disabled) #define INA219_CFG_MODE_SVOLT_CONTINUOUS INA219_CFGB_MODE(5) // Shunt Voltage, Continuous #define INA219_CFG_MODE_BVOLT_CONTINUOUS INA219_CFGB_MODE(6) // Bus Voltage, Continuous #define INA219_CFG_MODE_SANDBVOLT_CONTINUOUS INA219_CFGB_MODE(7) // Shunt and Bus, Continuous (default) /*----------------------------------------------------------------------------*/ // Bus Voltage Register #define INA219_BVOLT_CNVR (u16)(0x0002) // Conversion Ready #define INA219_BVOLT_OVF (u16)(0x0001) // Math Overflow Flag struct ina219_value_t { int16 voltage; int32 shunt; int32 current; int32 power; }; extern struct ina219_value_t ina219_value; extern void drv_ina219_init(void); extern int16 ina219_GetBusVoltage_mV(void); extern int32 ina219_GetShuntVoltage_uV(void); extern int32 ina219_GetCurrent_uA(void); extern int32 ina219_GetPower_mW(void); extern void ina219_process(void); #endif #include "INA219.h" #include "config.h" #include "STC32G_Timer.h" #include "STC32G_GPIO.h" #include "STC32G_NVIC.h" #include "STC32G_Exti.h" #include "STC32G_I2C.h" #include "STC32G_Delay.h" #include "STC32G_Switch.h" #if TCFG_DRV_INA219_SUPPORT struct ina219_value_t ina219_value; u16 ina219_calValue = 0; u8 ina219_busVolt_LSB_mV = 4; // Bus Voltage LSB value = 4mV u8 ina219_shuntVolt_LSB_uV = 10; // Shunt Voltage LSB value = 10uV u32 ina219_current_LSB_uA; u32 ina219_power_LSB_mW; /** * @brief INA219???? */ void ina219_Write_Register(u8 reg, u16 dat) { u8 val[2]; val[0] = (u8)(dat >> 8); val[1] = (u8)(dat & 0xFF); I2C_WriteNbyte(INA219_I2C_ADDRESS, reg, val, 2); } /** * @brief INA219???? */ void ina219_Read_Register(u8 reg, u16 *dat) { u8 val[2]; I2C_ReadNbyte(INA219_I2C_ADDRESS, reg, val, 2); *dat = ((u16)(val[0]) << 8) + val[1]; } // INA219 Set Calibration 16V/16A(Max) 0.02|? void ina219_SetCalibration_16V_16A(void) { u16 configValue; // By default we use a pretty huge range for the input voltage, // which probably isn't the most appropriate choice for system // that don't use a lot of power. But all of the calculations // are shown below if you want to change the settings. You will // also need to change any relevant register settings, such as // setting the VBUS_MAX to 16V instead of 32V, etc. // VBUS_MAX = 16V (Assumes 16V, can also be set to 32V) // VSHUNT_MAX = 0.32 (Assumes Gain 8, 320mV, can also be 0.16, 0.08, 0.04) // RSHUNT = 0.02 (Resistor value in ohms) // 1. Determine max possible current // MaxPossible_I = VSHUNT_MAX / RSHUNT // MaxPossible_I = 16A // 2. Determine max expected current // MaxExpected_I = 16A // 3. Calculate possible range of LSBs (Min = 15-bit, Max = 12-bit) // MinimumLSB = MaxExpected_I/32767 // MinimumLSB = 0.00048 (0.48mA per bit) // MaximumLSB = MaxExpected_I/4096 // MaximumLSB = 0,00390 (3.9mA per bit) // 4. Choose an LSB between the min and max values // (Preferrably a roundish number close to MinLSB) // CurrentLSB = 0.00050 (500uA per bit) // 5. Compute the calibration register // Cal = trunc (0.04096 / (Current_LSB * RSHUNT)) // Cal = 4096 (0x1000) // ina219_calValue = 0x1000; ina219_calValue = 0x0D90; //0x1000; // 6. Calculate the power LSB // PowerLSB = 20 * CurrentLSB // PowerLSB = 0.01 (10mW per bit) // 7. Compute the maximum current and shunt voltage values before overflow // // Max_Current = Current_LSB * 32767 // Max_Current = 16.3835A before overflow // // If Max_Current > Max_Possible_I then // Max_Current_Before_Overflow = MaxPossible_I // Else // Max_Current_Before_Overflow = Max_Current // End If // // Max_ShuntVoltage = Max_Current_Before_Overflow * RSHUNT // Max_ShuntVoltage = 0.32V // // If Max_ShuntVoltage >= VSHUNT_MAX // Max_ShuntVoltage_Before_Overflow = VSHUNT_MAX // Else // Max_ShuntVoltage_Before_Overflow = Max_ShuntVoltage // End If // 8. Compute the Maximum Power // MaximumPower = Max_Current_Before_Overflow * VBUS_MAX // MaximumPower = 1.6 * 16V // MaximumPower = 256W // Set multipliers to convert raw current/power values ina219_current_LSB_uA = 100; // Current LSB = 500uA per bit ina219_power_LSB_mW = 2; // Power LSB = 10mW per bit = 20 * Current LSB // Set Calibration register to 'Cal' calculated above ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Set Config register to take into account the settings above configValue = ( INA219_CFG_BVOLT_RANGE_16V | INA219_CFG_SVOLT_RANGE_320MV | INA219_CFG_BADCRES_12BIT_16S_8MS | INA219_CFG_SADCRES_12BIT_16S_8MS | INA219_CFG_MODE_SANDBVOLT_CONTINUOUS ); // configValue = ( INA219_CFG_BVOLT_RANGE_16V | INA219_CFG_SVOLT_RANGE_320MV | INA219_CFG_BADCRES_12BIT_32S_17MS | INA219_CFG_SADCRES_12BIT_32S_17MS | INA219_CFG_MODE_SANDBVOLT_CONTINUOUS ); ina219_Write_Register(INA219_REG_CONFIG, configValue); } void ina219_configureRegisters(void) { delay_ms(15); ina219_SetCalibration_16V_16A(); } int16 ina219_GetBusVoltage_raw(void) { int16 val; ina219_Read_Register(INA219_REG_BUSVOLTAGE, (u16*)&val); val >>= 3; // Shift to the right 3 to drop CNVR and OVF return (val); } int16 ina219_GetCurrent_raw(void) { int16 val; // Sometimes a sharp load will reset the INA219, which will // reset the cal register, meaning CURRENT and POWER will // not be available ... avoid this by always setting a cal // value even if it's an unfortunate extra step ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Now we can safely read the CURRENT register! ina219_Read_Register(INA219_REG_CURRENT, (u16*)&val); return (val); } int16 ina219_GetBusVoltage_mV(void) { int16 val; ina219_Read_Register(INA219_REG_BUSVOLTAGE, (u16*)&val); val >>= 3; // Shift to the right 3 to drop CNVR and OVF val *= ina219_busVolt_LSB_mV; // multiply by LSB(4mV) return (int16)(val); } int32 ina219_GetShuntVoltage_uV(void) { int32 val; int16 reg; ina219_Read_Register(INA219_REG_SHUNTVOLTAGE, (u16*)®); val = (int32)reg * ina219_shuntVolt_LSB_uV; // multiply by LSB(10uV) return (int32)val; } int32 ina219_GetCurrent_uA(void) { int32 val; int16 reg; // Sometimes a sharp load will reset the INA219, which will // reset the cal register, meaning CURRENT and POWER will // not be available ... avoid this by always setting a cal // value even if it's an unfortunate extra step ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Now we can safely read the CURRENT register! ina219_Read_Register(INA219_REG_CURRENT, (u16*)®); val = (int32)reg * ina219_current_LSB_uA; return (int32)(val); } int32 ina219_GetPower_mW(void) { int32 val; int16 reg; // Sometimes a sharp load will reset the INA219, which will // reset the cal register, meaning CURRENT and POWER will // not be available ... avoid this by always setting a cal // value even if it's an unfortunate extra step ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Now we can safely read the POWER register! ina219_Read_Register(INA219_REG_POWER, (u16*)®); val = (int32)reg * ina219_power_LSB_mW; return (int32)(val); } void ina219_process(void) { // TODO: ???? Vin-?GND????? ina219_value.voltage = ina219_GetBusVoltage_mV(); // TODO: ???????? ina219_value.shunt = ina219_GetShuntVoltage_uV(); // TODO: ?? ina219_value.current = ina219_GetCurrent_uA(); ina219_value.power = ina219_GetPower_mW(); } void drv_ina219_init(void) { I2C_InitTypeDef i2c; i2c.I2C_Enable = ENABLE; i2c.I2C_Mode = I2C_Mode_Master; i2c.I2C_Speed = MAIN_Fosc/2/(100000*2+4); i2c.I2C_MS_WDTA = DISABLE; i2c.I2C_SL_MA = ENABLE; I2C_Init(&i2c); // NVIC_I2C_Init(I2C_Mode_Master, ENABLE, Priority_1); // I2C Master???????? P2_MODE_IO_PU(GPIO_Pin_4); P2_MODE_IO_PU(GPIO_Pin_5); I2C_SW(I2C_P24_P25); ina219_configureRegisters(); log_d("INA219 Driver Init\n"); } #endif/****************************************Copyright (c)**************************************************** ** ** °¬¿ËÄ·¿Æ¼¼(IKMSIK) ** ÌÔ±¦µêÆÌ: acmemcu.taobao.com ** ¼¼ÊõÂÛ̳: 930ebbs.com ** **--------------File Info--------------------------------------------------------------------------------- ** File name: ** Last modified Date: ** Last Version: ** Descriptions: **-------------------------------------------------------------------------------------------------------- ** Created by: FiYu ** Created date: 2022-5-1 ** Version: 1.0 ** Descriptions: 4λÊýÂë¹ÜÏÔʾʵÑé **-------------------------------------------------------------------------------------------------------- ** Modified by: ** Modified date: ** Version: ** Descriptions: ** Rechecked by: **********************************************************************************************************/ #include "config.h" #include "uart.h" #include "INA219.h" int32 current_uA = 0; int32 voltage_mV = 0; int32 power_mW = 0; /*************************************************************************** * Ãè Êö : Ö÷º¯Êý * Èë ²Î : ÎÞ * ·µ»ØÖµ : ÎÞ **************************************************************************/ int main() { Uart1_Init(); //´®¿Ú1³õʼ»¯ EA = 1; //ʹÄÜ×ÜÖÐ¶Ï delay_ms(10); //³õʼ»¯ºóÑÓʱ drv_ina219_init(); while (1) { ina219_process(); current_uA = ina219_value.current; voltage_mV = ina219_value.voltage; power_mW = ina219_value.power; } } Rebuild target 'Project' compiling STC32G_GPIO.c... compiling STC32G_Delay.c... compiling STC32G_NVIC.c... compiling STC32G_UART.c... compiling STC32G_UART_Isr.c... compiling STC32G_Timer.c... compiling STC32G_Exti.c... compiling main.c... compiling i2c.c... compiling uart.c... compiling INA219.c... ..\User\bsp\INA219.c(14): warning C322: 'TCFG_DRV_INA219_SUPPORT': unknown identifier linking... *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: GPIO_Inilize/STC32G_GPIO *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_DMA_ADC_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_DMA_M2M_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_DMA_LCM_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_INT0_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_INT1_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_INT2_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_INT3_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_DMA_SPI_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_INT4_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_Timer0_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_Timer1_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_Timer2_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_Timer3_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_Timer4_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_I2C_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_DMA_I2CR_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_DMA_I2CT_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_ADC_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_DMA_UART1_Rx_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_DMA_UART2_Rx_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_DMA_UART3_Rx_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_DMA_UART1_Tx_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_DMA_UART4_Rx_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_DMA_UART2_Tx_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_DMA_UART3_Tx_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_CAN_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_DMA_UART4_Tx_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_LCM_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_CMP_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_LIN_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_RTC_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_SPI_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_UART2_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_UART3_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_UART4_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: NVIC_PWM_Init/STC32G_NVIC *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: PrintString1/STC32G_UART *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: PrintString2/STC32G_UART *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: PrintString3/STC32G_UART *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: PrintString4/STC32G_UART *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: putchar/STC32G_UART *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: Timer_Inilize/STC32G_Timer *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: Ext_Inilize/STC32G_Exti *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: I2C_Ack/i2c *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: I2C_Start/i2c *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: I2C_SendAck/i2c *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: I2C_SendByte/i2c *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: I2C_Stop/i2c *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: I2c_Init/i2c *** WARNING L57: UNCALLED FUNCTION, IGNORED FOR OVERLAY PROCESS NAME: I2C_NoAck/i2c *** ERROR L127: UNRESOLVED EXTERNAL SYMBOL SYMBOL: drv_ina219_init MODULE: .\main.obj (main) *** ERROR L127: UNRESOLVED EXTERNAL SYMBOL SYMBOL: ina219_process MODULE: .\main.obj (main) *** ERROR L127: UNRESOLVED EXTERNAL SYMBOL SYMBOL: ina219_value MODULE: .\main.obj (main) *** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL SYMBOL: drv_ina219_init MODULE: .\main.obj (main) ADDRESS: FF13E5H *** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL SYMBOL: ina219_process MODULE: .\main.obj (main) ADDRESS: FF13E8H *** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL SYMBOL: ina219_value MODULE: .\main.obj (main) ADDRESS: FF13ECH *** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL SYMBOL: ina219_value MODULE: .\main.obj (main) ADDRESS: FF13F2H *** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL SYMBOL: ina219_value MODULE: .\main.obj (main) ADDRESS: FF13FCH Program Size: data=57.2 edata+hdata=896 xdata=0 const=26 code=5519 Target not created.帮我检查,这有什么问题吗

