活动介绍

``` # Load CIFAR-10 dataset train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)```这一部分改为加载自己的数据集,存储路径在“C:\Users\29930\Desktop\IOS图像\结构参数图”,其中包含两个子文件夹COPD和Non_COPD

时间: 2025-07-15 15:34:57 浏览: 8
<think>好的,用户想将原本加载CIFAR-10数据集的代码改为加载自己的数据集,路径在“C:\Users\29930\Desktop\IOS图像\结构参数图”,里面有两个子文件夹COPD和Non_COPD。我需要仔细分析这个问题,确保给出正确的解决方案。 首先,原代码使用的是PyTorch的datasets.CIFAR10,这是一个内置的数据集加载方法。而用户的数据集是自定义的,结构是每个类一个文件夹,所以应该使用ImageFolder来处理。ImageFolder会自动根据子文件夹分配标签,这正是用户需要的。 接下来,路径部分需要注意。用户提供的路径中有中文和空格,比如“IOS图像”和“结构参数图”。在Python中,直接使用这样的路径可能会导致问题,特别是反斜杠。需要将路径改为双反斜杠或者前面加r使用原始字符串。例如:r"C:\Users\29930\Desktop\IOS图像\结构参数图"。 然后,数据预处理部分。原代码中的transform可能包含对CIFAR-10的调整,比如 resize到32x32。但用户的数据集可能图片尺寸不同,需要根据实际情况调整transform参数。可能需要保持相同的预处理,或者根据模型需求修改,比如Resize到224x224如果使用预训练模型。 验证数据集的正确性也很重要。比如,检查数据集路径是否正确,每个子文件夹是否有足够的图片,图片格式是否正确(如.jpg, .png等)。如果数据集里还有其他文件,可能需要清理,避免加载错误。 另外,数据加载部分,用户可能需要调整batch_size,num_workers等参数,但原代码中没有给出,所以可能需要用户根据自己情况修改。但用户的问题只是关于加载数据集的部分,所以主要关注train_dataset和test_dataset的创建。 还有,数据集的划分。原CIFAR-10代码中,train=True和False来区分训练和测试集,但用户的数据集可能需要手动划分。或者,如果用户的数据已经分好了训练和测试集,可能需要分别放在不同的文件夹下,并使用两个ImageFolder实例。但根据用户描述,存储路径下只有COPD和Non_COPD两个子文件夹,可能意味着需要自己进行训练测试分割。这时候可能需要使用torch.utils.data.random_split或者其他的方法。但用户给出的代码示例中,train_dataset和test_dataset是分开的,所以需要确认用户的数据是否已经分好了训练和测试集,还是需要代码中进行分割。 假设用户的数据集中所有图像都在两个子文件夹下,需要自己划分训练集和测试集。这时候应该先创建一个完整的dataset,然后进行分割。例如: full_dataset = datasets.ImageFolder(root=path, transform=transform) train_size = int(0.8 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) 但用户原来的代码是直接加载train和test,所以可能需要用户的数据集结构是train和test各自有COPD和Non_COPD子文件夹。需要用户澄清这一点,但根据当前信息,可能用户的数据尚未划分,因此需要在代码中进行分割。或者,用户可能已经将数据分成了训练和测试集,存放在不同的路径下,但问题中只提到了一个路径,所以可能需要进一步确认。 不过,根据用户的问题描述,他们可能希望替换原有的CIFAR-10加载代码,而他们的数据可能没有预先分成训练和测试集,因此需要代码中进行分割。或者,可能用户的数据集结构类似于ImageNet,每个类一个文件夹,但需要分别指定训练和测试的根目录。这时候需要用户提供两个不同的路径。但根据当前问题,用户只给了一个路径,里面包含两个子文件夹,所以可能用户的数据没有预先分割训练和测试集,需要代码中进行处理。 这时候可能需要使用ImageFolder加载整个数据集,然后用random_split进行分割。例如: dataset = datasets.ImageFolder(root='path', transform=transform) train_size = int(0.8 * len(dataset)) test_size = len(dataset) - train_size train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size]) 但原来的代码中train和test是分开加载的,所以用户可能需要的是这样的方式。但用户的数据集可能没有预先分好训练和测试,所以需要这样处理。或者,用户的数据集可能有不同的结构,比如主文件夹下有train和test子文件夹,每个里面包含COPD和Non_COPD。这时需要分别指定train_root和test_root。 如果用户的“结构参数图”文件夹下已经分好了train和test子文件夹,每个里面包含COPD和Non_COPD,那么代码应该分别加载: train_dataset = datasets.ImageFolder(root='path/train', transform=transform) test_dataset = datasets.ImageFolder(root='path/test', transform=transform) 但根据用户给出的路径,可能没有这样的结构,所以需要明确用户的数据集结构。 不过,用户的问题描述中,存储路径下直接包含COPD和Non_COPD两个子文件夹,说明所有数据都在一个文件夹下,没有预先分割训练和测试集。因此,用户需要在自己的代码中进行分割。这时候需要修改原代码,使用ImageFolder加载整个数据集,然后进行split。 但原代码中的train=True和train=False是CIFAR-10特有的参数,用于区分训练和测试集。所以用户需要将这部分改为加载自己的数据集,并正确划分训练和测试。 总结步骤: 1. 使用torchvision.datasets.ImageFolder加载数据集,指定正确的路径。 2. 确保路径字符串在Python中正确,处理反斜杠和空格。 3. 根据需要进行数据预处理,调整transform参数。 4. 划分训练集和测试集,可以使用random_split。 5. 创建DataLoader实例,如果需要的话。 此外,需要处理可能的异常,比如路径错误,图片损坏等。建议用户检查数据集路径是否正确,图片格式是否支持,以及是否有足够的样本数量。 最后,给出示例代码,并解释每个步骤,确保用户能够理解如何修改原有的代码。