// ...保持原有初始化代码不变... static float prob[BATCH_SIZE * OUTPUT_SIZE]; IRuntime* runtime = createInferRuntime(gLogger); // ...保持原有初始化代码不变... cv::VideoCapture cap("your_video.mp4"); if (!cap.isOpened()) { std::cerr << "Error opening video file!" << std::endl; return -1; } cv::Mat frame; std::vector<cv::Mat> imgs_buffer(BATCH_SIZE); // 增加批处理缓存 int fcount = 0; // 当前批处理计数 auto& file_names = ...; // 需要初始化文件列表(如果是视频处理可删除相关逻辑) while(cap.read(frame)) { // 预处理 cv::resize(frame, frame, cv::Size(INPUT_W, INPUT_H)); cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB); // 填充批处理缓存 imgs_buffer[fcount] = frame.clone(); fcount++; // 当缓存满时执行批处理推理 if (fcount == BATCH_SIZE) { // 执行异步拷贝(整批处理) for(int b = 0; b < BATCH_SIZE; b++) { CUDA_CHECK(cudaMemcpyAsync( buffers[inputIndex] + b * 3 * INPUT_H * INPUT_W, imgs_buffer[b].data, 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream )); } // 执行推理 auto start = std::chrono::system_clock::now(); context->enqueueV2((void**)buffers, stream, nullptr); CUDA_CHECK(cudaMemcpyAsync( prob, buffers[outputIndex], BATCH_SIZE * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream )); cudaStreamSynchronize(stream); auto end = std::chrono::system_clock::now(); // 后处理 std::vector<std::vector<Yolo::Detection>> batch_res(BATCH_SIZE); for (int b = 0; b < BATCH_SIZE; b++) { auto& res = batch_res[b]; nms(res, &prob[b * OUTPUT_SIZE], CONF_THRESH, NMS_THRESH); // 绘制检测结果 cv::Mat img = imgs_buffer[b]; for (size_t j = 0; j < res.size(); j++) { cv::Rect r = get_rect(img, res[j].bbox); cv::rectangle(img, r, cv::Scalar(0x27, 0xC1, 0x36), 2); cv::putText(img, std::to_string((int)res[j].class_id), cv::Point(r.x, r.y - 1), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 2); cv::imshow("Detection", img); if(cv::waitKey(1) == 27) break; } } fcount = 0; // 重置批处理计数 } } // 处理剩余未满批次的帧 if (fcount > 0) { // ...类似批处理逻辑,需调整拷贝和处理的长度... } // 资源释放保持不变...只需要留下处理视频的逻辑代码,其他的尽量简化