/**************************************************************************** * drivers/sensors/sensor.c * * SPDX-License-Identifier: Apache-2.0 * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include <nuttx/config.h> #include <sys/types.h> #include <stdbool.h> #include <stdio.h> #include <string.h> #include <assert.h> #include <errno.h> #include <debug.h> #include #include <fcntl.h> #include <nuttx/list.h> #include <nuttx/kmalloc.h> #include <nuttx/circbuf.h> #include <nuttx/mutex.h> #include <nuttx/sensors/sensor.h> #include <nuttx/lib/lib.h> /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* Device naming ************************************************************/ #define ROUND_DOWN(x, y) (((x) / (y)) * (y)) #define DEVNAME_FMT "/dev/uorb/sensor_%s%s%d" #define DEVNAME_UNCAL "_uncal" #define TIMING_BUF_ESIZE (sizeof(uint32_t)) /**************************************************************************** * Private Types ****************************************************************************/ struct sensor_axis_map_s { int8_t src_x; int8_t src_y; int8_t src_z; int8_t sign_x; int8_t sign_y; int8_t sign_z; }; /* This structure describes sensor meta */ struct sensor_meta_s { size_t esize; FAR char *name; }; typedef enum sensor_role_e { SENSOR_ROLE_NONE, SENSOR_ROLE_WR, SENSOR_ROLE_RD, SENSOR_ROLE_RDWR, } sensor_role_t; /* This structure describes user info of sensor, the user may be * advertiser or subscriber */ struct sensor_user_s { /* The common info */ struct list_node node; /* Node of users list */ struct pollfd *fds; /* The poll structure of thread waiting events */ sensor_role_t role; /* The is used to indicate user's role based on open flags */ bool changed; /* This is used to indicate event happens and need to * asynchronous notify other users */ unsigned int event; /* The event of this sensor, eg: SENSOR_EVENT_FLUSH_COMPLETE. */ bool flushing; /* The is used to indicate user is flushing */ sem_t buffersem; /* Wakeup user waiting for data in circular buffer */ size_t bufferpos; /* The index of user generation in buffer */ /* The subscriber info * Support multi advertisers to subscribe their own data when they * appear in dual role */ struct sensor_ustate_s state; }; /* This structure describes the state of the upper half driver */ struct sensor_upperhalf_s { FAR struct sensor_lowerhalf_s *lower; /* The handle of lower half driver */ struct sensor_state_s state; /* The state of sensor device */ struct circbuf_s timing; /* The circular buffer of generation */ struct circbuf_s buffer; /* The circular buffer of data */ rmutex_t lock; /* Manages exclusive access to file operations */ struct list_node userlist; /* List of users */ }; /**************************************************************************** * Private Function Prototypes ****************************************************************************/ static void sensor_pollnotify(FAR struct sensor_upperhalf_s *upper, pollevent_t eventset, sensor_role_t role); static int sensor_open(FAR struct file *filep); static int sensor_close(FAR struct file *filep); static ssize_t sensor_read(FAR struct file *filep, FAR char *buffer, size_t buflen); static ssize_t sensor_write(FAR struct file *filep, FAR const char *buffer, size_t buflen); static int sensor_ioctl(FAR struct file *filep, int cmd, unsigned long arg); static int sensor_poll(FAR struct file *filep, FAR struct pollfd *fds, bool setup); static ssize_t sensor_push_event(FAR void *priv, FAR const void *data, size_t bytes); /**************************************************************************** * Private Data ****************************************************************************/ static const struct sensor_axis_map_s g_remap_tbl[] = { { 0, 1, 2, 1, 1, 1 }, /* P0 */ { 1, 0, 2, 1, -1, 1 }, /* P1 */ { 0, 1, 2, -1, -1, 1 }, /* P2 */ { 1, 0, 2, -1, 1, 1 }, /* P3 */ { 0, 1, 2, -1, 1, -1 }, /* P4 */ { 1, 0, 2, -1, -1, -1 }, /* P5 */ { 0, 1, 2, 1, -1, -1 }, /* P6 */ { 1, 0, 2, 1, 1, -1 }, /* P7 */ }; static const struct sensor_meta_s g_sensor_meta[] = { {0, NULL}, {sizeof(struct sensor_accel), "accel"}, {sizeof(struct sensor_mag), "mag"}, {sizeof(struct sensor_orientation), "orientation"}, {sizeof(struct sensor_gyro), "gyro"}, {sizeof(struct sensor_light), "light"}, {sizeof(struct sensor_baro), "baro"}, {sizeof(struct sensor_noise), "noise"}, {sizeof(struct sensor_prox), "prox"}, {sizeof(struct sensor_rgb), "rgb"}, {sizeof(struct sensor_accel), "linear_accel"}, {sizeof(struct sensor_rotation), "rotation"}, {sizeof(struct sensor_humi), "humi"}, {sizeof(struct sensor_temp), "temp"}, {sizeof(struct sensor_pm25), "pm25"}, {sizeof(struct sensor_pm1p0), "pm1p0"}, {sizeof(struct sensor_pm10), "pm10"}, {sizeof(struct sensor_event), "motion_detect"}, {sizeof(struct sensor_event), "step_detector"}, {sizeof(struct sensor_step_counter), "step_counter"}, {sizeof(struct sensor_ph), "ph"}, {sizeof(struct sensor_hrate), "hrate"}, {sizeof(struct sensor_event), "tilt_detector"}, {sizeof(struct sensor_event), "wake_gesture"}, {sizeof(struct sensor_event), "glance_gesture"}, {sizeof(struct sensor_event), "pickup_gesture"}, {sizeof(struct sensor_event), "wrist_tilt"}, {sizeof(struct sensor_orientation), "device_orientation"}, {sizeof(struct sensor_pose_6dof), "pose_6dof"}, {sizeof(struct sensor_gas), "gas"}, {sizeof(struct sensor_event), "significant_motion"}, {sizeof(struct sensor_hbeat), "hbeat"}, {sizeof(struct sensor_force), "force"}, {sizeof(struct sensor_hall), "hall"}, {sizeof(struct sensor_event), "offbody_detector"}, {sizeof(struct sensor_uv), "uv"}, {sizeof(struct sensor_angle), "hinge_angle"}, {sizeof(struct sensor_ir), "ir"}, {sizeof(struct sensor_hcho), "hcho"}, {sizeof(struct sensor_tvoc), "tvoc"}, {sizeof(struct sensor_dust), "dust"}, {sizeof(struct sensor_ecg), "ecg"}, {sizeof(struct sensor_ppgd), "ppgd"}, {sizeof(struct sensor_ppgq), "ppgq"}, {sizeof(struct sensor_impd), "impd"}, {sizeof(struct sensor_ots), "ots"}, {sizeof(struct sensor_co2), "co2"}, {sizeof(struct sensor_cap), "cap"}, {sizeof(struct sensor_eng), "eng"}, {sizeof(struct sensor_gnss), "gnss"}, {sizeof(struct sensor_gnss_satellite), "gnss_satellite"}, {sizeof(struct sensor_gnss_measurement), "gnss_measurement"}, {sizeof(struct sensor_gnss_clock), "gnss_clock"}, {sizeof(struct sensor_gnss_geofence_event), "gnss_geofence_event"}, }; static const struct file_operations g_sensor_fops = { sensor_open, /* open */ sensor_close, /* close */ sensor_read, /* read */ sensor_write, /* write */ NULL, /* seek */ sensor_ioctl, /* ioctl */ NULL, /* mmap */ NULL, /* truncate */ sensor_poll /* poll */ }; /**************************************************************************** * Private Functions ****************************************************************************/ static void sensor_lock(FAR void *priv) { FAR struct sensor_upperhalf_s *upper = priv; nxrmutex_lock(&upper->lock); } static void sensor_unlock(FAR void *priv) { FAR struct sensor_upperhalf_s *upper = priv; nxrmutex_unlock(&upper->lock); } static int sensor_update_interval(FAR struct file *filep, FAR struct sensor_upperhalf_s *upper, FAR struct sensor_user_s *user, uint32_t interval) { FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *tmp; uint32_t min_interval = interval; uint32_t min_latency = interval != UINT32_MAX ? user->state.latency : UINT32_MAX; int ret = 0; if (interval == user->state.interval) { return 0; } list_for_every_entry(&upper->userlist, tmp, struct sensor_user_s, node) { if (tmp == user || tmp->state.interval == UINT32_MAX) { continue; } if (min_interval > tmp->state.interval) { min_interval = tmp->state.interval; } if (min_latency > tmp->state.latency) { min_latency = tmp->state.latency; } } if (lower->ops->set_interval) { if (min_interval != UINT32_MAX && min_interval != upper->state.min_interval) { uint32_t expected_interval = min_interval; ret = lower->ops->set_interval(lower, filep, &min_interval); if (ret < 0) { return ret; } else if (min_interval > expected_interval) { return -EINVAL; } } if (min_latency == UINT32_MAX) { min_latency = 0; } if (lower->ops->batch && (min_latency != upper->state.min_latency || (min_interval != upper->state.min_interval && min_latency))) { ret = lower->ops->batch(lower, filep, &min_latency); if (ret >= 0) { upper->state.min_latency = min_latency; } } } upper->state.min_interval = min_interval; user->state.interval = interval; sensor_pollnotify(upper, POLLPRI, SENSOR_ROLE_WR); return ret; } static int sensor_update_latency(FAR struct file *filep, FAR struct sensor_upperhalf_s *upper, FAR struct sensor_user_s *user, uint32_t latency) { FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *tmp; uint32_t min_latency = latency; int ret = 0; if (latency == user->state.latency) { return 0; } if (user->state.interval == UINT32_MAX) { user->state.latency = latency; return 0; } if (latency <= upper->state.min_latency) { goto update; } list_for_every_entry(&upper->userlist, tmp, struct sensor_user_s, node) { if (tmp == user || tmp->state.interval == UINT32_MAX) { continue; } if (min_latency > tmp->state.latency) { min_latency = tmp->state.latency; } } update: if (min_latency == UINT32_MAX) { min_latency = 0; } if (min_latency == upper->state.min_latency) { user->state.latency = latency; return ret; } if (lower->ops->batch) { ret = lower->ops->batch(lower, filep, &min_latency); if (ret < 0) { return ret; } } upper->state.min_latency = min_latency; user->state.latency = latency; sensor_pollnotify(upper, POLLPRI, SENSOR_ROLE_WR); return ret; } static void sensor_generate_timing(FAR struct sensor_upperhalf_s *upper, unsigned long nums) { uint32_t interval = upper->state.min_interval != UINT32_MAX ? upper->state.min_interval : 1; while (nums-- > 0) { upper->state.generation += interval; circbuf_overwrite(&upper->timing, &upper->state.generation, TIMING_BUF_ESIZE); } } static bool sensor_is_updated(FAR struct sensor_upperhalf_s *upper, FAR struct sensor_user_s *user) { long delta = (long long)upper->state.generation - user->state.generation; if (delta <= 0) { return false; } else if (user->state.interval == UINT32_MAX) { return true; } else { /* Check whether next generation user want in buffer. * generation next generation(not published yet) * ____v_____________v * ////|//////^ | * ^ middle point * next generation user want */ return delta >= user->state.interval - (upper->state.min_interval >> 1); } } static void sensor_catch_up(FAR struct sensor_upperhalf_s *upper, FAR struct sensor_user_s *user) { uint32_t generation; long delta; circbuf_peek(&upper->timing, &generation, TIMING_BUF_ESIZE); delta = (long long)generation - user->state.generation; if (delta > 0) { user->bufferpos = upper->timing.tail / TIMING_BUF_ESIZE; if (user->state.interval == UINT32_MAX) { user->state.generation = generation - 1; } else { delta -= upper->state.min_interval >> 1; user->state.generation += ROUND_DOWN(delta, user->state.interval); } } } static ssize_t sensor_do_samples(FAR struct sensor_upperhalf_s *upper, FAR struct sensor_user_s *user, FAR char *buffer, size_t len) { uint32_t generation; ssize_t ret = 0; size_t nums; size_t pos; size_t end; sensor_catch_up(upper, user); nums = upper->timing.head / TIMING_BUF_ESIZE - user->bufferpos; if (len < nums * upper->state.esize) { nums = len / upper->state.esize; } len = nums * upper->state.esize; /* Take samples continuously */ if (user->state.interval == UINT32_MAX) { if (buffer != NULL) { ret = circbuf_peekat(&upper->buffer, user->bufferpos * upper->state.esize, buffer, len); } else { ret = len; } user->bufferpos += nums; circbuf_peekat(&upper->timing, (user->bufferpos - 1) * TIMING_BUF_ESIZE, &user->state.generation, TIMING_BUF_ESIZE); return ret; } /* Take samples one-bye-one, to determine whether a sample needed: * * If user's next generation is on the left side of middle point, * we should copy this sample for user. * next_generation(or end) * ________________v____ * timing buffer: //|//////. | * ^ middle * generation * next sample(or end) * ________________v____ * data buffer: | | * ^ * sample */ pos = user->bufferpos; end = upper->timing.head / TIMING_BUF_ESIZE; circbuf_peekat(&upper->timing, pos * TIMING_BUF_ESIZE, &generation, TIMING_BUF_ESIZE); while (pos++ != end) { uint32_t next_generation; long delta; if (pos * TIMING_BUF_ESIZE == upper->timing.head) { next_generation = upper->state.generation + upper->state.min_interval; } else { circbuf_peekat(&upper->timing, pos * TIMING_BUF_ESIZE, &next_generation, TIMING_BUF_ESIZE); } delta = next_generation + generation - ((user->state.generation + user->state.interval) << 1); if (delta >= 0) { if (buffer != NULL) { ret += circbuf_peekat(&upper->buffer, (pos - 1) * upper->state.esize, buffer + ret, upper->state.esize); } else { ret += upper->state.esize; } user->bufferpos = pos; user->state.generation += user->state.interval; if (ret >= len) { break; } } generation = next_generation; } if (pos - 1 == end && sensor_is_updated(upper, user)) { generation = upper->state.generation - user->state.generation + (upper->state.min_interval >> 1); user->state.generation += ROUND_DOWN(generation, user->state.interval); } return ret; } static void sensor_pollnotify_one(FAR struct sensor_user_s *user, pollevent_t eventset, sensor_role_t role) { if (!(user->role & role)) { return; } if (eventset == POLLPRI) { user->changed = true; } poll_notify(&user->fds, 1, eventset); } static void sensor_pollnotify(FAR struct sensor_upperhalf_s *upper, pollevent_t eventset, sensor_role_t role) { FAR struct sensor_user_s *user; list_for_every_entry(&upper->userlist, user, struct sensor_user_s, node) { sensor_pollnotify_one(user, eventset, role); } } static int sensor_open(FAR struct file *filep) { FAR struct inode *inode = filep->f_inode; FAR struct sensor_upperhalf_s *upper = inode->i_private; FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *user; int ret = 0; nxrmutex_lock(&upper->lock); user = kmm_zalloc(sizeof(struct sensor_user_s)); if (user == NULL) { ret = -ENOMEM; goto errout_with_lock; } if (lower->ops->open) { ret = lower->ops->open(lower, filep); if (ret < 0) { goto errout_with_user; } } if ((filep->f_oflags & O_DIRECT) == 0) { if (filep->f_oflags & O_RDOK) { if (upper->state.nsubscribers == 0 && lower->ops->activate) { ret = lower->ops->activate(lower, filep, true); if (ret < 0) { goto errout_with_open; } } user->role |= SENSOR_ROLE_RD; upper->state.nsubscribers++; } if (filep->f_oflags & O_WROK) { user->role |= SENSOR_ROLE_WR; upper->state.nadvertisers++; if (filep->f_oflags & SENSOR_PERSIST) { lower->persist = true; } } } if (upper->state.generation && lower->persist) { user->state.generation = upper->state.generation - 1; user->bufferpos = upper->timing.head / TIMING_BUF_ESIZE - 1; } else { user->state.generation = upper->state.generation; user->bufferpos = upper->timing.head / TIMING_BUF_ESIZE; } user->state.interval = UINT32_MAX; user->state.esize = upper->state.esize; nxsem_init(&user->buffersem, 0, 0); list_add_tail(&upper->userlist, &user->node); /* The new user generation, notify to other users */ sensor_pollnotify(upper, POLLPRI, SENSOR_ROLE_WR); filep->f_priv = user; goto errout_with_lock; errout_with_open: if (lower->ops->close) { lower->ops->close(lower, filep); } errout_with_user: kmm_free(user); errout_with_lock: nxrmutex_unlock(&upper->lock); return ret; } static int sensor_close(FAR struct file *filep) { FAR struct inode *inode = filep->f_inode; FAR struct sensor_upperhalf_s *upper = inode->i_private; FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *user = filep->f_priv; int ret = 0; nxrmutex_lock(&upper->lock); if (lower->ops->close) { ret = lower->ops->close(lower, filep); if (ret < 0) { nxrmutex_unlock(&upper->lock); return ret; } } if ((filep->f_oflags & O_DIRECT) == 0) { if (filep->f_oflags & O_RDOK) { upper->state.nsubscribers--; if (upper->state.nsubscribers == 0 && lower->ops->activate) { lower->ops->activate(lower, filep, false); } } if (filep->f_oflags & O_WROK) { upper->state.nadvertisers--; } } list_delete(&user->node); sensor_update_latency(filep, upper, user, UINT32_MAX); sensor_update_interval(filep, upper, user, UINT32_MAX); nxsem_destroy(&user->buffersem); /* The user is closed, notify to other users */ sensor_pollnotify(upper, POLLPRI, SENSOR_ROLE_WR); nxrmutex_unlock(&upper->lock); kmm_free(user); return ret; } static ssize_t sensor_read(FAR struct file *filep, FAR char *buffer, size_t len) { FAR struct inode *inode = filep->f_inode; FAR struct sensor_upperhalf_s *upper = inode->i_private; FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *user = filep->f_priv; ssize_t ret; if (!len) { return -EINVAL; } nxrmutex_lock(&upper->lock); if (lower->ops->fetch) { if (buffer == NULL) { return -EINVAL; } if (!(filep->f_oflags & O_NONBLOCK)) { nxrmutex_unlock(&upper->lock); ret = nxsem_wait_uninterruptible(&user->buffersem); if (ret < 0) { return ret; } nxrmutex_lock(&upper->lock); } else if (!upper->state.nsubscribers) { ret = -EAGAIN; goto out; } ret = lower->ops->fetch(lower, filep, buffer, len); } else if (circbuf_is_empty(&upper->buffer)) { ret = -ENODATA; } else if (sensor_is_updated(upper, user)) { ret = sensor_do_samples(upper, user, buffer, len); } else if (lower->persist) { if (buffer == NULL) { ret = upper->state.esize; } else { /* Persistent device can get latest old data if not updated. */ ret = circbuf_peekat(&upper->buffer, (user->bufferpos - 1) * upper->state.esize, buffer, upper->state.esize); } } else { ret = -ENODATA; } out: nxrmutex_unlock(&upper->lock); return ret; } static ssize_t sensor_write(FAR struct file *filep, FAR const char *buffer, size_t buflen) { FAR struct inode *inode = filep->f_inode; FAR struct sensor_upperhalf_s *upper = inode->i_private; FAR struct sensor_lowerhalf_s *lower = upper->lower; return lower->push_event(lower->priv, buffer, buflen); } static int sensor_ioctl(FAR struct file *filep, int cmd, unsigned long arg) { FAR struct inode *inode = filep->f_inode; FAR struct sensor_upperhalf_s *upper = inode->i_private; FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *user = filep->f_priv; uint32_t arg1 = (uint32_t)arg; int ret = 0; switch (cmd) { case SNIOC_GET_STATE: { nxrmutex_lock(&upper->lock); memcpy((FAR void *)(uintptr_t)arg, &upper->state, sizeof(upper->state)); user->changed = false; nxrmutex_unlock(&upper->lock); } break; case SNIOC_GET_USTATE: { nxrmutex_lock(&upper->lock); memcpy((FAR void *)(uintptr_t)arg, &user->state, sizeof(user->state)); nxrmutex_unlock(&upper->lock); } break; case SNIOC_SET_INTERVAL: { nxrmutex_lock(&upper->lock); ret = sensor_update_interval(filep, upper, user, arg1 ? arg1 : UINT32_MAX); nxrmutex_unlock(&upper->lock); } break; case SNIOC_BATCH: { nxrmutex_lock(&upper->lock); ret = sensor_update_latency(filep, upper, user, arg1); nxrmutex_unlock(&upper->lock); } break; case SNIOC_SELFTEST: { if (lower->ops->selftest == NULL) { ret = -ENOTSUP; break; } ret = lower->ops->selftest(lower, filep, arg); } break; case SNIOC_SET_CALIBVALUE: { if (lower->ops->set_calibvalue == NULL) { ret = -ENOTSUP; break; } ret = lower->ops->set_calibvalue(lower, filep, arg); } break; case SNIOC_CALIBRATE: { if (lower->ops->calibrate == NULL) { ret = -ENOTSUP; break; } ret = lower->ops->calibrate(lower, filep, arg); } break; case SNIOC_SET_USERPRIV: { nxrmutex_lock(&upper->lock); upper->state.priv = (uint64_t)arg; nxrmutex_unlock(&upper->lock); } break; case SNIOC_SET_BUFFER_NUMBER: { nxrmutex_lock(&upper->lock); if (!circbuf_is_init(&upper->buffer)) { if (arg1 >= lower->nbuffer) { lower->nbuffer = arg1; upper->state.nbuffer = arg1; } else { ret = -ERANGE; } } else { ret = -EBUSY; } nxrmutex_unlock(&upper->lock); } break; case SNIOC_UPDATED: { nxrmutex_lock(&upper->lock); *(FAR bool *)(uintptr_t)arg = sensor_is_updated(upper, user); nxrmutex_unlock(&upper->lock); } break; case SNIOC_GET_INFO: { if (lower->ops->get_info == NULL) { ret = -ENOTSUP; break; } ret = lower->ops->get_info(lower, filep, (FAR struct sensor_device_info_s *)(uintptr_t)arg); } break; case SNIOC_GET_EVENTS: { nxrmutex_lock(&upper->lock); *(FAR unsigned int *)(uintptr_t)arg = user->event; user->event = 0; user->changed = false; nxrmutex_unlock(&upper->lock); } break; case SNIOC_FLUSH: { nxrmutex_lock(&upper->lock); /* If the sensor is not activated, return -EINVAL. */ if (upper->state.nsubscribers == 0) { nxrmutex_unlock(&upper->lock); return -EINVAL; } if (lower->ops->flush != NULL) { /* Lower half driver will do flush in asynchronous mode, * flush will be completed until push event happened with * bytes is zero. */ ret = lower->ops->flush(lower, filep); if (ret >= 0) { user->flushing = true; } } else { /* If flush is not supported, complete immediately */ user->event |= SENSOR_EVENT_FLUSH_COMPLETE; sensor_pollnotify_one(user, POLLPRI, user->role); } nxrmutex_unlock(&upper->lock); } break; default: /* Lowerhalf driver process other cmd. */ if (lower->ops->control) { ret = lower->ops->control(lower, filep, cmd, arg); } else { ret = -ENOTTY; } break; } return ret; } static int sensor_poll(FAR struct file *filep, FAR struct pollfd *fds, bool setup) { FAR struct inode *inode = filep->f_inode; FAR struct sensor_upperhalf_s *upper = inode->i_private; FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *user = filep->f_priv; pollevent_t eventset = 0; int semcount; int ret = 0; nxrmutex_lock(&upper->lock); if (setup) { /* Don't have enough space to store fds */ if (user->fds) { ret = -ENOSPC; goto errout; } user->fds = fds; fds->priv = filep; if (lower->ops->fetch) { /* Always return POLLIN for fetch data directly(non-block) */ if (filep->f_oflags & O_NONBLOCK) { eventset |= POLLIN; } else { nxsem_get_value(&user->buffersem, &semcount); if (semcount > 0) { eventset |= POLLIN; } } } else if (sensor_is_updated(upper, user)) { eventset |= POLLIN; } if (user->changed) { eventset |= POLLPRI; } poll_notify(&fds, 1, eventset); } else { user->fds = NULL; fds->priv = NULL; } errout: nxrmutex_unlock(&upper->lock); return ret; } static ssize_t sensor_push_event(FAR void *priv, FAR const void *data, size_t bytes) { FAR struct sensor_upperhalf_s *upper = priv; FAR struct sensor_lowerhalf_s *lower = upper->lower; FAR struct sensor_user_s *user; unsigned long envcount; int semcount; int ret; nxrmutex_lock(&upper->lock); if (bytes == 0) { list_for_every_entry(&upper->userlist, user, struct sensor_user_s, node) { if (user->flushing) { user->flushing = false; user->event |= SENSOR_EVENT_FLUSH_COMPLETE; sensor_pollnotify_one(user, POLLPRI, user->role); } } nxrmutex_unlock(&upper->lock); return 0; } envcount = bytes / upper->state.esize; if (bytes != envcount * upper->state.esize) { nxrmutex_unlock(&upper->lock); return -EINVAL; } if (!circbuf_is_init(&upper->buffer)) { /* Initialize sensor buffer when data is first generated */ ret = circbuf_init(&upper->buffer, NULL, lower->nbuffer * upper->state.esize); if (ret < 0) { nxrmutex_unlock(&upper->lock); return ret; } ret = circbuf_init(&upper->timing, NULL, lower->nbuffer * TIMING_BUF_ESIZE); if (ret < 0) { circbuf_uninit(&upper->buffer); nxrmutex_unlock(&upper->lock); return ret; } } circbuf_overwrite(&upper->buffer, data, bytes); sensor_generate_timing(upper, envcount); list_for_every_entry(&upper->userlist, user, struct sensor_user_s, node) { if (sensor_is_updated(upper, user)) { nxsem_get_value(&user->buffersem, &semcount); if (semcount < 1) { nxsem_post(&user->buffersem); } sensor_pollnotify_one(user, POLLIN, SENSOR_ROLE_RD); } } nxrmutex_unlock(&upper->lock); return bytes; } static void sensor_notify_event(FAR void *priv) { FAR struct sensor_upperhalf_s *upper = priv; FAR struct sensor_user_s *user; int semcount; nxrmutex_lock(&upper->lock); list_for_every_entry(&upper->userlist, user, struct sensor_user_s, node) { nxsem_get_value(&user->buffersem, &semcount); if (semcount < 1) { nxsem_post(&user->buffersem); } sensor_pollnotify_one(user, POLLIN, SENSOR_ROLE_RD); } nxrmutex_unlock(&upper->lock); } /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: sensor_remap_vector_raw16 * * Description: * This function remap the sensor data according to the place position on * board. The value of place is determined base on g_remap_tbl. * * Input Parameters: * in - A pointer to input data need remap. * out - A pointer to output data. * place - The place position of sensor on board, * ex:SENSOR_BODY_COORDINATE_PX * ****************************************************************************/ void sensor_remap_vector_raw16(FAR const int16_t *in, FAR int16_t *out, int place) { FAR const struct sensor_axis_map_s *remap; int16_t tmp[3]; DEBUGASSERT(place < (sizeof(g_remap_tbl) / sizeof(g_remap_tbl[0]))); remap = &g_remap_tbl[place]; tmp[0] = in[remap->src_x] * remap->sign_x; tmp[1] = in[remap->src_y] * remap->sign_y; tmp[2] = in[remap->src_z] * remap->sign_z; memcpy(out, tmp, sizeof(tmp)); } /**************************************************************************** * Name: sensor_register * * Description: * This function binds an instance of a "lower half" Sensor driver with the * "upper half" Sensor device and registers that device so that can be used * by application code. * * We will register the chararter device by node name format based on the * type of sensor. Multiple types of the same type are distinguished by * numbers. eg: accel0, accel1 * * Input Parameters: * dev - A pointer to an instance of lower half sensor driver. This * instance is bound to the sensor driver and must persists as long * as the driver persists. * devno - The user specifies which device of this type, from 0. If the * devno alerady exists, -EEXIST will be returned. * * Returned Value: * OK if the driver was successfully register; A negated errno value is * returned on any failure. * ****************************************************************************/ int sensor_register(FAR struct sensor_lowerhalf_s *lower, int devno) { FAR char *path; int ret; DEBUGASSERT(lower != NULL); path = lib_get_pathbuffer(); if (path == NULL) { return -ENOMEM; } snprintf(path, PATH_MAX, DEVNAME_FMT, g_sensor_meta[lower->type].name, lower->uncalibrated ? DEVNAME_UNCAL : "", devno); ret = sensor_custom_register(lower, path, g_sensor_meta[lower->type].esize); lib_put_pathbuffer(path); return ret; } /**************************************************************************** * Name: sensor_custom_register * * Description: * This function binds an instance of a "lower half" Sensor driver with the * "upper half" Sensor device and registers that device so that can be used * by application code. * * You can register the character device type by specific path and esize. * This API corresponds to the sensor_custom_unregister. * * Input Parameters: * dev - A pointer to an instance of lower half sensor driver. This * instance is bound to the sensor driver and must persists as long * as the driver persists. * path - The user specifies path of device. ex: /dev/uorb/xxx. * esize - The element size of intermediate circular buffer. * * Returned Value: * OK if the driver was successfully register; A negated errno value is * returned on any failure. * ****************************************************************************/ int sensor_custom_register(FAR struct sensor_lowerhalf_s *lower, FAR const char *path, size_t esize) { FAR struct sensor_upperhalf_s *upper; int ret = -EINVAL; DEBUGASSERT(lower != NULL); if (lower->type >= SENSOR_TYPE_COUNT || !esize) { snerr("ERROR: type is invalid\n"); return ret; } /* Allocate the upper-half data structure */ upper = kmm_zalloc(sizeof(struct sensor_upperhalf_s)); if (!upper) { snerr("ERROR: Allocation failed\n"); return -ENOMEM; } /* Initialize the upper-half data structure */ list_initialize(&upper->userlist); upper->state.esize = esize; upper->state.min_interval = UINT32_MAX; if (lower->ops->activate) { upper->state.nadvertisers = 1; } nxrmutex_init(&upper->lock); /* Bind the lower half data structure member */ lower->priv = upper; lower->sensor_lock = sensor_lock; lower->sensor_unlock = sensor_unlock; if (!lower->ops->fetch) { if (!lower->nbuffer) { lower->nbuffer = 1; } lower->push_event = sensor_push_event; } else { lower->notify_event = sensor_notify_event; lower->nbuffer = 0; } #ifdef CONFIG_SENSORS_RPMSG lower = sensor_rpmsg_register(lower, path); if (lower == NULL) { ret = -EIO; goto rpmsg_err; } #endif upper->state.nbuffer = lower->nbuffer; upper->lower = lower; sninfo("Registering %s\n", path); ret = register_driver(path, &g_sensor_fops, 0666, upper); if (ret) { goto drv_err; } return ret; drv_err: #ifdef CONFIG_SENSORS_RPMSG sensor_rpmsg_unregister(lower); rpmsg_err: #endif nxrmutex_destroy(&upper->lock); kmm_free(upper); return ret; } /**************************************************************************** * Name: sensor_unregister * * Description: * This function unregister character node and release all resource about * upper half driver. * * Input Parameters: * dev - A pointer to an instance of lower half sensor driver. This * instance is bound to the sensor driver and must persists as long * as the driver persists. * devno - The user specifies which device of this type, from 0. ****************************************************************************/ void sensor_unregister(FAR struct sensor_lowerhalf_s *lower, int devno) { FAR char *path; path = lib_get_pathbuffer(); if (path == NULL) { return; } snprintf(path, PATH_MAX, DEVNAME_FMT, g_sensor_meta[lower->type].name, lower->uncalibrated ? DEVNAME_UNCAL : "", devno); sensor_custom_unregister(lower, path); lib_put_pathbuffer(path); } /**************************************************************************** * Name: sensor_custom_unregister * * Description: * This function unregister character node and release all resource about * upper half driver. This API corresponds to the sensor_custom_register. * * Input Parameters: * dev - A pointer to an instance of lower half sensor driver. This * instance is bound to the sensor driver and must persists as long * as the driver persists. * path - The user specifies path of device, ex: /dev/uorb/xxx ****************************************************************************/ void sensor_custom_unregister(FAR struct sensor_lowerhalf_s *lower, FAR const char *path) { FAR struct sensor_upperhalf_s *upper; DEBUGASSERT(lower != NULL); DEBUGASSERT(lower->priv != NULL); upper = lower->priv; sninfo("UnRegistering %s\n", path); unregister_driver(path); #ifdef CONFIG_SENSORS_RPMSG sensor_rpmsg_unregister(lower); #endif nxrmutex_destroy(&upper->lock); if (circbuf_is_init(&upper->buffer)) { circbuf_uninit(&upper->buffer); circbuf_uninit(&upper->timing); } kmm_free(upper); }