</think>以下是将CIFAR-10代码改为加载自定义数据集的逐步解决方案: $$注意:路径中的反斜杠需要转义或使用原始字符串$$ ### 第一步:导入必要库 ```python import torch from torchvision import datasets, transforms from torch.utils.data import DataLoader, random_split ``` ### 第二步:定义数据预处理 ```python transform = transforms.Compose([ transforms.Resize(224), # 根据模型需求调整尺寸 transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], # ImageNet统计值 std=[0.229, 0.224, 0.225]) ]) ``` ### 第三步:加载自定义数据集 ```python # 使用原始字符串处理Windows路径和空格 dataset_path = r"C:\Users\29930\Desktop\IOS图像\结构参数图" # 加载完整数据集 full_dataset = datasets.ImageFolder( root=dataset_path, transform=transform ) ``` ### 第四步:划分训练集/测试集 ```python # 按8:2比例划分 train_size = int(0.8 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = random_split( full_dataset, [train_size, test_size] ) ``` ### 第五步:创建数据加载器(可选) ```python batch_size = 32 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size) ``` ### 关键验证点: 1. **路径验证**:确保: $$ \text{dataset\_path} \Rightarrow \text{包含COPD/Non\_COPD子文件夹} $$ 2. **数据统计**: ```python print(f"类别对应标签: {full_dataset.class_to_idx}") print(f"训练样本数: {len(train_dataset)}") print(f"测试样本数: {len(test_dataset)}") ``` ### 常见问题处理: 1. **路径错误**:使用`os.path.exists(dataset_path)`验证路径有效性 2. **图片格式**:确保只包含`.jpg/.png`等标准格式 3. **类别平衡**:可通过`Counter([label for _, label in full_dataset])`检查类别分布 完整代码示例见:[https://github.com/pytorch/vision/datasets](ImageFolder文档)
阅读全文

相关推荐

import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np # ------------------- 参数设置 ------------------- MODEL_PATH = "resnet50_mnist.pth" # 替换为你的模型路径 BATCH_SIZE = 64 NUM_WORKERS = 4 # ------------------- 数据准备 ------------------- transform = transforms.Compose([ transforms.Resize(224), transforms.Grayscale(num_output_channels=3), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) test_dataset = torchvision.datasets.MNIST( root='./data', train=False, download=True, transform=transform ) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=NUM_WORKERS ) # ------------------- 模型定义 ------------------- def create_resnet(): model = torchvision.models.resnet50(pretrained=False) model.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) model.fc = nn.Linear(2048, 10) return model # **关键修改1:加载时指定CPU设备** model = create_resnet() model.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device('cpu'))) # 强制加载到CPU model.eval() # ------------------- 测试函数 ------------------- def test_model(): correct = 0 total = 0 wrong_images = [] wrong_labels = [] wrong_preds = [] with torch.no_grad(): for images, labels in test_loader: # **关键修改2:确保数据在CPU** outputs = model(images) # 自动使用CPU计算 _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() wrong_mask = (predicted != labels) wrong_images.append(images[wrong_mask]) wrong_labels.append(labels[wrong_mask]) wrong_preds.append(predicted[wrong_mask]) wrong_images = torch.cat(wrong_images) wrong_labels = torch.cat(wrong_labels) wrong_preds = torch.cat(wrong_preds) return correct / total, wrong_images, wrong_labels, wrong_preds # ------------------- 执行测试 ------------------- accuracy, wrong_images, wrong_labels, wrong_preds = test_model() print(f"Test Accuracy: {accuracy*100:.2f}%") # ------------------- 可视化错误样本 ------------------- def imshow(img, title): img = img.numpy().transpose((1, 2, 0)) mean = np.array([0.1307]) std = np.array([0.3081]) img = std * img + mean img = np.clip(img, 0, 1) plt.imshow(img[:, :, 0], cmap='gray') plt.title(title) plt.axis('off') plt.figure(figsize=(12, 12)) for i in range(25): if i >= len(wrong_images): break plt.subplot(5, 5, i+1) imshow(wrong_images[i], f"True: {wrong_labels[i].item()}\nPred: {wrong_preds[i].item()}") plt.tight_layout() plt.savefig('wrong_predictions.png') plt.show()将以上代码改为错误图像储存到指定文件夹内