时间: 2025-06-09 12:58:44 浏览: 26
<think>嗯,用户给了一段关于使用TensorRT进行视频目标检测的C++代码,需要我帮忙解释一下。首先,我得仔细看看这段代码的结构和各个部分的功能。 首先,代码里有一个静态数组prob,用来存储模型的输出概率,大小是BATCH_SIZE乘以OUTPUT_SIZE。接下来创建了一个IRuntime对象,应该是TensorRT的推理运行时环境。然后是用OpenCV的VideoCapture打开视频文件,检查是否成功打开。这里有个imgs_buffer,是大小为BATCH_SIZE的cv::Mat向量,应该是用来缓存视频帧,进行批处理的。 然后进入循环,读取视频帧。每一帧都被调整大小和转换颜色空间,可能是为了符合模型的输入要求。接着,将处理后的帧存入imgs_buffer,fcount计数增加。当累积到BATCH_SIZE数量时,开始批处理推理。 这里有个异步拷贝到GPU的过程,循环每个批次,使用cudaMemcpyAsync将数据从主机内存拷贝到设备内存。然后调用context->enqueueV2执行推理,异步拷贝结果回主机,并同步流。之后进行后处理,包括NMS和非极大值抑制,最后在图像上画框和显示。 如果视频处理完后还有未满的批次,代码里提到需要处理剩余部分,但用户可能简化了这部分。最后的资源释放部分应该包括释放CUDA资源和销毁流等。 用户可能希望了解这段代码的工作流程,特别是批处理的部分,以及如何利用TensorRT和CUDA进行加速。可能需要注意的地方是异步拷贝和流的使用,以及批处理的效率提升。此外,后处理中的NMS和结果绘制也是关键点。 需要确保解释清楚每个步骤的作用,比如为什么使用批处理,异步拷贝的好处,还有enqueueV2函数的作用。同时,可能用户对TensorRT的运行时和上下文创建不太清楚,需要简要说明。另外,代码中的预处理和后处理步骤,比如resize和颜色转换,是否符合模型的要求,这也是需要提到的。 可能存在的疑问点包括BATCH_SIZE的设置对性能的影响,prob数组的结构如何对应模型输出,以及NMS的具体实现细节。但用户提供的代码中可能省略了部分细节,比如get_rect函数和nms函数的具体实现,所以解释时需要适当提及这些部分的功能,而不深入具体实现。 总结来说,这段代码实现了视频流的批处理目标检测,利用TensorRT进行高效推理,结合CUDA流异步处理提升性能,同时使用OpenCV进行图像处理和结果可视化。需要将这些关键点分步骤解释清楚,帮助用户理解整个流程。</think>这段代码是基于TensorRT实现的视频目标检测批处理流程,主要改进点在于通过缓存机制提升GPU利用率。以下是核心逻辑分析(使用$...$格式表示代码中的数学相关要素): 一、初始化阶段 1. 内存预分配: $$prob[BATCH\_SIZE \times OUTPUT\_SIZE]$$ 静态分配输出缓冲区 通过`createInferRuntime`创建TensorRT运行时环境 二、视频处理流水线 1. 视频流读取: ```cpp cv::VideoCapture cap("your_video.mp4"); while(cap.read(frame)) // 逐帧读取 ``` 2. 预处理操作(每帧执行): - 尺寸标准化:$INPUT\_W \times INPUT\_H$ - 颜色空间转换:$BGR \rightarrow RGB$(符合常见模型输入规范) 三、批处理机制 1. 缓存管理: ```cpp std::vector<cv::Mat> imgs_buffer(BATCH_SIZE); // 批处理缓存 int fcount = 0; // 当前批次计数 ``` 2. 缓存填充策略: 当`fcount == BATCH_SIZE`时触发批处理 四、异步推理流程 1. 数据拷贝: ```cpp cudaMemcpyAsync(..., stream) // 异步拷贝整批数据 ``` 2. 推理执行: ```cpp context->enqueueV2(...) // 异步执行推理 cudaStreamSynchronize(stream) // 等待流完成 ``` 3. 性能监控: 通过`std::chrono`计算推理耗时:$t_{end} - t_{start}$ 五、后处理阶段 1. 检测结果解析: ```cpp nms(res, &prob[b * OUTPUT_SIZE], CONF_THRESH, NMS_THRESH) ``` 其中$CONF\_THRESH$为置信度阈值,$NMS\_THRESH$为NMS阈值 2. 可视化呈现: - 绘制边界框:$rect = (x,y,w,h)$ - 显示类别ID:通过$class\_id \rightarrow label$映射 六、优化特点 1. 内存复用:通过`imgs_buffer`缓存预处理后的帧,减少重复内存分配 2. 流水线并行:CUDA流异步操作实现: $$数据拷贝 \parallel 计算 \parallel 显示$$ 七、关键参数 | 参数 | 数学表示 | 典型值 | |------|---------|-------| | 输入尺寸 | $INPUT\_W \times INPUT\_H$ | 640x640 | | 批次大小 | $BATCH\_SIZE$ | 8/16/32 | | 输出维度 | $OUTPUT\_SIZE$ | 85*(5+80) | 注:实际部署时应根据GPU显存容量调整$BATCH\_SIZE$,满足: $$3 \times INPUT\_W \times INPUT\_H \times BATCH\_SIZE \leq GPU\_MEMORY$$
阅读全文

相关推荐

static float prob[BATCH_SIZE * OUTPUT_SIZE]; IRuntime* runtime = createInferRuntime(gLogger); assert(runtime != nullptr); ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size); assert(engine != nullptr); IExecutionContext* context = engine->createExecutionContext(); assert(context != nullptr); delete[] trtModelStream; assert(engine->getNbBindings() == 2); float* buffers[2]; // In order to bind the buffers, we need to know the names of the input and output tensors. // Note that indices are guaranteed to be less than IEngine::getNbBindings() const int inputIndex = engine->getBindingIndex(INPUT_BLOB_NAME); const int outputIndex = engine->getBindingIndex(OUTPUT_BLOB_NAME); assert(inputIndex == 0); assert(outputIndex == 1); // Create GPU buffers on device CUDA_CHECK(cudaMalloc((void**)&buffers[inputIndex], BATCH_SIZE * 3 * INPUT_H * INPUT_W * sizeof(float))); CUDA_CHECK(cudaMalloc((void**)&buffers[outputIndex], BATCH_SIZE * OUTPUT_SIZE * sizeof(float))); cv::VideoCapture cap("/media/builderx/data1/xw_tooth/tooth/.2025_02_12T09_32_17__stream0.mp4"); // 视频文件路径 if (!cap.isOpened()) { std::cerr << "Error opening video file!" << std::endl; return -1; } cv::Mat frame; while(cap.read(frame)) { // 逐帧读取视频 // 图像预处理 cv::resize(frame, frame, cv::Size(INPUT_W, INPUT_H)); // 调整尺寸 cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB); // 颜色空间转换 // 将数据拷贝到GPU(替换原来的图像加载部分) CUDA_CHECK(cudaMemcpyAsync(buffers[inputIndex], frame.data, 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream)); // 执行推理 context->enqueueV2((void**)buffers, stream, nullptr); // 从GPU取回结果 CUDA_CHECK(cudaMemcpyAsync(prob, buffers[outputIndex], BATCH_SIZE * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream)); cudaStreamSynchronize(stream); // 解析检测结果(需实现draw_bbox函数) std::vector<Detection> detections; parse_detection(prob, detections); draw_bbox(frame, detections); // 绘制检测框 // 显示结果 cv::imshow("Detection", frame); if(cv::waitKey(1) == 27) break; // ESC退出 } // 清理资源 cap.release(); cv::destroyAllWindows(); // ...原有资源释放代码不变... // Run inference auto start = std::chrono::system_clock::now(); doInference(*context, stream, (void**)buffers, prob, BATCH_SIZE); auto end = std::chrono::system_clock::now(); std::cout << "inference time: " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl; std::vector<std::vector<Yolo::Detection>> batch_res(fcount); for (int b = 0; b < fcount; b++) { auto& res = batch_res[b]; nms(res, &prob[b * OUTPUT_SIZE], CONF_THRESH, NMS_THRESH); } for (int b = 0; b < fcount; b++) { auto& res = batch_res[b]; cv::Mat img = imgs_buffer[b]; for (size_t j = 0; j < res.size(); j++) { cv::Rect r = get_rect(img, res[j].bbox); cv::rectangle(img, r, cv::Scalar(0x27, 0xC1, 0x36), 2); cv::putText(img, std::to_string((int)res[j].class_id), cv::Point(r.x, r.y - 1), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 2); } cv::imwrite("_" + file_names[f - fcount + 1 + b], img); } fcount = 0; }代码前后衔接有没有问题,如果有请给出修改后的代码