void compute_fft(float *input, float *output, size_t frame_size) { assert(input != NULL); // 打印前10个输入样本 printf("Input samples (first 10):\n"); for (int i = 0; i < 10 && i < frame_size; i++) { printf("[%d]: %.6f\n", i, input[i]); } // 使用硬件加速的 FFT 函数 esp_err_t err = dsps_fft2r_fc32_aes3_(input, frame_size, NULL); if (err != ESP_OK) { printf("FFT计算失败,错误代码: %d\n", err); return; } memcpy(output, input, frame_size * sizeof(float)); } void apply_mel_filter(float *spectrum, float *mel_filter, float *mel_spectrum, size_t num_filters) { for (size_t i = 0; i < num_filters; i++) { mel_spectrum[i] = 0.0; for (size_t j = 0; j < num_filters; j++) { mel_spectrum[i] += spectrum[j] * mel_filter[j]; } } } void compute_log_energy(float *mel_spectrum, size_t num_filters) { for (size_t i = 0; i < num_filters; i++) { mel_spectrum[i] = log(mel_spectrum[i] + 1e-10); // 避免log(0)的计算 } } void compute_dct(float *log_mel_spectrum, float *mfcc, size_t num_coeffs, size_t num_filters) { for (size_t i = 0; i < num_coeffs; i++) { mfcc[i] = 0.0; for (size_t j = 0; j < num_filters; j++) { mfcc[i] += log_mel_spectrum[j] * cos(M_PI * i * (2 * j + 1) / (2 * num_filters)); } } } //---------------------------------------------------------------------ver2-------------------------------------------- static void i2s_example_read_task(void *args) { uint32_t *r_buf = (uint32_t *)calloc(EXAMPLE_BUFF_SIZE / 4, sizeof(uint32_t)); assert(r_buf); size_t r_bytes = 0; // 每帧处理后存放的样本 float normalized[FRAME_SIZE]; while (1) { if (i2s_channel_read(rx_chan, r_buf, EXAMPLE_BUFF_SIZE, &r_bytes, 1000) == ESP_OK) { int sampleCount = r_bytes / sizeof(uint32_t); // 处理每一帧 for (int i = 0; i < sampleCount - FRAME_SIZE; i += FRAME_SHIFT) { // 提取当前帧的音频数据 ESP_LOGI(TAG,"1111111111111111111111111111111111111111111111111111"); for (int j = 0; j < FRAME_SIZE; j++) { // 24位数据转换并归一化 ESP_LOGI(TAG,"1222222222222222222222222222222222222222222222222222"); int32_t sample = (int32_t)(r_buf[i + j] & 0xFFFFFF); // 取完整24位 sample = (sample << 8) >> 8; // 符号扩展 normalized[j] = (float)sample / 8388607.0f; // 归一化到 [-1.0, 1.0] ESP_LOGI(TAG, " Parsed: %ld | Norm: %.6f", sample, normalized[j]); } // 1. 应用窗函数(汉明窗) dsps_wind_hann_f32(normalized, FRAME_SIZE); // // 2. 计算FFT // float spectrum[FRAME_SIZE]; // compute_fft(normalized, spectrum, FRAME_SIZE); // // 3. 应用Mel滤波器 // apply_mel_filter(spectrum, mel_filter, mel_spectrum, 26); // // 4. 计算对数能量 // compute_log_energy(mel_spectrum, 26); // // 5. 计算DCT // compute_dct(mel_spectrum, mfcc, 13, 26); // // 输出MFCC特征 // for (int i = 0; i < 13; i++) { // printf("MFCC[%d]: %.3f\n", i, mfcc[i]); // } // 每个帧处理完后延迟一定时间,避免过于频繁 vTaskDelay(pdMS_TO_TICKS(1000)); } } else { printf("i2s read failed\n"); } } free(r_buf); vTaskDelete(NULL); } #if EXAMPLE_I2S_DUPLEX_MODE static void i2s_example_init_std_duplex(void) { i2s_chan_config_t chan_cfg = I2S_CHANNEL_DEFAULT_CONFIG(I2S_NUM_AUTO, I2S_ROLE_MASTER); //ESP_ERROR_CHECK(i2s_new_channel(&chan_cfg, &tx_chan, &rx_chan)); ESP_ERROR_CHECK(i2s_new_channel(&chan_cfg, NULL, &rx_chan)); // 第二步:配置 STD 标准模式:48 kHz,32 bit MSB,Stereo(麦克风是单声道,也没关系,它只会输出左声道) i2s_std_config_t std_cfg = { .clk_cfg = I2S_STD_CLK_DEFAULT_CONFIG(16000), // 48 kHz .slot_cfg = I2S_STD_PHILIPS_SLOT_DEFAULT_CONFIG(I2S_DATA_BIT_WIDTH_32BIT, I2S_SLOT_MODE_MONO), .gpio_cfg = { .mclk = I2S_GPIO_UNUSED, // INMP441 不需要 MCLK .bclk = GPIO_NUM_4, // 你实际连到麦克风 SCK 的 GPIO .ws = GPIO_NUM_5, // 你实际连到麦克风 WS 的 GPIO .dout = I2S_GPIO_UNUSED, // 不输出数据 .din = GPIO_NUM_19, // INMP441 的 SD 接到这里 .invert_flags = { .mclk_inv = false, .bclk_inv = false, .ws_inv = false, }, }, }; // 一并初始化 TX + RX ESP_ERROR_CHECK(i2s_channel_init_std_mode(rx_chan, &std_cfg)); } #else static void i2s_example_init_std_simplex(void) { /* Setp 1: Determine the I2S channel configuration and allocate two channels one by one * The default configuration can be generated by the helper macro, * it only requires the I2S controller id and I2S role * The tx and rx channels here are registered on different I2S controller, * only ESP32-C3, ESP32-S3 and ESP32-H2 allow to register two separate tx & rx channels on a same controller */ i2s_chan_config_t tx_chan_cfg = I2S_CHANNEL_DEFAULT_CONFIG(I2S_NUM_AUTO, I2S_ROLE_MASTER); ESP_ERROR_CHECK(i2s_new_channel(&tx_chan_cfg, &tx_chan, NULL)); i2s_chan_config_t rx_chan_cfg = I2S_CHANNEL_DEFAULT_CONFIG(I2S_NUM_AUTO, I2S_ROLE_MASTER); ESP_ERROR_CHECK(i2s_new_channel(&rx_chan_cfg, NULL, &rx_chan)); /* Step 2: Setting the configurations of standard mode and initialize each channels one by one * The slot configuration and clock configuration can be generated by the macros * These two helper macros is defined in 'i2s_std.h' which can only be used in STD mode. * They can help to specify the slot and clock configurations for initialization or re-configuring */ i2s_std_config_t tx_std_cfg = { .clk_cfg = I2S_STD_CLK_DEFAULT_CONFIG(16000), .slot_cfg = I2S_STD_MSB_SLOT_DEFAULT_CONFIG(I2S_DATA_BIT_WIDTH_32BIT, I2S_SLOT_MODE_STEREO), .gpio_cfg = { .mclk = I2S_GPIO_UNUSED, // some codecs may require mclk signal, this example doesn't need it .bclk = EXAMPLE_STD_BCLK_IO1, .ws = EXAMPLE_STD_WS_IO1, .dout = EXAMPLE_STD_DOUT_IO1, .din = EXAMPLE_STD_DIN_IO1, .invert_flags = { .mclk_inv = false, .bclk_inv = false, .ws_inv = false, }, }, }; ESP_ERROR_CHECK(i2s_channel_init_std_mode(tx_chan, &tx_std_cfg)); i2s_std_config_t rx_std_cfg = { .clk_cfg = I2S_STD_CLK_DEFAULT_CONFIG(44100), .slot_cfg = I2S_STD_MSB_SLOT_DEFAULT_CONFIG(I2S_DATA_BIT_WIDTH_16BIT, I2S_SLOT_MODE_MONO), .gpio_cfg = { .mclk = I2S_GPIO_UNUSED, // some codecs may require mclk signal, this example doesn't need it .bclk = EXAMPLE_STD_BCLK_IO2, .ws = EXAMPLE_STD_WS_IO2, .dout = EXAMPLE_STD_DOUT_IO2, .din = EXAMPLE_STD_DIN_IO2, .invert_flags = { .mclk_inv = false, .bclk_inv = false, .ws_inv = false, }, }, }; /* Default is only receiving left slot in mono mode, * update to right here to show how to change the default configuration */ rx_std_cfg.slot_cfg.slot_mask = I2S_STD_SLOT_RIGHT; ESP_ERROR_CHECK(i2s_channel_init_std_mode(rx_chan, &rx_std_cfg)); } #endif void app_main(void) { #if EXAMPLE_I2S_DUPLEX_MODE i2s_example_init_std_duplex(); #else i2s_example_init_std_simplex(); #endif vTaskDelay(pdMS_TO_TICKS(1000)); ESP_ERROR_CHECK(i2s_channel_enable(rx_chan)); vTaskDelay(pdMS_TO_TICKS(1000)); // 创建读数据的任务 xTaskCreate(i2s_example_read_task, "i2s_read_task", 8192, NULL, 5, NULL); } 这段代码中的有什么问题吗?分帧部分是对的吗?

