import torch import torch.nn as nn from pointnet2_lib.pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG from lib.config import cfg class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x) def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super().__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.len()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.len()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] mlps.append(channel_out) self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out) ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.len()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule( mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k] ) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]中的 SA_modules的forward函数接受几个参数,为什么

时间: 2023-07-15 21:13:58 浏览: 231
SA_modules的forward函数接受两个参数:l_xyz和l_features。其中,l_xyz是一个列表,包含每个SA层的点云位置信息,l_features是一个列表,包含每个SA层的特征信息。在每个SA层中,输入的点云信息会被分割成多个局部区域,每个区域的特征信息都会经过一系列的MLP网络进行处理,最终得到每个点的特征表示。因此,l_xyz和l_features的长度相等,对应同一层的点云和特征信息。在模型的最后一层,l_xyz[0]和l_features[0]分别是整个点云的位置信息和特征信息输出。
相关问题

import torch import torch.nn as nn from pointnet2_lib.pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG from lib.config import cfg def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super().__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.__len__()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.__len__()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] self.SA_modules.append( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.__len__()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule(mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k]) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]

这是一个使用 PointNet++ 算法实现的模型,用于点云分类或物体检测任务。它包含了多个 SA(Sample and Aggregate)模块和 FP(Feature Propagation)模块,其中 SA 模块用于对点云进行子采样和特征聚合,FP 模块则用于将上一层的特征信息传递到下一层,并恢复采样前的点云密度。其中,SA 模块中的 MLPs(Multi-Layer Perceptrons)用于对点云特征进行非线性变换,FP 模块中的 MLPs 则用于对特征进行上采样和融合。整个模型的输入是点云数据,输出是点云的坐标和特征向量。

import torch import torch.nn as nn import numpy as np import torch.nn.functional as F import matplotlib.pyplot as plt from torch.autograd import Variable x=torch.tensor(np.array([[i] for i in range(10)]),dtype=torch.float32) y=torch.tensor(np.array([[i**2] for i in range(10)]),dtype=torch.float32) #print(x,y) x,y=(Variable(x),Variable(y))#将tensor包装一个可求导的变量 print(type(x)) net=torch.nn.Sequential( nn.Linear(1,10,dtype=torch.float32),#隐藏层线性输出 torch.nn.ReLU(),#激活函数 nn.Linear(10,20,dtype=torch.float32),#隐藏层线性输出 torch.nn.ReLU(),#激活函数 nn.Linear(20,1,dtype=torch.float32),#输出层线性输出 ) optimizer=torch.optim.SGD(net.parameters(),lr=0.05)#优化器(梯度下降) loss_func=torch.nn.MSELoss()#最小均方差 #神经网络训练过程 plt.ion() plt.show()#动态学习过程展示 for t in range(2000): prediction=net(x),#把数据输入神经网络,输出预测值 loss=loss_func(prediction,y)#计算二者误差,注意这两个数的顺序 optimizer.zero_grad()#清空上一步的更新参数值 loss.backward()#误差反向传播,计算新的更新参数值 optimizer.step()#将计算得到的更新值赋给net.parameters()D:\Anaconda\python.exe D:\py\text.py <class 'torch.Tensor'> Traceback (most recent call last): File "D:\py\text.py", line 28, in <module> loss=loss_func(prediction,y)#计算二者误差,注意这两个数的顺序 File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(*input, **kwargs) File "D:\Anaconda\lib\site-packages\torch\nn\modules\loss.py", line 536, in forward return F.mse_loss(input, target, reduction=self.reduction) File "D:\Anaconda\lib\site-packages\torch\nn\functional.py", line 3281, in mse_loss if not (target.size() == input.size()): AttributeError: 'tuple' object has no attribute 'size'

这段代码出现了一个错误,具体错误信息是 'tuple' object has no attribute 'size'。这个错误通常发生在调用 PyTorch 的函数时,输入的数据类型不正确,需要将数据类型转换为正确的类型。在这段代码中,loss_func 函数的输入是一个元组,而不是一个张量,因此无法获取其尺寸信息,导致出现错误。需要修改代码,将 prediction 从元组转换为张量,才能正确计算误差。可以将代码修改为: ``` prediction = net(x) loss = loss_func(prediction.squeeze(), y.squeeze()) ``` 这样,就能将 prediction 和 y 转换为张量,并使用 squeeze() 函数去除维度为 1 的维度。这样就能够正确计算二者之间的误差了。
阅读全文