import torch import json import os import argparse import numpy as np import re from torch.utils.data import Dataset, DataLoader from tqdm import tqdm from PIL import Image from peft import LoraConfig, get_peft_model from transformers import ( AutoModelForCausalLM, AutoProcessor, TrainingArguments, BitsAndBytesConfig, GenerationConfig, get_cosine_schedule_with_warmup ) import torch.optim as optim from sklearn.metrics import f1_score, accuracy_score, precision_score, recall_score, classification_report import warnings warnings.filterwarnings("ignore", message="Could not find a config file") # 标签映射定义 TASK1_LABEL_MAP = {"无害": 0, "有害": 1} TASK2_LABEL_MAP = { 0: "无害", 1: "针对性有害", 2: "一般性有害", 3: "性暗示", 4: "沮丧文化" } class HarmfulMemeDataset(Dataset): def __init__(self, annotation_path, processor, task_name, image_root=None): print(f"Loading annotations from: {annotation_path}") self.image_root = image_root with open(annotation_path, 'r', encoding='utf-8') as f: self.data = json.load(f) self.processor = processor self.task_name = task_name self.label_token_ids = self._get_label_tokens() def _get_label_tokens(self): """获取标签对应的token ID""" if self.task_name == "task_1": labels = ["无害", "有害"] else: labels = [str(i) for i in range(5)] # 0-4 token_ids = {} tokenizer = self.processor.tokenizer for label in labels: tokens = tokenizer.encode(label) token_ids[label] = tokens # 保存完整的token序列 if len(tokens) > 1: print(f"警告: 标签 '{label}' 被分词为多个token: {tokens}") return token_ids def __len__(self): return len(self.data) def __getitem__(self, idx): sample = self.data[idx] if self.image_root: image_path = os.path.join(self.image_root, sample["path"]) else: image_path = sample["path"] if not os.path.exists(image_path): raise FileNotFoundError(f"图片不存在:{image_path}") image = Image.open(image_path).convert("RGB") if self.task_name == "task_1": user_content = f"任务:有害模因检测(是否有害)。\n输入文本:'{sample['text']}'\n请判断此图文组合是否有害。" raw_label = sample['label']# 原始标签是字符串("无害"或"有害") # 根据TASK1_LABEL_MAP进行映射 if isinstance(raw_label, int): # 如果是整数,转换为对应的字符串标签 label_map = {v: k for k, v in TASK1_LABEL_MAP.items()} # 反转映射 label = label_map.get(raw_label, "无害") # 默认值为"无害" else: # 如果已经是字符串,直接使用 label = raw_label label_token = self.label_token_ids[label] assistant_content = f"结论:{label}。\n理由:{sample['explanation']}" else: user_content = f"任务:有害模因类型分类。\n输入文本:'{sample['text']}'\n请判断此图文组合的有害类型(0-4)。" raw_label = str(sample['type'])# 将整数标签转换为字符串 label = str(raw_label) label_token = self.label_token_ids[label] assistant_content = f"结论:{label}。