def test_flip_mirror_impl(cam, props, fmt, chart, debug, log_path): 42 43 """Return if image is flipped or mirrored. 44 45 Args: 46 cam : An open its session. 47 props : Properties of cam. 48 fmt : dict,Capture format. 49 chart: Object with chart properties. 50 debug: boolean,whether to run test in debug mode or not. 51 log_path: log_path to save the captured image. 52 53 Returns: 54 boolean: True if flipped, False if not 55 """ 56 57 # determine if monochrome camera 58 mono_camera = camera_properties_utils.mono_camera(props) 59 60 # get a local copy of the chart template 61 template = cv2.imread(opencv_processing_utils.CHART_FILE, cv2.IMREAD_ANYDEPTH) 62 63 # take img, crop chart, scale and prep for cv2 template match 64 cam.do_3a() 65 req = capture_request_utils.auto_capture_request() 66 cap = cam.do_capture(req, fmt) 67 y, _, _ = image_processing_utils.convert_capture_to_planes(cap, props) 68 y = image_processing_utils.rotate_img_per_argv(y) 69 patch = image_processing_utils.get_image_patch(y, chart.xnorm, chart.ynorm, 70 chart.wnorm, chart.hnorm) 71 patch = 255 * opencv_processing_utils.gray_scale_img(patch) 72 patch = opencv_processing_utils.scale_img( 73 patch.astype(np.uint8), chart.scale) 74 75 # check image has content 76 if np.max(patch)-np.min(patch) < 255/8: 77 raise AssertionError('Image patch has no content! Check setup.') 78 79 # save full images if in debug 80 if debug: 81 image_processing_utils.write_image( 82 template[:, :, np.newaxis] / 255.0, 83 '%s_template.jpg' % os.path.join(log_path, NAME)) 84 85 # save patch 86 image_processing_utils.write_image( 87 patch[:, :, np.newaxis] / 255.0, 88 '%s_scene_patch.jpg' % os.path.join(log_path, NAME)) 89 90 # crop center areas and strip off any extra rows/columns 91 template = image_processing_utils.get_image_patch( 92 template, PATCH_X, PATCH_Y, PATCH_W, PATCH_H) 93 patch = image_processing_utils.get_image_patch( 94 patch, PATCH_X, PATCH_Y, PATCH_W, PATCH_H) 95 patch = patch[0:min(patch.shape[0], template.shape[0]), 96 0:min(patch.shape[1], template.shape[1])] 97 comp_chart = patch 98 99 # determine optimum orientation 100 opts = [] 101 for orientation in CHART_ORIENTATIONS: 102 if orientation == 'flip': 103 comp_chart = np.flipud(patch) 104 elif orientation == 'mirror': 105 comp_chart = np.fliplr(patch) 106 elif orientation == 'rotate': 107 comp_chart = np.flipud(np.fliplr(patch)) 108 correlation = cv2.matchTemplate(comp_chart, template, cv2.TM_CCOEFF) 109 _, opt_val, _, _ = cv2.minMaxLoc(correlation) 110 if debug: 111 cv2.imwrite('%s_%s.jpg' % (os.path.join(log_path, NAME), orientation), 112 comp_chart) 113 logging.debug('%s correlation value: %d', orientation, opt_val) 114 opts.append(opt_val) 115 116 # determine if 'nominal' or 'rotated' is best orientation 117 if not (opts[0] == max(opts) or opts[3] == max(opts)): 118 raise AssertionError( 119 f'Optimum orientation is {CHART_ORIENTATIONS[np.argmax(opts)]}') 120 # print warning if rotated 121 if opts[3] == max(opts): 122 logging.warning('Image is rotated 180 degrees. Tablet might be rotated.') 实际的函数是这样的,应该如何去修改