相关推荐

/home/book/anaconda3/envs/yolov5face/lib/python3.9/site-packages/torch/serialization.py:1580: SourceChangeWarning: source code of class 'torch.nn.modules.container.Sequential' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) /home/book/anaconda3/envs/yolov5face/lib/python3.9/site-packages/torch/serialization.py:1580: SourceChangeWarning: source code of class 'torch.nn.modules.conv.Conv2d' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) /home/book/anaconda3/envs/yolov5face/lib/python3.9/site-packages/torch/serialization.py:1580: SourceChangeWarning: source code of class 'torch.nn.modules.batchnorm.BatchNorm2d' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) /home/book/anaconda3/envs/yolov5face/lib/python3.9/site-packages/torch/serialization.py:1580: SourceChangeWarning: source code of class 'torch.nn.modules.activation.LeakyReLU' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) /home/book/anaconda3/envs/yolov5face/lib/python3.9/site-packages/torch/serialization.py:1580: SourceChangeWarning: source code of class 'torch.nn.modules.container.ModuleList' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) /home/book/anaconda3/envs/yolov5face/lib/python3.9/site-packages/torch/serialization.py:1580: SourceChangeWarning: source code of class 'torch.nn.modules.pooling.MaxPool2d' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) /home/book/anaconda3/envs/yolov5face/lib/python3.9/site-packages/torch/serialization.py:1580: SourceChangeWarning: source code of class 'torch.nn.modules.upsampling.Upsample' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) Traceback (most recent call last): File "/home/book/rk3566/ai_tools/FaceRecognition-master/recognition/test.py", line 378, in <module> detect(setOPT()) # step3 File "/home/book/rk3566/ai_tools/FaceRecognition-master/recognition/test.py", line 77, in detect with tf.Session() as sess:

A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.4 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "D:\TD2023\stream diffiusion\StreamDiffusion-main\ndi-stream\main_ndi.py", line 14, in <module> import torch File "D:\TD2023\stream diffiusion\StreamDiffusion-main\venv\lib\site-packages\torch\__init__.py", line 1382, in <module> from .functional import * # noqa: F403 File "D:\TD2023\stream diffiusion\StreamDiffusion-main\venv\lib\site-packages\torch\functional.py", line 7, in <module> import torch.nn.functional as F File "D:\TD2023\stream diffiusion\StreamDiffusion-main\venv\lib\site-packages\torch\nn\__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "D:\TD2023\stream diffiusion\StreamDiffusion-main\venv\lib\site-packages\torch\nn\modules\__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "D:\TD2023\stream diffiusion\StreamDiffusion-main\venv\lib\site-packages\torch\nn\modules\transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), D:\TD2023\stream diffiusion\StreamDiffusion-main\venv\lib\site-packages\torch\nn\modules\transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ..\torch\csrc\utils\tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), 我在touch designer里部署stream diffusion,运行后出现这种报错,我该怎样解决,是什么原因,用最简单的方式告诉我