cv::VideoCapture cap("/media/builderx/data1/xw_tooth/tooth/.2025_02_12T09_32_17__stream0.mp4"); // 视频文件路径 if (!cap.isOpened()) { std::cerr << "Error opening video file!" << std::endl; return -1; } cv::Mat frame; std::vector<cv::Mat> imgs_buffer(BATCH_SIZE); // 统一4空格缩进 int fcount = 0; while(cap.read(frame)) { // 预处理(统一缩进层级) cv::resize(frame, frame, cv::Size(INPUT_W, INPUT_H)); cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB); imgs_buffer[fcount] = frame.clone(); fcount++; if (fcount == BATCH_SIZE) { // 异步拷贝(内部循环保持缩进) for(int b = 0; b < BATCH_SIZE; b++) { CUDA_CHECK(cudaMemcpyAsync( buffers[inputIndex] + b * 3 * INPUT_H * INPUT_W, imgs_buffer[b].data, 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream )); } // ...保持相同缩进层级的后续代码... } } // 剩余帧处理需补全 )); } // 执行推理 auto start = std::chrono::system_clock::now(); context->enqueueV2((void**)buffers, stream, nullptr); CUDA_CHECK(cudaMemcpyAsync( prob, buffers[outputIndex], BATCH_SIZE * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream )); cudaStreamSynchronize(stream); auto end = std::chrono::system_clock::now(); // 后处理 std::vector<std::vector<Yolo::Detection>> batch_res(BATCH_SIZE); for (int b = 0; b < BATCH_SIZE; b++) { auto& res = batch_res[b]; nms(res, &prob[b * OUTPUT_SIZE], CONF_THRESH, NMS_THRESH); // 绘制检测结果 cv::Mat img = imgs_buffer[b]; for (size_t j = 0; j < res.size(); j++) { cv::Rect r = get_rect(img, res[j].bbox); cv::rectangle(img, r, cv::Scalar(0x27, 0xC1, 0x36), 2); cv::putText(img, std::to_string((int)res[j].class_id), cv::Point(r.x, r.y - 1), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 2); cv::imshow("Detection", img); if(cv::waitKey(1) == 27) break; } } fcount = 0; // 重置批处理计数 } } // 处理剩余未满批次的帧 if (fcount > 0) { // ...类似批处理逻辑,需调整拷贝和处理的长度... } // 资源释放保持不变... // Release stream and buffers帮我看一下代码整体逻辑通顺吗