#include "INA219.h" #include "config.h" #include "STC32G_Timer.h" #include "STC32G_GPIO.h" #include "STC32G_NVIC.h" #include "STC32G_Exti.h" #include "STC32G_I2C.h" #include "STC32G_Delay.h" #include "STC32G_Switch.h" #if TCFG_DRV_INA219_SUPPORT struct ina219_value_t ina219_value; u16 ina219_calValue = 0; u8 ina219_busVolt_LSB_mV = 4; // Bus Voltage LSB value = 4mV u8 ina219_shuntVolt_LSB_uV = 10; // Shunt Voltage LSB value = 10uV u32 ina219_current_LSB_uA; u32 ina219_power_LSB_mW; void ina219_Write_Register(u8 reg, u16 dat) { u8 val[3]; // ????? + ??(2??) // ??????? val[0] = reg; // ????? val[1] = dat >> 8; // ????? val[2] = dat & 0xFF; // ????? // ??????(??????) I2C_WriteNbyte(INA219_I2C_ADDRESS, val, 3); } void ina219_Read_Register(u8 reg, u16 *dat) { u8 val[2]; // ???????? I2C_WriteNbyte(INA219_I2C_ADDRESS, ®, 1); // ?????? I2C_ReadNbyte(INA219_I2C_ADDRESS, val, 2); *dat = (val[0] << 8) | val[1]; } // INA219 Set Calibration 16V/16A(Max) 0.02|? void ina219_SetCalibration_16V_16A(void) { u16 configValue; // By default we use a pretty huge range for the input voltage, // which probably isn't the most appropriate choice for system // that don't use a lot of power. But all of the calculations // are shown below if you want to change the settings. You will // also need to change any relevant register settings, such as // setting the VBUS_MAX to 16V instead of 32V, etc. // VBUS_MAX = 16V (Assumes 16V, can also be set to 32V) // VSHUNT_MAX = 0.32 (Assumes Gain 8, 320mV, can also be 0.16, 0.08, 0.04) // RSHUNT = 0.02 (Resistor value in ohms) // 1. Determine max possible current // MaxPossible_I = VSHUNT_MAX / RSHUNT // MaxPossible_I = 16A // 2. Determine max expected current // MaxExpected_I = 16A // 3. Calculate possible range of LSBs (Min = 15-bit, Max = 12-bit) // MinimumLSB = MaxExpected_I/32767 // MinimumLSB = 0.00048 (0.48mA per bit) // MaximumLSB = MaxExpected_I/4096 // MaximumLSB = 0,00390 (3.9mA per bit) // 4. Choose an LSB between the min and max values // (Preferrably a roundish number close to MinLSB) // CurrentLSB = 0.00050 (500uA per bit) // 5. Compute the calibration register // Cal = trunc (0.04096 / (Current_LSB * RSHUNT)) // Cal = 4096 (0x1000) // ina219_calValue = 0x1000; ina219_calValue = 0x0D90; //0x1000; // 6. Calculate the power LSB // PowerLSB = 20 * CurrentLSB // PowerLSB = 0.01 (10mW per bit) // 7. Compute the maximum current and shunt voltage values before overflow // // Max_Current = Current_LSB * 32767 // Max_Current = 16.3835A before overflow // // If Max_Current > Max_Possible_I then // Max_Current_Before_Overflow = MaxPossible_I // Else // Max_Current_Before_Overflow = Max_Current // End If // // Max_ShuntVoltage = Max_Current_Before_Overflow * RSHUNT // Max_ShuntVoltage = 0.32V // // If Max_ShuntVoltage >= VSHUNT_MAX // Max_ShuntVoltage_Before_Overflow = VSHUNT_MAX // Else // Max_ShuntVoltage_Before_Overflow = Max_ShuntVoltage // End If // 8. Compute the Maximum Power // MaximumPower = Max_Current_Before_Overflow * VBUS_MAX // MaximumPower = 1.6 * 16V // MaximumPower = 256W // Set multipliers to convert raw current/power values ina219_current_LSB_uA = 100; // Current LSB = 500uA per bit ina219_power_LSB_mW = 2; // Power LSB = 10mW per bit = 20 * Current LSB // Set Calibration register to 'Cal' calculated above ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Set Config register to take into account the settings above configValue = ( INA219_CFG_BVOLT_RANGE_16V | INA219_CFG_SVOLT_RANGE_320MV | INA219_CFG_BADCRES_12BIT_16S_8MS | INA219_CFG_SADCRES_12BIT_16S_8MS | INA219_CFG_MODE_SANDBVOLT_CONTINUOUS ); // configValue = ( INA219_CFG_BVOLT_RANGE_16V | INA219_CFG_SVOLT_RANGE_320MV | INA219_CFG_BADCRES_12BIT_32S_17MS | INA219_CFG_SADCRES_12BIT_32S_17MS | INA219_CFG_MODE_SANDBVOLT_CONTINUOUS ); ina219_Write_Register(INA219_REG_CONFIG, configValue); } void ina219_configureRegisters(void) { delay_ms(15); ina219_SetCalibration_16V_16A(); } int16 ina219_GetBusVoltage_raw(void) { int16 val; ina219_Read_Register(INA219_REG_BUSVOLTAGE, (u16*)&val); val >>= 3; // Shift to the right 3 to drop CNVR and OVF return (val); } int16 ina219_GetCurrent_raw(void) { int16 val; // Sometimes a sharp load will reset the INA219, which will // reset the cal register, meaning CURRENT and POWER will // not be available ... avoid this by always setting a cal // value even if it's an unfortunate extra step ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Now we can safely read the CURRENT register! ina219_Read_Register(INA219_REG_CURRENT, (u16*)&val); return (val); } int16 ina219_GetBusVoltage_mV(void) { int16 val; ina219_Read_Register(INA219_REG_BUSVOLTAGE, (u16*)&val); val >>= 3; // Shift to the right 3 to drop CNVR and OVF val *= ina219_busVolt_LSB_mV; // multiply by LSB(4mV) return (int16)(val); } int32 ina219_GetShuntVoltage_uV(void) { int32 val; int16 reg; ina219_Read_Register(INA219_REG_SHUNTVOLTAGE, (u16*)®); val = (int32)reg * ina219_shuntVolt_LSB_uV; // multiply by LSB(10uV) return (int32)val; } int32 ina219_GetCurrent_uA(void) { int32 val; int16 reg; // Sometimes a sharp load will reset the INA219, which will // reset the cal register, meaning CURRENT and POWER will // not be available ... avoid this by always setting a cal // value even if it's an unfortunate extra step ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Now we can safely read the CURRENT register! ina219_Read_Register(INA219_REG_CURRENT, (u16*)®); val = (int32)reg * ina219_current_LSB_uA; return (int32)(val); } int32 ina219_GetPower_mW(void) { int32 val; int16 reg; // Sometimes a sharp load will reset the INA219, which will // reset the cal register, meaning CURRENT and POWER will // not be available ... avoid this by always setting a cal // value even if it's an unfortunate extra step ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Now we can safely read the POWER register! ina219_Read_Register(INA219_REG_POWER, (u16*)®); val = (int32)reg * ina219_power_LSB_mW; return (int32)(val); } void ina219_process(void) { // TODO: ???? Vin-?GND????? ina219_value.voltage = ina219_GetBusVoltage_mV(); // TODO: ???????? ina219_value.shunt = ina219_GetShuntVoltage_uV(); // TODO: ?? ina219_value.current = ina219_GetCurrent_uA(); ina219_value.power = ina219_GetPower_mW(); } void drv_ina219_init(void) { I2C_InitTypeDef i2c; i2c.I2C_Enable = ENABLE; i2c.I2C_Mode = I2C_Mode_Master; i2c.I2C_Speed = MAIN_Fosc/2/(100000*2+4); i2c.I2C_MS_WDTA = DISABLE; i2c.I2C_SL_MA = ENABLE; I2C_Init(&i2c); // NVIC_I2C_Init(I2C_Mode_Master, ENABLE, Priority_1); // I2C Master???????? P2_MODE_IO_PU(GPIO_Pin_4); P2_MODE_IO_PU(GPIO_Pin_5); I2C_SW(I2C_P24_P25); ina219_configureRegisters(); } #endif 引脚怎么接