\n理由:{sample['explanation']}" messages = [ {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": user_content}]}, {"role": "assistant", "content": [{"type": "text", "text": assistant_content}]} ] prompt = self.processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, chat_format="chatml" ) # 使用processor处理文本,避免直接调用tokenizer.encode encoding = self.processor( text=prompt, images=None, # 只处理文本 return_tensors="pt", padding=False, truncation=False ) prompt_tokens = encoding["input_ids"][0].tolist() # 找到结论标签的位置 conclusion_start = self.processor.tokenizer.encode("结论:") # 在prompt中查找"结论:"的位置 start_idx = -1 for i in range(len(prompt_tokens) - len(conclusion_start) + 1): if prompt_tokens[i:i+len(conclusion_start)] == conclusion_start: start_idx = i + len(conclusion_start) break inputs = self.processor( text=prompt, images=image, return_tensors="pt", padding="max_length", truncation=True, max_length=512 ) inputs = {k: v.squeeze(0) for k, v in inputs.items()} # 创建标签张量,只标记结论位置 labels = torch.full_like(inputs["input_ids"], fill_value=-100, dtype=torch.long) if start_idx != -1 and start_idx < len(labels): # 标记整个标签token序列 label_tokens = self.label_token_ids[label] for i, token_id in enumerate(label_tokens): if start_idx + i < len(labels): labels[start_idx + i] = token_id inputs["labels"] = labels return inputs def parse_generated_text(self,text): """解析生成的文本,提取结论标签""" conclusion_match = re.search(r"结论[::]\s*(\S+)", text) if not conclusion_match: return None conclusion = conclusion_match.group(1).strip().rstrip('。.') # 处理多token标签 if conclusion in ["无害", "有害"]: # 任务1标签 return conclusion elif conclusion.isdigit() and 0 <= int(conclusion) <= 4: # 任务2标签 return conclusion # 尝试分词匹配 tokenizer = AutoProcessor.from_pretrained(args.model_id).tokenizer conclusion_tokens = tokenizer.encode(conclusion, add_special_tokens=False) # 与已知标签的token序列匹配 for label, tokens in self.label_token_ids.items(): if conclusion_tokens == tokens: return label return None def compute_metrics(task_name, preds, labels): """计算评估指标""" mask = labels != -100 preds = preds[mask] labels = labels[mask] if task_name == "task_1": # 二分类任务 return { "accuracy": accuracy_score(labels, preds), "f1": f1_score(labels, preds, average="binary"), "precision": precision_score(labels, preds, average="binary"), "recall": recall_score(labels, preds, average="binary") } else: # 多分类任务 report = classification_report(labels, preds, output_dict=True, zero_division=0) return { "accuracy": accuracy_score(labels, preds), "f1_macro": f1_score(labels, preds, average="macro"), "precision_macro": precision_score(labels, preds, average="macro"), "recall_macro": recall_score(labels, preds, average="macro"), "class_report": report } def main(args): os.environ["TOKENIZERS_PARALLELISM"] = "false" # 1. 加载模型和预处理器 print("Loading model and processor...") quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained( args.model_id, quantization_config=quantization_config, trust_remote_code=True, device_map="auto", bf16=True ) model.generation_config = GenerationConfig.from_pretrained( args.model_id, trust_remote_code=True, chat_format="chatml", max_new_tokens=100, pad_token_id=model.generation_config.eos_token_id ) processor = AutoProcessor.from_pretrained(args.model_id, trust_remote_code=True) processor.chat_template = """{% for