/home/book/anaconda3/envs/yolov5face/lib/python3.9/site-packages/torch/serialization.py:1580: SourceChangeWarning: source code of class 'torch.nn.modules.container.Sequential' has changed. Saved a reverse patch to Sequential.patch. Run patch -p0 < Sequential.patch to revert your changes. warnings.warn(msg, SourceChangeWarning) /home/book/anaconda3/envs/yolov5face/lib/python3.9/site-packages/torch/serialization.py:1580: SourceChangeWarning: source code of class 'torch.nn.modules.conv.Conv2d' has changed. Saved a reverse patch to Conv2d.patch. Run patch -p0 < Conv2d.patch to revert your changes. warnings.warn(msg, SourceChangeWarning) /home/book/anaconda3/envs/yolov5face/lib/python3.9/site-packages/torch/serialization.py:1580: SourceChangeWarning: source code of class 'torch.nn.modules.batchnorm.BatchNorm2d' has changed. Saved a reverse patch to BatchNorm2d.patch. Run patch -p0 < BatchNorm2d.patch to revert your changes. warnings.warn(msg, SourceChangeWarning) /home/book/anaconda3/envs/yolov5face/lib/python3.9/site-packages/torch/serialization.py:1580: SourceChangeWarning: source code of class 'torch.nn.modules.activation.LeakyReLU' has changed. Saved a reverse patch to LeakyReLU.patch. Run patch -p0 < LeakyReLU.patch to revert your changes. warnings.warn(msg, SourceChangeWarning) /home/book/anaconda3/envs/yolov5face/lib/python3.9/site-packages/torch/serialization.py:1580: SourceChangeWarning: source code of class 'torch.nn.modules.container.ModuleList' has changed. Saved a reverse patch to ModuleList.patch. Run patch -p0 < ModuleList.patch to revert your changes. warnings.warn(msg, SourceChangeWarning) /home/book/anaconda3/envs/yolov5face/lib/python3.9/site-packages/torch/serialization.py:1580: SourceChangeWarning: source code of class 'torch.nn.modules.pooling.MaxPool2d' has changed. Saved a reverse patch to MaxPool2d.patch. Run patch -p0 < MaxPool2d.patch to revert your changes. warnings.warn(msg, SourceChangeWarning) /home/book/anaconda3/envs/yolov5face/lib/python3.9/site-packages/torch/serialization.py:1580: SourceChangeWarning: source code of class 'torch.nn.modules.upsampling.Upsample' has changed. Saved a reverse patch to Upsample.patch. Run patch -p0 < Upsample.patch to revert your changes. warnings.warn(msg, SourceChangeWarning) 2025-03-20 04:45:15.598387: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)

-------------------------------------------------------------------------- ImportError Traceback (most recent call last) Cell In[13], line 1 ----> 1 import mmdeploy.utils as utils 2 print(dir(utils)) File ~/work/舌诊训练/mmdeploy/mmdeploy/__init__.py:8 5 from .version import __version__, version_info # noqa F401 7 if importlib.util.find_spec('torch'): ----> 8 importlib.import_module('mmdeploy.pytorch') 9 else: 10 logger = get_root_logger() File /environment/miniconda3/lib/python3.10/importlib/__init__.py:126, in import_module(name, package) 124 break 125 level += 1 --> 126 return _bootstrap._gcd_import(name[level:], package, level) File ~/work/舌诊训练/mmdeploy/mmdeploy/pytorch/__init__.py:2 1 # Copyright (c) OpenMMLab. All rights reserved. ----> 2 from . import functions # noqa: F401,F403 3 from . import symbolics # noqa: F401,F403 File ~/work/舌诊训练/mmdeploy/mmdeploy/pytorch/functions/__init__.py:2 1 # Copyright (c) OpenMMLab. All rights reserved. ----> 2 from . import adaptive_pool # noqa: F401,F403 3 from . import any # noqa: F401,F403 4 from . import atan2 # noqa: F401,F403 File ~/work/舌诊训练/mmdeploy/mmdeploy/pytorch/functions/adaptive_pool.py:6 3 import torch.nn.functional as F 4 from torch.nn.modules.utils import _pair ----> 6 from mmdeploy.core import FUNCTION_REWRITER 7 from mmdeploy.utils import Backend, get_root_logger, is_dynamic_shape 10 @FUNCTION_REWRITER.register_rewriter( 11 func_name='torch.nn.functional.adaptive_avg_pool2d') 12 def adaptive_avg_pool2d__default(input, output_size): File ~/work/舌诊训练/mmdeploy/mmdeploy/core/__init__.py:2 1 # Copyright (c) OpenMMLab. All rights reserved. ----> 2 from .optimizers import * # noqa: F401,F403 3 from .rewriters import * # noqa: F401,F403 File ~/work/舌诊训练/mmdeploy/mmdeploy/core/optimizers/__init__.py:3 1 # Copyright (c) OpenMMLa