int main(int argc, char** argv) { cudaSetDevice(DEVICE); std::string wts_name = ""; std::string engine_name = ""; bool is_p6 = false; float gd = 0.0f, gw = 0.0f; //std::string img_dir; if (!parse_args(argc, argv, wts_name, engine_name, is_p6, gd, gw)) { std::cerr << "arguments not right!" << std::endl; std::cerr << "./yolov5_det -s [.wts] [.engine] [n/s/m/l/x/n6/s6/m6/l6/x6 or c/c6 gd gw] // serialize model to plan file" << std::endl; std::cerr << "./yolov5_det -d [.engine] ../samples // deserialize plan file and run inference" << std::endl; return -1; } // create a model using the API directly and serialize it to a stream if (!wts_name.empty()) { IHostMemory* modelStream{ nullptr }; APIToModel(BATCH_SIZE, &modelStream, is_p6, gd, gw, wts_name); assert(modelStream != nullptr); std::ofstream p(engine_name, std::ios::binary); if (!p) { std::cerr << "could not open plan output file" << std::endl; return -1; } p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size()); modelStream->destroy(); return 0; } // deserialize the .engine and run inference std::ifstream file(engine_name, std::ios::binary); if (!file.good()) { std::cerr << "read " << engine_name << " error!" << std::endl; return -1; } char *trtModelStream = nullptr; size_t size = 0; file.seekg(0, file.end); size = file.tellg(); file.seekg(0, file.beg); trtModelStream = new char[size]; assert(trtModelStream); file.read(trtModelStream, size); file.close(); // std::vector<std::string> file_names; // if (read_files_in_dir(img_dir.c_str(), file_names) < 0) { // std::cerr << "read_files_in_dir failed." << std::endl; // return -1; // } static float prob[BATCH_SIZE * OUTPUT_SIZE]; IRuntime* runtime = createInferRuntime(gLogger); assert(runtime != nullptr); ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size); assert(engine != nullptr); IExecutionContext* context = engine->createExecutionContext(); assert(context != nullptr); delete[] trtModelStream; assert(engine->getNbBindings() == 2); float* buffers[2]; // In order to bind the buffers, we need to know the names of the input and output tensors. // Note that indices are guaranteed to be less than IEngine::getNbBindings() const int inputIndex = engine->getBindingIndex(INPUT_BLOB_NAME); const int outputIndex = engine->getBindingIndex(OUTPUT_BLOB_NAME); assert(inputIndex == 0); assert(outputIndex == 1); // Create GPU buffers on device CUDA_CHECK(cudaMalloc((void**)&buffers[inputIndex], BATCH_SIZE * 3 * INPUT_H * INPUT_W * sizeof(float))); CUDA_CHECK(cudaMalloc((void**)&buffers[outputIndex], BATCH_SIZE * OUTPUT_SIZE * sizeof(float))); // Create stream cudaStream_t stream; CUDA_CHECK(cudaStreamCreate(&stream)); uint8_t* img_host = nullptr; uint8_t* img_device = nullptr; // prepare input data cache in pinned memory CUDA_CHECK(cudaMallocHost((void**)&img_host, MAX_IMAGE_INPUT_SIZE_THRESH * 3)); // prepare input data cache in device memory CUDA_CHECK(cudaMalloc((void**)&img_device, MAX_IMAGE_INPUT_SIZE_THRESH * 3)); cv::VideoCapture capture("/media/builderx/UUI/tsy_work/rb002/REC/2024_01_17T14_46_37__stream0.mp4"); //cv::VideoCapture capture(0); cv::Mat frame; int fcount = 0;帮我分析一下每行代码都是什么意思

评估这个代码的正确性def prepare_data(self): dataset = TensorDataset( torch.stack(self.states), torch.tensor(self.actions), torch.tensor(self.probs, dtype=torch.float32), torch.tensor(self.rewards, dtype=torch.float32), torch.tensor(self.dones, dtype=torch.float32), torch.tensor(self.values, dtype=torch.float32) ) return DataLoader(dataset, batch_size=32, shuffle=True) def compute_advantages(self, rewards, values, dones): """改进的GAE计算,带移动平均标准化""" T = len(rewards) advantages = torch.zeros_like(rewards) last_gae = 0 non_terminals = 1.0 - dones # 计算GAE for t in reversed(range(T)): next_value = values[t+1] if t < T-1 else 0.0 next_non_terminal = non_terminals[t+1] if t < T-1 else 0.0 delta = rewards[t] + self.gamma * next_value * next_non_terminal - values[t] last_gae = delta + self.gamma * self.lambda_ * next_non_terminal * last_gae advantages[t] = last_gae # 移动平均标准化 alpha = 0.99 batch_mean = advantages.mean().item() batch_std = advantages.std().item() self.global_return_mean = alpha * self.global_return_mean + (1-alpha)*batch_mean self.global_return_std = alpha * self.global_return_std + (1-alpha)*batch_std advantages = (advantages - self.global_return_mean) / (self.global_return_std + 1e-8) returns = advantages + values returns = torch.clamp(returns, -3.0, 3.0) # 放宽裁剪范围 return returns, advantages def learn(self, n_epochs=10): dataloader = self.prepare_data() for _ in range(n_epochs): for batch in dataloader: states, actions, old_probs, rewards, dones, values = batch """ # 没有GPU这一步先注释 states, actions, old_probs, rewards, dones, values = \ states.to(self.device), actions.to(self.device), old_probs.to(self.device), rewards.to(self.device), dones.to(self.device), values.to(self.device) """ # 计算GAE with torch.no_grad(): returns, advantages = self.compute_advantages(rewards, values, dones) policy, new_values = self.actor_critic(states) # 损失计算 dist = Categorical(policy) new_log_probs = dist.log_prob(actions) prob_ratio = (new_log_probs - old_probs.detach()).exp() weighted_probs = advantages * prob_ratio clipped_probs = torch.clamp(prob_ratio, 1-self.policy_clip, 1+self.policy_clip) actor_loss = -torch.min(weighted_probs, clipped_probs * advantages).mean() critic_loss = 0.5 * (new_values.squeeze() - returns).pow(2).mean() entropy = dist.entropy().mean() entropy_coef = max(0.01, 0.05 * (1 - self.global_step / 1e5)) loss = actor_loss + 0.5 * critic_loss - entropy_coef * entropy self.optimizer.zero_grad() loss.backward() # 梯度裁剪 torch.nn.utils.clip_grad_norm_(self.actor_critic.parameters(), max_norm=1.0, norm_type=2.0) # 参数更新 self.optimizer.step() self.scheduler.step() # 记录指标 self.writer.add_scalar('Loss/Actor', actor_loss.item(), self.global_step) self.writer.add_scalar('Loss/Critic', critic_loss.item(), self.global_step) self.writer.add_scalar('Metrics/Entropy', entropy.item(), self.global_step) #self.writer.add_scalar('Grad/Total', total_grad, self.global_step) self.global_step += 1 self.reset_memory()