message in messages %} <|im_start|>{{ message['role'] }} {{ message['content'] }} <|im_end|> {% endfor %} {% if add_generation_prompt %} <|im_start|>assistant {% endif %}""" # 设置pad token if processor.pad_token is None: eod_token = processor.tokenizer.decode([processor.tokenizer.eot_token]) processor.pad_token = eod_token print(f"已设置pad_token为:{processor.pad_token}") # 2. LoRA配置 print("Configuring LoRA...") lora_config = LoraConfig( r=args.lora_rank, lora_alpha=args.lora_alpha, lora_dropout=args.lora_dropout, bias="none", task_type="CAUSAL_LM", target_modules=[ "c_attn", "c_proj", "w1", "w2", "w3", "visual.proj", "visual.image_encoder" ] ) peft_model = get_peft_model(model, lora_config) peft_model.print_trainable_parameters() # 3. 初始化优化器和调度器 optimizer = optim.AdamW( peft_model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay ) # 4. 训练参数配置 training_args = TrainingArguments( output_dir=os.path.join(args.output_dir, args.task), num_train_epochs=args.epochs, per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.eval_batch_size, gradient_accumulation_steps=args.grad_accum_steps, learning_rate=args.learning_rate, weight_decay=args.weight_decay, lr_scheduler_type="cosine", logging_strategy="steps", logging_steps=10, save_strategy="epoch", eval_strategy="epoch", eval_accumulation_steps=1, metric_for_best_model="f1" if args.task == "task_1" else "f1_macro", greater_is_better=True, load_best_model_at_end=True, bf16=True, report_to="none", remove_unused_columns=False, disable_tqdm=False, skip_memory_metrics=True, dataloader_pin_memory=False, ) # 5. 加载数据集 print(f"Loading datasets for {args.task}...") train_dataset = HarmfulMemeDataset( annotation_path=args.train_annotation_path, processor=processor, task_name=args.task, image_root=args.image_root ) test_dataset = HarmfulMemeDataset( annotation_path=args.test_annotation_path, processor=processor, task_name=args.task, image_root=args.image_root ) # 创建数据加载器 train_loader = DataLoader( train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True ) eval_loader = DataLoader( test_dataset, batch_size=args.eval_batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True ) # 计算总步数,初始化学习率调度器 total_train_steps = len(train_loader) // args.grad_accum_steps * args.epochs scheduler = get_cosine_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=total_train_steps ) # 6. 训练循环 print(f"Starting {args.task} training...") best_metric = -1 for epoch in range(args.epochs): print(f"\n===== Epoch {epoch + 1}/{args.epochs} =====") # 训练阶段 peft_model.train() total_train_loss = 0.0 train_pbar = tqdm(train_loader, desc=f"Training Epoch {epoch + 1}", unit="batch") for step, batch in enumerate(train_pbar): batch = {k: v.to(peft_model.device) for k, v in batch.items()} # 前向传播 outputs = peft_model(**batch) loss = outputs.loss total_train_loss += loss.item() # 梯度累积 loss = loss / args.grad_accum_steps loss.backward() # 参数更新 if (step + 1) % args.grad_accum_steps == 0: optimizer.step() scheduler.step() optimizer.zero_grad() # 更新进度条 train_pbar.set_postfix({"loss": f"{loss.item() * args.grad_accum_steps:.4f}"}) avg_train_loss = total_train_loss / len(train_loader) print(f"Epoch {epoch + 1} 平均训练损失: {avg_train_loss:.4f}") # 评估阶段 peft_model.eval() all_preds = [] all_labels = [] all_generated_texts = [] eval_pbar = tqdm(eval_loader, desc=f"Evaluating Epoch {epoch + 1}", unit="batch") with torch.no_grad(): for batch in eval_pbar: # 获取真实标签 labels = batch["labels"].cpu().numpy() mask = labels != -100 valid_labels = labels[mask].reshape(-1) # 生成文本 inputs = {k: v.to(peft_model.device) for k, v in batch.items() if k != "labels"} generated_ids = peft_model.generate( **inputs, generation_config=model.generation_config, pad_token_id = processor.tokenizer.pad_token_id if hasattr(processor.tokenizer, 'pad_token_id') else processor.tokenizer.eos_token_id ) # 解码生成的文本 generated_texts = processor.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True ) # 解析生成的文本获取预测标签 batch_preds = [] for text in generated_texts: # 提取assistant的响应部分 if "<|im_start|>assistant" in text: response = text.split("<|im_start|>assistant")[-1].strip() else: response = text # 解析结论 conclusion = parse_generated_text(response) if conclusion is None: # 无法解析结论,使用默认值 pred_label = 0 if args.task == "task_1" else "0" else: pred_label = conclusion # 转换为数字标签 if args.task == "task_1": # 二分类任务 if "无害" in pred_label: pred_value = 0 elif "有害" in pred_label: pred_value = 1 else: # 无法解析,使用默认值 pred_value = 0 else: # 多分类任务 if pred_label in ["0", "1", "2", "3", "4"]: pred_value = int(pred_label) else: # 无法解析,使用默认值 pred_value = 0 batch_preds.append(pred_value) all_preds.extend(batch_preds) all_labels.extend(valid_labels.tolist()) all_generated_texts.extend(generated_texts) # 计算评估指标 metrics = compute_metrics(args.task, np.array(all_preds), np.array(all_labels)) # 打印评估结果 print("\n评估指标:") print("=" * 50) if args.task == "task_1": print(f"Accuracy: {metrics['accuracy']:.4f}") print(f"F1 Score: {metrics['f1']:.4f}") print(f"Precision: {metrics['precision']:.4f}") print(f"Recall: {metrics['recall']:.4f}") else: print(f"Accuracy: {metrics['accuracy']:.4f}") print(f"Macro F1: {metrics['f1_macro']:.4f}") print(f"Macro Precision: {metrics['precision_macro']:.4f}") print(f"Macro Recall: {metrics['recall_macro']:.4f}") print("\n分类报告:") print(classification_report(all_labels, all_preds, target_names=list(TASK2_LABEL_MAP.values()), zero_division=0)) print("=" * 50) # 保存最佳模型 current_metric = metrics["f1"] if args.task == "task_1" else metrics["f1_macro"] if current_metric > best_metric: best_metric = current_metric save_path = os.path.join(training_args.output_dir, f"best_model_epoch{epoch+1}") print(f"保存最佳模型(指标 {current_metric:.4f})到 {save_path}") peft_model.save_pretrained(save_path) # 保存生成的文本示例 sample_output_path = os.path.join(save_path, "sample_outputs.txt") with open(sample_output_path, "w", encoding="utf-8") as f: for i, text in enumerate(all_generated_texts[:10]): f.write(f"样本 {i+1}:\n") f.write(text) f.write("\n" + "-"*80 + "\n") print(f"训练完成!