Traceback (most recent call last): File "D:\Python\pythonProject\alexnet\mlp1.py", line 2, in <module> import torch File "D:\anaconda3\envs\pytorch2\Lib\site-packages\torch\__init__.py", line 2016, in <module> from torch import _VF as _VF, functional as functional # usort: skip ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\pytorch2\Lib\site-packages\torch\functional.py", line 7, in <module> import torch.nn.functional as F File "D:\anaconda3\envs\pytorch2\Lib\site-packages\torch\nn\__init__.py", line 8, in <module> from torch.nn.modules import * # usort: skip # noqa: F403 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\pytorch2\Lib\site-packages\torch\nn\modules\__init__.py", line 1, in <module> from .module import Module # usort: skip ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda3\envs\pytorch2\Lib\site-packages\torch\nn\modules\module.py", line 29, in <module> from torch.utils._python_dispatch import is_traceable_wrapper_subclass File "D:\anaconda3\envs\pytorch2\Lib\site-packages\torch\utils\__init__.py", line 8, in <module> from torch.utils import ( File "D:\anaconda3\envs\pytorch2\Lib\site-packages\torch\utils\data\__init__.py", line 1, in <module> from torch.utils.data.dataloader import ( File "D:\anaconda3\envs\pytorch2\Lib\site-packages\torch\utils\data\dataloader.py", line 20, in <module> import torch.distributed as dist File "D:\anaconda3\envs\pytorch2\Lib\site-packages\torch\distributed\__init__.py", line 122, in <module> from .device_mesh import DeviceMesh, init_device_mesh File "D:\anaconda3\envs\pytorch2\Lib\site-packages\torch\distributed\device_mesh.py", line 64, in <module> class _MeshEnv(threading.local): File "D:\anaconda3\envs\pytorch2\Lib\site-packages\torch\distributed\device_mesh.py", line 282, in _MeshEnv pg_options: Optional[ProcessGroup.Options] = None, ^^^^^^^^^^^^^^^^^^^^ AttributeError: type

Building wheels for collected packages: causal_conv1d Building wheel for causal_conv1d (setup.py) ... error error: subprocess-exited-with-error × python setup.py bdist_wheel did not run successfully. │ exit code: 1 ╰─> [51 lines of output] A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.3 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 34, in <module> File "/home/dachuang2024/causal-conv1d/setup.py", line 20, in <module> import torch File "/home/dachuang2024/.conda/envs/unet_mamba/lib/python3.10/site-packages/torch/__init__.py", line 1382, in <module> from .functional import * # noqa: F403 File "/home/dachuang2024/.conda/envs/unet_mamba/lib/python3.10/site-packages/torch/functional.py", line 7, in <module> import torch.nn.functional as F File "/home/dachuang2024/.conda/envs/unet_mamba/lib/python3.10/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/dachuang2024/.conda/envs/unet_mamba/lib/python3.10/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/dachuang2024/.conda/envs/unet_mamba/lib/python3.10/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/dachuang2024/.conda/envs/unet_mamba/

Traceback (most recent call last): File "/home/kongshiquan/下载/Pytorch_DDcGAN-master/tools/test2.py", line 30, in <module> GAN_Model.Generator.load_state_dict(torch.load('./weights/GAN_G1_D2/Generator/Generator_50.pth').state_dict()) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/kongshiquan/下载/DiM-DiffusionMamba-main/venv/lib/python3.12/site-packages/torch/serialization.py", line 1524, in load raise pickle.UnpicklingError(_get_wo_message(str(e))) from None _pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint. (1) In PyTorch 2.6, we changed the default value of the weights_only argument in torch.load from False to True. Re-running torch.load with weights_only set to False will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source. (2) Alternatively, to load with weights_only=True please check the recommended steps in the following error message. WeightsUnpickler error: Unsupported global: GLOBAL torch.nn.modules.container.ModuleDict was not an allowed global by default. Please use torch.serialization.add_safe_globals([torch.nn.modules.container.ModuleDict]) or the torch.serialization.safe_globals([torch.nn.modules.container.ModuleDict]) context manager to allowlist this global if you trust this class/function. Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.