#include "INA219.h" #include "config.h" #include "STC32G_Timer.h" #include "STC32G_GPIO.h" #include "STC32G_NVIC.h" #include "STC32G_Exti.h" #include "STC32G_I2C.h" #include "STC32G_Delay.h" #include "STC32G_Switch.h" #if TCFG_DRV_INA219_SUPPORT struct ina219_value_t ina219_value; u16 ina219_calValue = 0; u8 ina219_busVolt_LSB_mV = 4; // Bus Voltage LSB value = 4mV u8 ina219_shuntVolt_LSB_uV = 10; // Shunt Voltage LSB value = 10uV u32 ina219_current_LSB_uA; u32 ina219_power_LSB_mW; /** * @brief INA219???? */ void ina219_Write_Register(u8 reg, u16 dat) { u8 val[2]; val[0] = (u8)(dat >> 8); val[1] = (u8)(dat & 0xFF); I2C_WriteNbyte(INA219_I2C_ADDRESS, reg, val, 2); } /** * @brief INA219???? */ void ina219_Read_Register(u8 reg, u16 *dat) { u8 val[2]; I2C_ReadNbyte(INA219_I2C_ADDRESS, reg, val, 2); *dat = ((u16)(val[0]) << 8) + val[1]; } // INA219 Set Calibration 16V/16A(Max) 0.02|? void ina219_SetCalibration_16V_16A(void) { u16 configValue; // By default we use a pretty huge range for the input voltage, // which probably isn't the most appropriate choice for system // that don't use a lot of power. But all of the calculations // are shown below if you want to change the settings. You will // also need to change any relevant register settings, such as // setting the VBUS_MAX to 16V instead of 32V, etc. // VBUS_MAX = 16V (Assumes 16V, can also be set to 32V) // VSHUNT_MAX = 0.32 (Assumes Gain 8, 320mV, can also be 0.16, 0.08, 0.04) // RSHUNT = 0.02 (Resistor value in ohms) // 1. Determine max possible current // MaxPossible_I = VSHUNT_MAX / RSHUNT // MaxPossible_I = 16A // 2. Determine max expected current // MaxExpected_I = 16A // 3. Calculate possible range of LSBs (Min = 15-bit, Max = 12-bit) // MinimumLSB = MaxExpected_I/32767 // MinimumLSB = 0.00048 (0.48mA per bit) // MaximumLSB = MaxExpected_I/4096 // MaximumLSB = 0,00390 (3.9mA per bit) // 4. Choose an LSB between the min and max values // (Preferrably a roundish number close to MinLSB) // CurrentLSB = 0.00050 (500uA per bit) // 5. Compute the calibration register // Cal = trunc (0.04096 / (Current_LSB * RSHUNT)) // Cal = 4096 (0x1000) // ina219_calValue = 0x1000; ina219_calValue = 0x0D90; //0x1000; // 6. Calculate the power LSB // PowerLSB = 20 * CurrentLSB // PowerLSB = 0.01 (10mW per bit) // 7. Compute the maximum current and shunt voltage values before overflow // // Max_Current = Current_LSB * 32767 // Max_Current = 16.3835A before overflow // // If Max_Current > Max_Possible_I then // Max_Current_Before_Overflow = MaxPossible_I // Else // Max_Current_Before_Overflow = Max_Current // End If // // Max_ShuntVoltage = Max_Current_Before_Overflow * RSHUNT // Max_ShuntVoltage = 0.32V // // If Max_ShuntVoltage >= VSHUNT_MAX // Max_ShuntVoltage_Before_Overflow = VSHUNT_MAX // Else // Max_ShuntVoltage_Before_Overflow = Max_ShuntVoltage // End If // 8. Compute the Maximum Power // MaximumPower = Max_Current_Before_Overflow * VBUS_MAX // MaximumPower = 1.6 * 16V // MaximumPower = 256W // Set multipliers to convert raw current/power values ina219_current_LSB_uA = 100; // Current LSB = 500uA per bit ina219_power_LSB_mW = 2; // Power LSB = 10mW per bit = 20 * Current LSB // Set Calibration register to 'Cal' calculated above ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Set Config register to take into account the settings above configValue = ( INA219_CFG_BVOLT_RANGE_16V | INA219_CFG_SVOLT_RANGE_320MV | INA219_CFG_BADCRES_12BIT_16S_8MS | INA219_CFG_SADCRES_12BIT_16S_8MS | INA219_CFG_MODE_SANDBVOLT_CONTINUOUS ); // configValue = ( INA219_CFG_BVOLT_RANGE_16V | INA219_CFG_SVOLT_RANGE_320MV | INA219_CFG_BADCRES_12BIT_32S_17MS | INA219_CFG_SADCRES_12BIT_32S_17MS | INA219_CFG_MODE_SANDBVOLT_CONTINUOUS ); ina219_Write_Register(INA219_REG_CONFIG, configValue); } void ina219_configureRegisters(void) { delay_ms(15); ina219_SetCalibration_16V_16A(); } int16 ina219_GetBusVoltage_raw(void) { int16 val; ina219_Read_Register(INA219_REG_BUSVOLTAGE, (u16*)&val); val >>= 3; // Shift to the right 3 to drop CNVR and OVF return (val); } int16 ina219_GetCurrent_raw(void) { int16 val; // Sometimes a sharp load will reset the INA219, which will // reset the cal register, meaning CURRENT and POWER will // not be available ... avoid this by always setting a cal // value even if it's an unfortunate extra step ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Now we can safely read the CURRENT register! ina219_Read_Register(INA219_REG_CURRENT, (u16*)&val); return (val); } int16 ina219_GetBusVoltage_mV(void) { int16 val; ina219_Read_Register(INA219_REG_BUSVOLTAGE, (u16*)&val); val >>= 3; // Shift to the right 3 to drop CNVR and OVF val *= ina219_busVolt_LSB_mV; // multiply by LSB(4mV) return (int16)(val); } int32 ina219_GetShuntVoltage_uV(void) { int32 val; int16 reg; ina219_Read_Register(INA219_REG_SHUNTVOLTAGE, (u16*)®); val = (int32)reg * ina219_shuntVolt_LSB_uV; // multiply by LSB(10uV) return (int32)val; } int32 ina219_GetCurrent_uA(void) { int32 val; int16 reg; // Sometimes a sharp load will reset the INA219, which will // reset the cal register, meaning CURRENT and POWER will // not be available ... avoid this by always setting a cal // value even if it's an unfortunate extra step ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Now we can safely read the CURRENT register! ina219_Read_Register(INA219_REG_CURRENT, (u16*)®); val = (int32)reg * ina219_current_LSB_uA; return (int32)(val); } int32 ina219_GetPower_mW(void) { int32 val; int16 reg; // Sometimes a sharp load will reset the INA219, which will // reset the cal register, meaning CURRENT and POWER will // not be available ... avoid this by always setting a cal // value even if it's an unfortunate extra step ina219_Write_Register(INA219_REG_CALIBRATION, ina219_calValue); // Now we can safely read the POWER register! ina219_Read_Register(INA219_REG_POWER, (u16*)®); val = (int32)reg * ina219_power_LSB_mW; return (int32)(val); } void ina219_process(void) { // TODO: ???? Vin-?GND????? ina219_value.voltage = ina219_GetBusVoltage_mV(); log_d("ina219 voltage is:%d(mV)\r\n", ina219_value.voltage); // TODO: ???????? ina219_value.shunt = ina219_GetShuntVoltage_uV(); log_d("ina219 shunt is:%ld(uV)\r\n",ina219_value.shunt); // TODO: ?? ina219_value.current = ina219_GetCurrent_uA(); log_d("ina219 current is:%ld(uA)\r\n",ina219_value.current); ina219_value.power = ina219_GetPower_mW(); log_d("ina219 power is:%ld(mW)\r\n",ina219_value.power); } void drv_ina219_init(void) { I2C_InitTypeDef i2c; i2c.I2C_Enable = ENABLE; i2c.I2C_Mode = I2C_Mode_Master; i2c.I2C_Speed = MAIN_Fosc/2/(100000*2+4); i2c.I2C_MS_WDTA = DISABLE; i2c.I2C_SL_MA = ENABLE; I2C_Init(&i2c); // NVIC_I2C_Init(I2C_Mode_Master, ENABLE, Priority_1); // I2C Master???????? P2_MODE_IO_PU(GPIO_Pin_4); P2_MODE_IO_PU(GPIO_Pin_5); I2C_SW(I2C_P24_P25); ina219_configureRegisters(); log_d("INA219 Driver Init\n"); } #endif 注释解析一下