// 创建视频捕获对象(新增) cv::VideoCapture cap("/media/builderx/data1/xw_tooth/tooth/2025_02_12T09_32_17__stream0.mp4"); if (!cap.isOpened()) { std::cerr << "Error opening video file" << std::endl; return -1; } int frame_width = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_WIDTH)); int frame_height = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_HEIGHT)); double fps = cap.get(cv::CAP_PROP_FPS); std::string output_dir = "/media/builderx/data1/yolov5/wp_build/new_det"; int frame_count = 0; cv::Mat frame; int fcount = 0; std::vector<cv::Mat> imgs_buffer(BATCH_SIZE); // 初始化imgs_buffer while (cap.read(frame)) { imgs_buffer[fcount] = frame.clone(); // 将当前帧添加到缓冲区 fcount++; if (fcount < BATCH_SIZE) continue; // 如果未达到BATCH_SIZE,继续读取 float *buffer_idx = (float*)buffers[inputIndex]; for (int b = 0; b < fcount; b++) { size_t size_image = imgs_buffer[b].cols * imgs_buffer[b].rows * 3; size_t size_image_dst = INPUT_H * INPUT_W * 3; memcpy(img_host, imgs_buffer[b].data, size_image); CUDA_CHECK(cudaMemcpyAsync(img_device, img_host, size_image, cudaMemcpyHostToDevice, stream)); preprocess_kernel_img(img_device, imgs_buffer[b].cols, imgs_buffer[b].rows, buffer_idx, INPUT_W, INPUT_H, stream); buffer_idx += size_image_dst; cudaStreamSynchronize(stream); } auto start = std::chrono::system_clock::now(); doInference(*context, stream, (void**)buffers, prob, BATCH_SIZE); std::vector<std::vector<Yolo::Detection>> batch_res(fcount); for (int b = 0; b < fcount; b++) { auto& res = batch_res[b]; nms(res, &prob[b * OUTPUT_SIZE], CONF_THRESH, NMS_THRESH); cv::Mat output_frame = imgs_buffer[b].clone(); for (size_t j = 0; j < res.size(); j++) { cv::Rect r = get_rect(output_frame, res[j].bbox); cv::rectangle(output_frame, r, cv::Scalar(0x27, 0xC1, 0x36), 2); cv::putText(output_frame, std::to_string((int)res[j].class_id), cv::Point(r.x, r.y - 1), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 2); } std::stringstream ss; ss << output_dir << "frame_" << std::setw(6) << std::setfill('0') << (frame_count + b) << ".jpg"; cv::imwrite(ss.str(), output_frame); } frame_count += fcount; fcount = 0; // 重置fcount } // 处理剩余不足BATCH_SIZE的帧 if (fcount > 0) { // 类似于上述处理逻辑,但只处理剩余的帧 // 注意调整doInference和其他相关函数的参数以适应新的batch大小 } cap.release(); cudaStreamDestroy(stream); CUDA_CHECK(cudaFree(img_device)); CUDA_CHECK(cudaFreeHost(img_host)); CUDA_CHECK(cudaFree(buffers[inputIndex])); CUDA_CHECK(cudaFree(buffers[outputIndex])); context->destroy(); engine->destroy(); runtime->destroy(); return 0; }帮我优化一下代码

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)# 导入数据 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True,drop_last=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