C:\Program Files\jqxxrj\Lib\site-packages\bitsandbytes\cuda_setup\main.py:166: UserWarning: Welcome to bitsandbytes. For bug reports, please run python -m bitsandbytes warn(msg) C:\Program Files\jqxxrj\Lib\site-packages\bitsandbytes\cuda_setup\main.py:166: UserWarning: C:\Program Files\jqxxrj did not contain ['libcudart.so', 'libcudart.so.11.0', 'libcudart.so.12.0'] as expected! Searching further paths... warn(msg) --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[1], line 1 ----> 1 import bitsandbytes as bnb 2 print(bnb.cuda_setup.main()) File C:\Program Files\jqxxrj\Lib\site-packages\bitsandbytes\__init__.py:6 1 # Copyright (c) Facebook, Inc. and its affiliates. 2 # 3 # This source code is licensed under the MIT license found in the 4 # LICENSE file in the root directory of this source tree. ----> 6 from . import cuda_setup, utils, research 7 from .autograd._functions import ( 8 MatmulLtState, 9 bmm_cublas, (...) 13 matmul_4bit 14 ) 15 from .cextension import COMPILED_WITH_CUDA File C:\Program Files\jqxxrj\Lib\site-packages\bitsandbytes\research\__init__.py:1 ----> 1 from . import nn 2 from .autograd._functions import ( 3 switchback_bnb, 4 matmul_fp8_global, 5 matmul_fp8_mixed, 6 ) File C:\Program Files\jqxxrj\Lib\site-packages\bitsandbytes\research\nn\__init__.py:1 ----> 1 from .modules import LinearFP8Mixed, LinearFP8Global File C:\Program Files\jqxxrj\Lib\site-packages\bitsandbytes\research\nn\modules.py:8 5 from torch import Tensor, device, dtype, nn 7 import bitsandbytes as bnb ----> 8 from bitsandbytes.optim import GlobalOptimManager 9 from bitsandbytes.utils import OutlierTracer, find_outlier_dims 11 T = TypeVar("T", bound="torch.nn.Module") File C:\Program Files\jqxxrj\Lib\site-packages\bitsandby

最新推荐

recommend-type

Java反射实现实体类相同字段自动赋值示例

资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 Java 反射能在运行时探查类结构并动态读写属性。示例工具类 ClassReflection 提供两种静态方法:简易版 reflectionAttr 直接以两个对象入参;复杂版额外用 Class.forName 按名字加载类。 流程: 分别对两个对象调用 getDeclaredFields(),得到包含私有属性的 Field[]。 遍历源对象字段,跳过名为 "id" 的主键;设 setAccessible(true) 解锁私有权限。 用 Field.get() 取值,若目标对象存在同名字段,同样解锁后执行 Field.set() 完成拷贝。 复杂版增加 invokeGetMethod,通过反射调用 getter 取非基本类型值,避免直接 get() 的局限。 适用:ORM 框架在查询结果与实体间同步数据、单元测试为私有字段注入状态等。 注意:反射带来性能损耗与封装破坏,需捕获 IllegalAccessException、NullPointerException,非必要场景应优先用常规赋值。
recommend-type