void USART_Init(USART_TypeDef* USARTx, USART_InitTypeDef* USART_InitStruct) { uint32_t tmpreg = 0x00, apbclock = 0x00; uint32_t integerdivider = 0x00; uint32_t fractionaldivider = 0x00; uint32_t usartxbase = 0; RCC_ClocksTypeDef RCC_ClocksStatus; /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_USART_BAUDRATE(USART_InitStruct->USART_BaudRate)); assert_param(IS_USART_WORD_LENGTH(USART_InitStruct->USART_WordLength)); assert_param(IS_USART_STOPBITS(USART_InitStruct->USART_StopBits)); assert_param(IS_USART_PARITY(USART_InitStruct->USART_Parity)); assert_param(IS_USART_MODE(USART_InitStruct->USART_Mode)); assert_param(IS_USART_HARDWARE_FLOW_CONTROL(USART_InitStruct->USART_HardwareFlowControl)); /* The hardware flow control is available only for USART1, USART2 and USART3 */ if (USART_InitStruct->USART_HardwareFlowControl != USART_HardwareFlowControl_None) { assert_param(IS_USART_123_PERIPH(USARTx)); } usartxbase = (uint32_t)USARTx; /*---------------------------- USART CR2 Configuration -----------------------*/ tmpreg = USARTx->CR2; /* Clear STOP[13:12] bits */ tmpreg &= CR2_STOP_CLEAR_Mask; /* Configure the USART Stop Bits, Clock, CPOL, CPHA and LastBit ------------*/ /* Set STOP[13:12] bits according to USART_StopBits value */ tmpreg |= (uint32_t)USART_InitStruct->USART_StopBits; /* Write to USART CR2 */ USARTx->CR2 = (uint16_t)tmpreg; /*---------------------------- USART CR1 Configuration -----------------------*/ tmpreg = USARTx->CR1; /* Clear M, PCE, PS, TE and RE bits */ tmpreg &= CR1_CLEAR_Mask; /* Configure the USART Word Length, Parity and mode ----------------------- */ /* Set the M bits according to USART_WordLength value */ /* Set PCE and PS bits according to USART_Parity value */ /* Set TE and RE bits according to USART_Mode value */ tmpreg |= (uint32_t)USART_InitStruct->USART_WordLength | USART_InitStruct->USART_Parity | USART_InitStruct->USART_Mode; /* Write to USART CR1 */ USARTx->CR1 = (uint16_t)tmpreg; /*---------------------------- USART CR3 Configuration -----------------------*/ tmpreg = USARTx->CR3; /* Clear CTSE and RTSE bits */ tmpreg &= CR3_CLEAR_Mask; /* Configure the USART HFC -------------------------------------------------*/ /* Set CTSE and RTSE bits according to USART_HardwareFlowControl value */ tmpreg |= USART_InitStruct->USART_HardwareFlowControl; /* Write to USART CR3 */ USARTx->CR3 = (uint16_t)tmpreg; /*---------------------------- USART BRR Configuration -----------------------*/ /* Configure the USART Baud Rate -------------------------------------------*/ RCC_GetClocksFreq(&RCC_ClocksStatus); if (usartxbase == USART1_BASE) { apbclock = RCC_ClocksStatus.PCLK2_Frequency; } else { apbclock = RCC_ClocksStatus.PCLK1_Frequency; } /* Determine the integer part */ if ((USARTx->CR1 & CR1_OVER8_Set) != 0) { /* Integer part computing in case Oversampling mode is 8 Samples */ integerdivider = ((25 * apbclock) / (2 * (USART_InitStruct->USART_BaudRate))); } else /* if ((USARTx->CR1 & CR1_OVER8_Set) == 0) */ { /* Integer part computing in case Oversampling mode is 16 Samples */ integerdivider = ((25 * apbclock) / (4 * (USART_InitStruct->USART_BaudRate))); } tmpreg = (integerdivider / 100) << 4; /* Determine the fractional part */ fractionaldivider = integerdivider - (100 * (tmpreg >> 4)); /* Implement the fractional part in the register */ if ((USARTx->CR1 & CR1_OVER8_Set) != 0) { tmpreg |= ((((fractionaldivider * 8) + 50) / 100)) & ((uint8_t)0x07); } else /* if ((USARTx->CR1 & CR1_OVER8_Set) == 0) */ { tmpreg |= ((((fractionaldivider * 16) + 50) / 100)) & ((uint8_t)0x0F); } /* Write to USART BRR */ USARTx->BRR = (uint16_t)tmpreg; }

大家在看

recommend-type

SAP实施顾问宝典中文版PDF

SAP实施顾问宝典中文版,PDF,适合SAP初级顾问,初学者,刚工作的同学们。
recommend-type

Frequency-comb-DPLL:数字锁相环软件,用于使用Red Pitaya锁定频率梳

数字锁相环,用于使用红色火龙果锁定频率梳 固件/软件允许使用此硬件来锁相频率梳。 更一般而言,它与硬件一起提供了一个数字控制盒,该数字控制盒可以支持双通道锁相环,包括输入rf信号的前端IQ检测。 因此,虽然此数字控制盒可用于锁相其他系统,但下面的讨论假定用户正在操作频率梳。 入门 从“发布部分”( )下载所需的文件: 可以访问Python GUI的完整源代码存储库; b。 红火龙果的SD卡映像(red_pitaya_dpll_2017-05-31.zip) 阅读并遵循“ RedPitaya DPLL.pdf的说明和操作手册”文件。 软件版本 所需的Python发行版是WinPython-64bit-3.7.2( )。 FPGA Vivado项目在Vivado 2015.4中进行了编译,但是仅使用该软件就不需要安装Vivado。 附加信息 可以从NIST数字控制箱的说明手册中获得更多信
recommend-type

MT2D 正演程序完整版

基于MATLAB编写的大地电磁二维有限单元法正演程序,矩形单元剖分,线性插值, 使用说明: 1. 运行MT2DMODEL.m构建正演模型 2. 运行TMmodel.m和TEmodel.m正演计算,计算结果自动保存 3. 程序进行了优化,并将BICGSTAB(稳定双共轭梯度法)用于求解线性方程组,求解效率提高,一般情况下正演计算仅需1~2秒
recommend-type

华为OLT MA5680T工具.zip

华为OLT管理器 MA5680T MA5608T全自动注册光猫,其他我的也不知道,我自己不用这玩意; 某宝上卖500大洋的货。需要的下载。 附后某宝链接: https://item.taobao.com/item.htm?spm=a230r.1.14.149.2d8548e4oynrAP&id=592880631233&ns=1&abbucket=12#detail 证明寡人没有吹牛B
recommend-type

组装全局刚度矩阵:在 FEM 中组装是一项乏味的任务,这个 matlab 程序可以完成这项任务。-matlab开发

使用局部刚度矩阵和连接矩阵组装全局刚度矩阵。

最新推荐

recommend-type

基于西门子S7-300 PLC的全自动生产线包装机设计与实现

基于西门子S7-300 PLC的全自动生产线包装机的设计与实现。主要内容涵盖硬件配置、IO表设计、源程序编写、单机组态以及一些实用技巧。文中特别强调了心跳检测机制、机械手定位精度控制、硬件连接质量对系统稳定性的影响,以及IO信号滤波参数设置的重要性。通过具体的代码实例展示了如何确保系统的可靠性和稳定性。 适合人群:从事工业自动化领域的工程师和技术人员,特别是那些需要深入了解PLC控制系统设计的人群。 使用场景及目标:适用于希望提升PLC编程技能、优化自动化生产线性能的专业人士。目标是帮助读者掌握从硬件选型到软件编程的全流程设计方法,提高生产效率和产品质量。 其他说明:本文不仅提供了详细的理论解释,还分享了许多实践经验,如心跳检测代码、机械手定位控制、信号滤波等,有助于解决实际项目中遇到的问题。
recommend-type

Visual C++.NET编程技术实战指南

根据提供的文件信息,可以生成以下知识点: ### Visual C++.NET编程技术体验 #### 第2章 定制窗口 - **设置窗口风格**:介绍了如何通过编程自定义窗口的外观和行为。包括改变窗口的标题栏、边框样式、大小和位置等。这通常涉及到Windows API中的`SetWindowLong`和`SetClassLong`函数。 - **创建六边形窗口**:展示了如何创建一个具有特殊形状边界的窗口,这类窗口不遵循标准的矩形形状。它需要使用`SetWindowRgn`函数设置窗口的区域。 - **创建异形窗口**:扩展了定制窗口的内容,提供了创建非标准形状窗口的方法。这可能需要创建一个不规则的窗口区域,并将其应用到窗口上。 #### 第3章 菜单和控制条高级应用 - **菜单编程**:讲解了如何创建和修改菜单项,处理用户与菜单的交互事件,以及动态地添加或删除菜单项。 - **工具栏编程**:阐述了如何使用工具栏,包括如何创建工具栏按钮、分配事件处理函数,并实现工具栏按钮的响应逻辑。 - **状态栏编程**:介绍了状态栏的创建、添加不同类型的指示器(如文本、进度条等)以及状态信息的显示更新。 - **为工具栏添加皮肤**:展示了如何为工具栏提供更加丰富的视觉效果,通常涉及到第三方的控件库或是自定义的绘图代码。 #### 第5章 系统编程 - **操作注册表**:解释了Windows注册表的结构和如何通过程序对其进行读写操作,这对于配置软件和管理软件设置非常关键。 - **系统托盘编程**:讲解了如何在系统托盘区域创建图标,并实现最小化到托盘、从托盘恢复窗口的功能。 - **鼠标钩子程序**:介绍了钩子(Hook)技术,特别是鼠标钩子,如何拦截和处理系统中的鼠标事件。 - **文件分割器**:提供了如何将文件分割成多个部分,并且能够重新组合文件的技术示例。 #### 第6章 多文档/多视图编程 - **单文档多视**:展示了如何在同一个文档中创建多个视图,这在文档编辑软件中非常常见。 #### 第7章 对话框高级应用 - **实现无模式对话框**:介绍了无模式对话框的概念及其应用场景,以及如何实现和管理无模式对话框。 - **使用模式属性表及向导属性表**:讲解了属性表的创建和使用方法,以及如何通过向导性质的对话框引导用户完成多步骤的任务。 - **鼠标敏感文字**:提供了如何实现点击文字触发特定事件的功能,这在阅读器和编辑器应用中很有用。 #### 第8章 GDI+图形编程 - **图像浏览器**:通过图像浏览器示例,展示了GDI+在图像处理和展示中的应用,包括图像的加载、显示以及基本的图像操作。 #### 第9章 多线程编程 - **使用全局变量通信**:介绍了在多线程环境下使用全局变量进行线程间通信的方法和注意事项。 - **使用Windows消息通信**:讲解了通过消息队列在不同线程间传递信息的技术,包括发送消息和处理消息。 - **使用CriticalSection对象**:阐述了如何使用临界区(CriticalSection)对象防止多个线程同时访问同一资源。 - **使用Mutex对象**:介绍了互斥锁(Mutex)的使用,用以同步线程对共享资源的访问,保证资源的安全。 - **使用Semaphore对象**:解释了信号量(Semaphore)对象的使用,它允许一个资源由指定数量的线程同时访问。 #### 第10章 DLL编程 - **创建和使用Win32 DLL**:介绍了如何创建和链接Win32动态链接库(DLL),以及如何在其他程序中使用这些DLL。 - **创建和使用MFC DLL**:详细说明了如何创建和使用基于MFC的动态链接库,适用于需要使用MFC类库的场景。 #### 第11章 ATL编程 - **简单的非属性化ATL项目**:讲解了ATL(Active Template Library)的基础使用方法,创建一个不使用属性化组件的简单项目。 - **使用ATL开发COM组件**:详细阐述了使用ATL开发COM组件的步骤,包括创建接口、实现类以及注册组件。 #### 第12章 STL编程 - **list编程**:介绍了STL(标准模板库)中的list容器的使用,讲解了如何使用list实现复杂数据结构的管理。 #### 第13章 网络编程 - **网上聊天应用程序**:提供了实现基本聊天功能的示例代码,包括客户端和服务器的通信逻辑。 - **简单的网页浏览器**:演示了如何创建一个简单的Web浏览器程序,涉及到网络通信和HTML解析。 - **ISAPI服务器扩展编程**:介绍了如何开发ISAPI(Internet Server API)服务器扩展来扩展IIS(Internet Information Services)的功能。 #### 第14章 数据库编程 - **ODBC数据库编程**:解释了ODBC(开放数据库互联)的概念,并提供了使用ODBC API进行数据库访问的示例。 - **ADO编程**:介绍了ADO(ActiveX Data Objects)技术,讲解了如何使用ADO进行数据库的增删改查等操作。 #### 第15章 HTML帮助系统编程 - **创建HTML帮助文件**:讲解了如何创建HTML帮助文件(.chm),这是微软帮助系统的一种形式。 - **区分上下文帮助**:提供了在应用程序中实现上下文敏感帮助的技术示例。 #### 第16章 安装和部署项目 - **用安装程序向导创建安装项目**:介绍了如何使用Visual Studio中的安装和部署项目向导,快速创建安装程序。 - **部署应用程序**:阐述了部署应用程序到目标系统的过程,以及如何确保应用程序的正确安装和运行。 以上内容涵盖了Visual C++.NET编程技术体验一书中涉及的各个技术点,并对每个章节中的示例做了详细的说明。这些知识点对于理解和掌握Visual C++.NET编程非常重要,并能够帮助读者在实际项目开发中应用这些技术。
recommend-type