大家在看

recommend-type

C语言流程图生成工具

AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 它可以帮助程序员更好地理解程序 制作文档和可视化代码 支持C C++ VC++ Visual C++ NET Delphi Object Pascal 主要功能 根据源程序生成流程图 导出流程图到WORD文档中 展开 合拢流程图 自动生成一个 TreeView显示所有函数 过程 同步显示对应块的源程序和流程图 自定义流程图的配色方案 自定义流程图的大小和间距 根据格式自动排列程序 自由缩小 放大 移动流程图 显示程序行号 支持清除当前流程图 导出流程图到 bmp文件 发展前瞻 ① 支持各种语言 已经完成Pascal C 待完成:Java FoxPro Basic Fortan等; ② 支持反向操作 可以动态修改流程图 并可根据流程图生成相应的语言代码; ③ 结合Delphi专家 嵌入IDE直接运行 已经完成详见主页 操作说明 ① 打开一个或多个文件; ② 双击一个If For While Case Repeat Try begin的起始行 你就可以看到流程图; ③ 双击流程图中相应的框 可以同步显示程序块位置;">AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 [更多]
recommend-type

GPRS网络信令实例详解

抓取了GPRS各个接口信令,很详细的各类问题抓包,值得喜欢分析的人下载做为原材料
recommend-type

The GNU Toolchain for ARM targets HOWTO.pdf

英文原版的介绍怎样制作交叉编译工具的资料
recommend-type

高频双调谐谐振放大电路设计3MHz+电压200倍放大.zip

高频双调谐谐振放大电路设计3MHz+电压200倍放大.zip
recommend-type

中国地级市地图shp

中国地级市地图shp文件,希望对大家科研有帮助。

最新推荐

recommend-type

netty-all-4.1.23.Final.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

OKT507_修改默认界面显示_Linux_应用笔记_V1.0_20220627.pdf

OKT507_修改默认界面显示_Linux_应用笔记_V1.0_20220627
recommend-type

Linux_G2D_开发指南.pdf

Linux_G2D_开发指南
recommend-type

实现Struts2+IBatis+Spring集成的快速教程

### 知识点概览 #### 标题解析 - **Struts2**: Apache Struts2 是一个用于创建企业级Java Web应用的开源框架。它基于MVC(Model-View-Controller)设计模式,允许开发者将应用的业务逻辑、数据模型和用户界面视图进行分离。 - **iBatis**: iBatis 是一个基于 Java 的持久层框架,它提供了对象关系映射(ORM)的功能,简化了 Java 应用程序与数据库之间的交互。 - **Spring**: Spring 是一个开源的轻量级Java应用框架,提供了全面的编程和配置模型,用于现代基于Java的企业的开发。它提供了控制反转(IoC)和面向切面编程(AOP)的特性,用于简化企业应用开发。 #### 描述解析 描述中提到的“struts2+ibatis+spring集成的简单例子”,指的是将这三个流行的Java框架整合起来,形成一个统一的开发环境。开发者可以利用Struts2处理Web层的MVC设计模式,使用iBatis来简化数据库的CRUD(创建、读取、更新、删除)操作,同时通过Spring框架提供的依赖注入和事务管理等功能,将整个系统整合在一起。 #### 标签解析 - **Struts2**: 作为标签,意味着文档中会重点讲解关于Struts2框架的内容。 - **iBatis**: 作为标签,说明文档同样会包含关于iBatis框架的内容。 #### 文件名称列表解析 - **SSI**: 这个缩写可能代表“Server Side Include”,一种在Web服务器上运行的服务器端脚本语言。但鉴于描述中提到导入包太大,且没有具体文件列表,无法确切地解析SSI在此的具体含义。如果此处SSI代表实际的文件或者压缩包名称,则可能是一个缩写或别名,需要具体的上下文来确定。 ### 知识点详细说明 #### Struts2框架 Struts2的核心是一个Filter过滤器,称为`StrutsPrepareAndExecuteFilter`,它负责拦截用户请求并根据配置将请求分发到相应的Action类。Struts2框架的主要组件有: - **Action**: 在Struts2中,Action类是MVC模式中的C(控制器),负责接收用户的输入,执行业务逻辑,并将结果返回给用户界面。 - **Interceptor(拦截器)**: Struts2中的拦截器可以在Action执行前后添加额外的功能,比如表单验证、日志记录等。 - **ValueStack(值栈)**: Struts2使用值栈来存储Action和页面间传递的数据。 - **Result**: 结果是Action执行完成后返回的响应,可以是JSP页面、HTML片段、JSON数据等。 #### iBatis框架 iBatis允许开发者将SQL语句和Java类的映射关系存储在XML配置文件中,从而避免了复杂的SQL代码直接嵌入到Java代码中,使得代码的可读性和可维护性提高。iBatis的主要组件有: - **SQLMap配置文件**: 定义了数据库表与Java类之间的映射关系,以及具体的SQL语句。 - **SqlSessionFactory**: 负责创建和管理SqlSession对象。 - **SqlSession**: 在执行数据库操作时,SqlSession是一个与数据库交互的会话。它提供了操作数据库的方法,例如执行SQL语句、处理事务等。 #### Spring框架 Spring的核心理念是IoC(控制反转)和AOP(面向切面编程),它通过依赖注入(DI)来管理对象的生命周期和对象间的依赖关系。Spring框架的主要组件有: - **IoC容器**: 也称为依赖注入(DI),管理对象的创建和它们之间的依赖关系。 - **AOP**: 允许将横切关注点(如日志、安全等)与业务逻辑分离。 - **事务管理**: 提供了一致的事务管理接口,可以在多个事务管理器之间切换,支持声明式事务和编程式事务。 - **Spring MVC**: 是Spring提供的基于MVC设计模式的Web框架,与Struts2类似,但更灵活,且与Spring的其他组件集成得更紧密。 #### 集成Struts2, iBatis和Spring 集成这三种框架的目的是利用它们各自的优势,在同一个项目中形成互补,提高开发效率和系统的可维护性。这种集成通常涉及以下步骤: 1. **配置整合**:在`web.xml`中配置Struts2的`StrutsPrepareAndExecuteFilter`,以及Spring的`DispatcherServlet`。 2. **依赖注入配置**:在Spring的配置文件中声明Struts2和iBatis的组件,以及需要的其他bean,并通过依赖注入将它们整合。 3. **Action和SQL映射**:在Struts2中创建Action类,并在iBatis的SQLMap配置文件中定义对应的SQL语句,将Struts2的Action与iBatis的映射关联起来。 4. **事务管理**:利用Spring的事务管理功能来管理数据库操作的事务。 5. **安全和服务层**:通过Spring的AOP和IoC功能来实现业务逻辑的解耦合和事务的管理。 ### 结语 通过上述的整合,开发者可以有效地利用Struts2处理Web层的展示和用户交互,使用iBatis简化数据库操作,同时借助Spring强大的依赖注入和事务管理功能,创建一个结构良好、可维护性强的应用。这种集成方式在许多企业级Java Web应用中非常常见,是Java开发人员必须掌握的知识点。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