操作系统试题库(经典版).doc

操作系统试题库(经典版).doc
recommend-type

Android实现App启动广告页面功能.doc

Android实现App启动广告页面功能.doc
recommend-type

MiriaManager-机器人开发资源

MiriaMiria-coreQQqqapihttp
recommend-type

毕业设计-weixin220英语互助小程序springboot.zip

源码+数据库+配套文档+答辩教程
recommend-type

飞思OA数据库文件下载指南

根据给定的文件信息,我们可以推断出以下知识点: 首先,从标题“飞思OA源代码[数据库文件]”可以看出,这里涉及的是一个名为“飞思OA”的办公自动化(Office Automation,简称OA)系统的源代码,并且特别提到了数据库文件。OA系统是用于企事业单位内部办公流程自动化的软件系统,它旨在提高工作效率、减少不必要的工作重复,以及增强信息交流与共享。 对于“飞思OA源代码”,这部分信息指出我们正在讨论的是OA系统的源代码部分,这通常意味着软件开发者或维护者拥有访问和修改软件底层代码的权限。源代码对于开发人员来说非常重要,因为它是软件功能实现的直接体现,而数据库文件则是其中的一个关键组成部分,用来存储和管理用户数据、业务数据等信息。 从描述“飞思OA源代码[数据库文件],以上代码没有数据库文件,请从这里下”可以分析出以下信息:虽然文件列表中提到了“DB”,但实际在当前上下文中,并没有提供包含完整数据库文件的下载链接或直接说明,这意味着如果用户需要获取完整的飞思OA系统的数据库文件,可能需要通过其他途径或者联系提供者获取。 文件的标签为“飞思OA源代码[数据库文件]”,这与标题保持一致,表明这是一个与飞思OA系统源代码相关的标签,而附加的“[数据库文件]”特别强调了数据库内容的重要性。在软件开发中,标签常用于帮助分类和检索信息,所以这个标签在这里是为了解释文件内容的属性和类型。 文件名称列表中的“DB”很可能指向的是数据库文件。在一般情况下,数据库文件的扩展名可能包括“.db”、“.sql”、“.mdb”、“.dbf”等,具体要看数据库的类型和使用的数据库管理系统(如MySQL、SQLite、Access等)。如果“DB”是指数据库文件,那么它很可能是以某种形式的压缩文件或包存在,这从“压缩包子文件的文件名称列表”可以推测。 针对这些知识点,以下是一些详细的解释和补充: 1. 办公自动化(OA)系统的构成: - OA系统由多个模块组成,比如工作流管理、文档管理、会议管理、邮件系统、报表系统等。 - 系统内部的流程自动化能够实现任务的自动分配、状态跟踪、结果反馈等。 - 通常,OA系统会提供用户界面来与用户交互,如网页形式的管理界面。 2. 数据库文件的作用: - 数据库文件用于存储数据,是实现业务逻辑和数据管理的基础设施。 - 数据库通常具有数据的CRUD(创建、读取、更新、删除)功能,是信息检索和管理的核心组件。 - 数据库文件的结构和设计直接关系到系统的性能和可扩展性。 3. 数据库文件类型: - 根据数据库管理系统不同,数据库文件可以有不同格式。 - 例如,MySQL数据库的文件通常是“.frm”文件存储表结构,“.MYD”存储数据,“.MYI”存储索引。 - 对于SQLite,数据库就是一个单独的“.sqlite”文件。 4. 数据库设计和管理: - 数据库设计需要遵循一定的规范和最佳实践,如范式化以减少数据冗余。 - 管理数据库包括数据备份、恢复、性能调优、安全性管理等。 5. OA系统开发及源代码维护: - 开发一个OA系统涉及需求分析、系统设计、编码实现、测试、部署和维护等多个阶段。 - OA系统源代码的维护工作包括代码审查、重构、版本控制和更新等。 综上所述,我们可以知道“飞思OA源代码[数据库文件]”所提供的信息包括了对飞思OA系统及其数据库文件的基础介绍和可能的获取途径。对于开发者而言,需要了解如何管理和操作这些数据库文件以确保系统的正常运行和数据的完整性。此外,对于那些希望进行系统定制或二次开发的用户,源代码的可访问性是非常重要的,这可以允许用户根据自己的需求来修改和增强系统功能。
recommend-type

Qt信号与槽优化:提升系统性能与响应速度的实战技巧

# 摘要 本文系统地探讨了Qt框架中信号与槽机制的原理、高级特性、性能优化以及在大型项目中的应用。首先,概述了信号与槽的基本概念和工作原理,包括信号的发射、槽函数的绑定与调用过程。随后,本文深入分析了信号与槽的内部机制,如数据类型兼容性和连接类型,并探讨了优化信
recommend-type

D8流向算法

<think>我们被要求解释或实现D8流向算法。D8流向算法是一种用于水文分析的数字高程模型(DEM)处理方法,用于确定地表水流的方向。每个像元的水流方向被指定为指向周围8个相邻像元中坡度最陡的那个方向。 ### 算法原理 在D8算法中,每个像元的水流方向被定义为指向其8个相邻像元(包括对角线方向)中坡度最大的方向。坡度由高程差除以距离计算,其中相邻像元的距离为1(水平和垂直方向)或√2(对角线方向)。具体步骤如下: 1. 对于中心像元,计算其与8个相邻像元的高程差(中心像元高程减去相邻像元高程,得到正值表示下坡)。 2. 计算每个相邻方向的坡度:坡度 = 高程差 / 距离(水平/垂直方向
recommend-type