HarmonyOS内核深度探秘:优化自由行旅游系统的策略

# 1. HarmonyOS内核概述与旅游系统需求分析 ## 1.1 HarmonyOS内核概述 HarmonyOS(鸿蒙操作系统)是由华为开发的一个分布式操作系统,旨在提供跨多种设备的无缝体验。其内核设计理念强调高效、安全和模块化,以微内核架构和分布式能力
recommend-type

tkinter模块所有控件

<think>好的,我现在需要回答用户关于Tkinter模块中所有控件列表的问题。首先,我需要回忆Tkinter的基础知识,确保自己了解各个控件的名称和用途。用户希望得到所有支持的控件列表,所以必须全面覆盖,不能遗漏。 首先,我应该从Tkinter的标准控件开始。常见的控件包括Label、Button、Entry这些基础部件。然后是Frame,用于布局,还有Canvas用于绘图。接下来是Checkbutton、Radiobutton,这些属于选择类控件。Listbox和Scrollbar通常一起使用,处理滚动内容。还有Scale(滑块)、Spinbox、Menu、Menubutton这些可能
recommend-type

局域网五子棋游戏:娱乐与聊天的完美结合

标题“网络五子棋”和描述“适合于局域网之间娱乐和聊天!”以及标签“五子棋 网络”所涉及的知识点主要围绕着五子棋游戏的网络版本及其在局域网中的应用。以下是详细的知识点: 1. 五子棋游戏概述: 五子棋是一种两人对弈的纯策略型棋类游戏,又称为连珠、五子连线等。游戏的目标是在一个15x15的棋盘上,通过先后放置黑白棋子,使得任意一方先形成连续五个同色棋子的一方获胜。五子棋的规则简单,但策略丰富,适合各年龄段的玩家。 2. 网络五子棋的意义: 网络五子棋是指可以在互联网或局域网中连接进行对弈的五子棋游戏版本。通过网络版本,玩家不必在同一地点即可进行游戏,突破了空间限制,满足了现代人们快节奏生活的需求,同时也为玩家们提供了与不同对手切磋交流的机会。 3. 局域网通信原理: 局域网(Local Area Network,LAN)是一种覆盖较小范围如家庭、学校、实验室或单一建筑内的计算机网络。它通过有线或无线的方式连接网络内的设备,允许用户共享资源如打印机和文件,以及进行游戏和通信。局域网内的计算机之间可以通过网络协议进行通信。 4. 网络五子棋的工作方式: 在局域网中玩五子棋,通常需要一个客户端程序(如五子棋.exe)和一个服务器程序。客户端负责显示游戏界面、接受用户输入、发送落子请求给服务器,而服务器负责维护游戏状态、处理玩家的游戏逻辑和落子请求。当一方玩家落子时,客户端将该信息发送到服务器,服务器确认无误后将更新后的棋盘状态传回给所有客户端,更新显示。 5. 五子棋.exe程序: 五子棋.exe是一个可执行程序,它使得用户可以在个人计算机上安装并运行五子棋游戏。该程序可能包含了游戏的图形界面、人工智能算法(如果支持单机对战AI的话)、网络通信模块以及游戏规则的实现。 6. put.wav文件: put.wav是一个声音文件,很可能用于在游戏进行时提供声音反馈,比如落子声。在网络环境中,声音文件可能被用于提升玩家的游戏体验,尤其是在局域网多人游戏场景中。当玩家落子时,系统会播放.wav文件中的声音,为游戏增添互动性和趣味性。 7. 网络五子棋的技术要求: 为了确保多人在线游戏的顺利进行,网络五子棋需要具备一些基本的技术要求,包括但不限于稳定的网络连接、高效的数据传输协议(如TCP/IP)、以及安全的数据加密措施(如果需要的话)。此外,还需要有一个良好的用户界面设计来提供直观和舒适的用户体验。 8. 社交与娱乐: 网络五子棋除了是一个娱乐游戏外,它还具有社交功能。玩家可以通过游戏内的聊天系统进行交流,分享经验和策略,甚至通过网络寻找新的朋友。这使得网络五子棋不仅是一个个人娱乐工具,同时也是一种社交活动。 总结来说,网络五子棋结合了五子棋游戏的传统魅力和现代网络技术,使得不同地区的玩家能够在局域网内进行娱乐和聊天,既丰富了人们的娱乐生活,又加强了人际交流。而实现这一切的基础在于客户端程序的设计、服务器端的稳定运行、局域网的高效通信,以及音效文件增强的游戏体验。
recommend-type

自由行旅游新篇章:HarmonyOS技术融合与系统架构深度解析

# 1. HarmonyOS技术概述 ## 1.1 HarmonyOS的起源与发展 HarmonyOS(鸿蒙操作系统)由华为公司开发,旨在构建全场景分布式OS,以应对不同设备间的互联问题。自从2019年首次发布以来,HarmonyOS迅速成长,并迅速应用于智能手机、平板、智能穿戴、车载设备等多种平台。该系
recommend-type

足底支撑相到达73%是什么问题

<think>好的,我现在要处理用户的问题:“足底支撑相达到73%可能的原因及影响”。首先,需要理解用户提到的“足底支撑相73%”具体指什么。足底支撑相通常指步态周期中脚与地面接触的时间占比,正常范围大约在60%-62%左右。如果达到73%,明显超出正常范围,可能意味着步态异常。 接下来,需要确定可能的原因。可能的原因包括生物力学异常,比如足弓异常(扁平足或高弓足)、踝关节活动度受限,或者肌肉力量不足,特别是小腿和足部肌肉。另外,神经系统疾病如脑卒中或帕金森病可能影响步态控制。骨骼关节问题如关节炎、髋膝关节病变也可能导致支撑时间延长。还有代偿性步态,比如因疼痛或受伤而改变步态模式。 然后是
recommend-type

宾馆预约系统开发与优化建议

宾馆预约系统是一个典型的在线服务应用,它允许用户通过互联网平台预定宾馆房间。这种系统通常包含多个模块,比如用户界面、房态管理、预订处理、支付处理和客户评价等。从技术层面来看,构建一个宾馆预约系统涉及到众多的IT知识和技术细节,下面将详细说明。 ### 标题知识点 - 宾馆预约系统 #### 1. 系统架构设计 宾馆预约系统作为一个完整的应用,首先需要进行系统架构设计,决定其采用的软件架构模式,如B/S架构或C/S架构。此外,系统设计还需要考虑扩展性、可用性、安全性和维护性。一般会采用三层架构,包括表示层、业务逻辑层和数据访问层。 #### 2. 前端开发 前端开发主要负责用户界面的设计与实现,包括用户注册、登录、房间搜索、预订流程、支付确认、用户反馈等功能的页面展示和交互设计。常用的前端技术栈有HTML, CSS, JavaScript, 以及各种前端框架如React, Vue.js或Angular。 #### 3. 后端开发 后端开发主要负责处理业务逻辑,包括用户管理、房间状态管理、订单处理等。后端技术包括但不限于Java (使用Spring Boot框架), Python (使用Django或Flask框架), PHP (使用Laravel框架)等。 #### 4. 数据库设计 数据库设计对系统的性能和可扩展性至关重要。宾馆预约系统可能需要设计的数据库表包括用户信息表、房间信息表、预订记录表、支付信息表等。常用的数据库系统有MySQL, PostgreSQL, MongoDB等。 #### 5. 网络安全 网络安全是宾馆预约系统的重要考虑因素,包括数据加密、用户认证授权、防止SQL注入、XSS攻击、CSRF攻击等。系统需要实现安全的认证机制,比如OAuth或JWT。 #### 6. 云服务和服务器部署 现代的宾馆预约系统可能部署在云平台上,如AWS, Azure, 腾讯云或阿里云。在云平台上,系统可以按需分配资源,提高系统的稳定性和弹性。 #### 7. 付款接口集成 支付模块需要集成第三方支付接口,如支付宝、微信支付、PayPal等,需要处理支付请求、支付状态确认、退款等业务。 #### 8. 接口设计与微服务 系统可能采用RESTful API或GraphQL等接口设计方式,提供服务的微服务化,以支持不同设备和服务的接入。 ### 描述知识点 - 这是我个人自己做的 请大家帮忙修改哦 #### 个人项目经验与团队合作 描述中的这句话暗示了该宾馆预约系统可能是由一个个人开发者创建的。个人开发和团队合作在软件开发流程中有着显著的不同。个人开发者需要关注的方面包括项目管理、需求分析、代码质量保证、测试和部署等。而在团队合作中,每个成员会承担不同的职责,需要有效的沟通和协作。 #### 用户反馈与迭代 描述还暗示了该系统目前处于需要外部反馈和修改的阶段。这表明系统可能还处于开发或测试阶段,需要通过用户的实际使用反馈来不断迭代改进。 ### 标签知识点 - 200 #### 未提供信息 “200”这个标签可能指的是HTTP状态码中表示请求成功(OK)的200状态码。但是,由于没有提供更多的上下文信息,无法进一步分析其在本例中的具体含义。 ### 压缩包子文件的文件名称列表知识点 - 1111 #### 文件命名与管理 “1111”这个文件名称可能是一个版本号、日期标记或者是一个简单的标识符。文件命名应当遵循一定的规则,以确保文件的可追溯性和管理的便利性。在软件开发过程中,合理组织文件和版本控制(如使用Git)是必不可少的。 综上所述,宾馆预约系统的开发是一项复杂的工程,它涉及前后端的开发、数据库设计、系统安全、接口设计等多个方面。开发者在开发过程中需要不断学习和应用各类IT知识,以确保系统能够安全、高效、稳定地运行。而对于个人开发项目,如何合理利用有限资源、高效地管理和优化项目过程也是至关重要的。
recommend-type

HarmonyOS在旅游领域的创新:揭秘最前沿应用实践

# 1. HarmonyOS旅游应用的市场前景分析 随着数字化转型的不断深入,旅游行业正面临着前所未有的变革。在这样的背景下,HarmonyOS作为一种新兴的操作系统,带来了全新的市场前景和机遇。本章将深入分析HarmonyOS在旅游应用领域的市场潜力、用户需求、以及技术创新对旅游体验的改善。 ## 1.1 市场需求与用户画像分析 旅游市场的需求持续增
recommend-type

数据架构师需要具备什么能力

<think>嗯,用户现在转向询问数据架构师的能力要求了,而且特别提到要参考站内引用内容。看来ta正在规划职业方向,可能是个技术岗位的进阶者或转行者。之前对话历史显示用户对技术细节有深度需求(比如C语言底层特性),这次提问虽然跨度大,但延续了“技术职业发展”这条主线。用户引用的三段材料其实很有意思:第一篇强调综合能力,第二篇突出编程基础,第三篇提到商业洞察力——这正好构成数据架构师的三个能力象限。用户给出的引用里埋了个关键矛盾:第二篇说“速成只能做码农”,第三篇说“需要持续学习”,暗示ta可能担心速成班的局限性。回应时得强调“扎实基础+持续成长”的平衡。技术层面需要覆盖三个维度:硬技能(数据库