Waymo使用稀疏图卷积处理LiDAR点云,目标检测精度提升15%

<think>好的,用户让我介绍一下Waymo使用稀疏图卷积处理LiDAR点云,目标检测精度提升15%的具体情况。我需要先回忆之前提供的回答中提到的相关案例,然后深入展开。 首先,用户可能已经知道稀疏图卷积的基本概念,但需要更详细的应用案例。他们可能对Waymo如何具体应用该技术感兴趣,比如技术细节、实现方式、提升的具体指标等。需要确保回答结构清晰,分点说明,同时保持技术准确性。 要考虑到用户可能的背景,可能是研究或工程领域的,需要技术细节,但避免过于复杂的数学公式,除非必要。之前回答中提到了应用案例,现在需要扩展这个部分。需要解释为什么稀疏图卷积在这里有效,比如处理LiDAR点云的稀疏性
recommend-type

Dwr实现无刷新分页功能的代码与数据库实例

### DWR简介 DWR(Direct Web Remoting)是一个用于允许Web页面中的JavaScript直接调用服务器端Java方法的开源库。它简化了Ajax应用的开发,并使得异步通信成为可能。DWR在幕后处理了所有的细节,包括将JavaScript函数调用转换为HTTP请求,以及将HTTP响应转换回JavaScript函数调用的参数。 ### 无刷新分页 无刷新分页是网页设计中的一种技术,它允许用户在不重新加载整个页面的情况下,通过Ajax与服务器进行交互,从而获取新的数据并显示。这通常用来优化用户体验,因为它加快了响应时间并减少了服务器负载。 ### 使用DWR实现无刷新分页的关键知识点 1. **Ajax通信机制:**Ajax(Asynchronous JavaScript and XML)是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术。通过XMLHttpRequest对象,可以与服务器交换数据,并使用JavaScript来更新页面的局部内容。DWR利用Ajax技术来实现页面的无刷新分页。 2. **JSON数据格式:**DWR在进行Ajax调用时,通常会使用JSON(JavaScript Object Notation)作为数据交换格式。JSON是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。 3. **Java后端实现:**Java代码需要编写相应的后端逻辑来处理分页请求。这通常包括查询数据库、计算分页结果以及返回分页数据。DWR允许Java方法被暴露给前端JavaScript,从而实现前后端的交互。 4. **数据库操作:**在Java后端逻辑中,处理分页的关键之一是数据库查询。这通常涉及到编写SQL查询语句,并利用数据库管理系统(如MySQL、Oracle等)提供的分页功能。例如,使用LIMIT和OFFSET语句可以实现数据库查询的分页。 5. **前端页面设计:**前端页面需要设计成能够响应用户分页操作的界面。例如,提供“下一页”、“上一页”按钮,或是分页条。这些元素在用户点击时会触发JavaScript函数,从而通过DWR调用Java后端方法,获取新的分页数据,并动态更新页面内容。 ### 数据库操作的关键知识点 1. **SQL查询语句:**在数据库操作中,需要编写能够支持分页的SQL查询语句。这通常涉及到对特定字段进行排序,并通过LIMIT和OFFSET来控制返回数据的范围。 2. **分页算法:**分页算法需要考虑当前页码、每页显示的记录数以及数据库中记录的总数。SQL语句中的OFFSET计算方式通常为(当前页码 - 1)* 每页记录数。 3. **数据库优化:**在分页查询时,尤其是当数据量较大时,需要考虑到查询效率问题。可以通过建立索引、优化SQL语句或使用存储过程等方式来提高数据库操作的性能。 ### DWR无刷新分页实现的代码要点 1. **DWR配置:**在实现DWR无刷新分页时,首先需要配置DWR,以暴露Java方法给前端JavaScript调用。 2. **JavaScript调用:**编写JavaScript代码,使用DWR提供的API发起Ajax调用。这些调用将触发后端Java方法,并接收返回的分页数据。 3. **数据展示:**在获取到新的分页数据后,需要将这些数据显示在前端页面的相应位置。这通常需要操作DOM元素,将新数据插入到页面中。 ### 结论 通过结合上述知识点,可以使用DWR技术实现一个无刷新分页的动态Web应用。DWR简化了Ajax通信过程,让开发者可以专注于业务逻辑的实现。通过熟练掌握Java后端处理、数据库查询和前端页面设计的相关技术,便能高效地完成无刷新分页的开发任务。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为
recommend-type