精选36个精美ICO图标免费打包下载

在当今的软件开发和应用程序设计中,图标作为图形用户界面(GUI)的一个重要组成部分,承担着向用户传达信息、增加美观性和提高用户体验的重要角色。图标不仅仅是一个应用程序或文件的象征,它还是品牌形象在数字世界中的延伸。因此,开发人员和设计师往往会对默认生成的图标感到不满意,从而寻找更加精美和个性化的图标资源。 【标题】中提到的“精美ICO图标打包下载”,指向用户提供的是一组精选的图标文件,这些文件格式为ICO。ICO文件是一种图标文件格式,主要被用于Windows操作系统中的各种文件和应用程序的图标。由于Windows系统的普及,ICO格式的图标在软件开发中有着广泛的应用。 【描述】中提到的“VB、VC编写应用的自带图标很难看,换这些试试”,提示我们这个ICO图标包是专门为使用Visual Basic(VB)和Visual C++(VC)编写的应用程序准备的。VB和VC是Microsoft公司推出的两款编程语言,其中VB是一种主要面向初学者的面向对象编程语言,而VC则是更加专业化的C++开发环境。在这些开发环境中,用户可以选择自定义应用程序的图标,以提升应用的视觉效果和用户体验。 【标签】中的“.ico 图标”直接告诉我们,这些打包的图标是ICO格式的。在设计ICO图标时,需要注意其独特的尺寸要求,因为ICO格式支持多种尺寸的图标,例如16x16、32x32、48x48、64x64、128x128等像素尺寸,甚至可以包含高DPI版本以适应不同显示需求。此外,ICO文件通常包含多种颜色深度的图标,以便在不同的背景下提供最佳的显示效果。 【压缩包子文件的文件名称列表】显示了这些精美ICO图标的数量,即“精美ICO图标36个打包”。这意味着该压缩包内包含36个不同的ICO图标资源。对于软件开发者和设计师来说,这意味着他们可以从这36个图标中挑选适合其应用程序或项目的图标,以替代默认的、可能看起来不太吸引人的图标。 在实际应用中,将这些图标应用到VB或VC编写的程序中,通常需要编辑程序的资源文件或使用相应的开发环境提供的工具进行图标更换。例如,在VB中,可以通过资源编辑器选择并替换程序的图标;而在VC中,则可能需要通过设置项目属性来更改图标。由于Windows系统支持在编译应用程序时将图标嵌入到可执行文件(EXE)中,因此一旦图标更换完成并重新编译程序,新图标就会在程序运行时显示出来。 此外,当谈及图标资源时,还应当了解图标制作的基本原则和技巧,例如:图标设计应简洁明了,以传达清晰的信息;色彩运用需考虑色彩搭配的美观性和辨识度;图标风格要与应用程序的整体设计风格保持一致,等等。这些原则和技巧在选择和设计图标时都非常重要。 总结来说,【标题】、【描述】、【标签】和【压缩包子文件的文件名称列表】共同勾勒出了一个为VB和VC编程语言用户准备的ICO图标资源包。开发者通过下载和使用这些图标,能够有效地提升应用程序的外观和用户体验。在这一过程中,了解和应用图标设计与应用的基本知识至关重要。
recommend-type

【Qt数据库融合指南】:MySQL与Qt无缝集成的技巧

# 摘要 本文全面探讨了Qt数据库集成的基础知识与进阶应用,从Qt与MySQL的基础操作讲起,深入到Qt数据库编程接口的配置与使用,并详细介绍了数据模型和视图的实现。随着章节的深入,内容逐渐从基础的数据操作界面构建过渡到高级数据库操作实践,涵盖了性能优化、安全性策略和事务管理。本文还特别针对移动设备上的数据库集成进行了讨