缓存延迟双删的实际解决方案通常怎么实现

<think>嗯,用户问的是关于缓存延迟双删的最佳实践和实际解决方案。首先,我需要回忆一下延迟双删的基本概念。根据引用[1]和[2],延迟双删主要是为了解决数据库和缓存之间的数据不一致问题,尤其是在分布式系统中。核心步骤应该是先删除缓存,再更新数据库,然后延迟一段时间再次删除缓存。但具体怎么操作呢? 用户可能已经知道延迟双删的基本思想,但需要更详细的步骤和注意事项。比如,为什么要延迟?延迟多久合适?这些都需要解释清楚。引用[3]提到先更新数据库再删除缓存是推荐的方法,但延迟双删可能是在某些特定场景下的优化。 接下来,我得考虑实现延迟双删的具体步骤。首先,第一次删除缓存是为了避免旧数据被后续
recommend-type

企业内部文档管理平台使用Asp.net技术构建

标题和描述中提到的知识点相当丰富,涉及到多个层面的IT技术和管理机制,具体如下: 1. Asp.net技术框架:Asp.net是微软公司开发的一个用于构建动态网站和网络应用程序的服务器端技术。它基于.NET平台,支持使用C#、VB.NET等多种编程语言开发应用程序。Asp.net企业信息文档管理系统使用Asp.net框架,意味着它将利用这一技术平台的特性,比如丰富的类库、集成开发环境(IDE)支持和面向对象的开发模型。 2.TreeView控件:TreeView是一种常用的Web控件,用于在网页上显示具有层次结构的数据,如目录、文件系统或组织结构。该控件通常用于提供给用户清晰的导航路径。在Asp.net企业信息文档管理系统中,TreeView控件被用于实现树状结构的文档管理功能,便于用户通过树状目录快速定位和管理文档。 3.系统模块设计:Asp.net企业信息文档管理系统被划分为多个模块,包括类别管理、文档管理、添加文档、浏览文档、附件管理、角色管理和用户管理等。这些模块化的设计能够让用户根据不同的功能需求进行操作,从而提高系统的可用性和灵活性。 4.角色管理:角色管理是企业信息管理系统中非常重要的一个部分,用于定义不同级别的用户权限和职责。在这个系统中,角色可以进行添加、编辑(修改角色名称)、删除以及上下移动(改变排列顺序)。这些操作满足了对用户权限细分和动态调整的需求。 5.操作逻辑:描述中详细说明了角色管理的操作步骤,如通过按钮选择进行角色的移动、修改和删除,提供了明确的用户交互流程,体现了系统设计的直观性。 6.系统安全性:系统提供了默认的管理帐号和密码(均为51aspx),这通常是一种简便的部署时临时设置。但在实际部署过程中,出于安全考虑,这些默认信息需要立即更改,并定期更新密码以避免潜在的安全风险。 7.文件结构:文件名称列表揭示了系统的文件结构和主要组成部分,比如Global.asax负责应用程序级别的事件处理,Default.aspx和Default.aspx.cs分别对应于系统的默认页面和后台代码文件,Web.Config用于存储和配置应用程序的设置,DocumentManager.sln和DocumentManager.suo分别指出了解决方案文件和解决方案用户选项文件,表明这是一个完整的Visual Studio解决方案。 通过上述知识点的梳理,我们可以看出Asp.net企业信息文档管理系统是一个集成了多个模块,具有良好用户体验设计、清晰操作逻辑和基本安全措施的IT解决方案。它不仅可以提高企业文档管理的效率,还能通过角色的权限管理确保信息的安全性和访问控制的合理性。同时,该系统还遵循了一定的软件工程实践,如模块化设计和配置文件的使用,以保障系统的可维护性和可扩展性。