最佳指标: {best_metric:.4f}") if __name__ == "__main__": parser = argparse.ArgumentParser(description="训练有害模因检测模型") parser.add_argument("--model_id", default="/xzwu/Qwen-VL-Chat", help="预训练模型路径") parser.add_argument("--output_dir", default="/xzwu/explain-m3-adapter", help="输出目录") parser.add_argument("--epochs", type=int, default=5, help="训练轮数") parser.add_argument("--batch_size", type=int, default=4, help="训练批次大小") parser.add_argument("--eval_batch_size", type=int, default=4, help="评估批次大小") parser.add_argument("--grad_accum_steps", type=int, default=2, help="梯度累积步数") parser.add_argument("--learning_rate", type=float, default=1e-5, help="学习率") parser.add_argument("--weight_decay", type=float, default=0.01, help="权重衰减") parser.add_argument("--warmup_steps", type=int, default=100, help="预热步数") parser.add_argument("--lora_rank", type=int, default=8, help="LoRA秩") parser.add_argument("--lora_alpha", type=int, default=16, help="LoRA alpha") parser.add_argument("--lora_dropout", type=float, default=0.1, help="LoRA dropout") parser.add_argument("--num_workers", type=int, default=4, help="数据加载工作线程数") parser.add_argument("--task", choices=["task_1", "task_2"], default="task_1", help="任务类型") parser.add_argument("--train_annotation_path", default="/xzwu/data/data/train_data_explanation.json", help="训练标注路径") parser.add_argument("--test_annotation_path", default="/xzwu/data/data/test_data_explanation.json", help="测试标注路径") parser.add_argument("--image_root", default="/xzwu/data/meme", help="图片根目录") args = parser.parse_args() # 打印配置 print("=" * 50) print("训练配置:") for arg in vars(args): print(f"{arg}: {getattr(args, arg)}") print("=" * 50) main(args)这个代码是用构造一个端到端的可解释的框架,基础模型是qwen-vl-chat,这个代码进行任务一:判断模因是否有害,任务二:判断模因的有害类型两个任务的训练和评估代码,但是运行这个代码之后报错:Traceback (most recent call last): File "/xzwu/explain-m3/explain-m3-project/train2.py", line 513, in <module> main(args) File "/xzwu/explain-m3/explain-m3-project/train2.py", line 392, in main if hasattr(processor.text_processor.tokenizer, 'pad_token_id') AttributeError: 'QWenTokenizer' object has no attribute 'text_processor'

import torch import numpy as np from matplotlib import pyplot as plt from torch.utils.data import DataLoader from torchvision import transforms from torchvision import datasets import torch.nn.functional as F """ 卷积运算 使用mnist数据集,和10-4,11类似的,只是这里:1.输出训练轮的acc 2.模型上使用torch.nn.Sequential """ # Super parameter ------------------------------------------------------------------------------------ batch_size = 64 learning_rate = 0.01 momentum = 0.5 EPOCH = 10 # Prepare dataset ------------------------------------------------------------------------------------ transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # softmax归一化指数函数(https://blog.csdn.net/lz_peter/article/details/84574716),其中0.1307是mean均值和0.3081是std标准差 train_dataset = datasets.MNIST(root='./data/mnist', train=True, transform=transform) # 本地没有就加上download=True test_dataset = datasets.MNIST(root='./data/mnist', train=False, transform=transform) # train=True训练集,=False测试集 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) fig = plt.figure() for i in range(12): plt.subplot(3, 4, i+1) plt.tight_layout() plt.imshow(train_dataset.train_data[i], cmap='gray', interpolation='none') plt.title("Labels: {}".format(train_dataset.train_labels[i])) plt.xticks([]) plt.yticks([]) plt.show() # 训练集乱序,测试集有序 # Design model using class ------------------------------------------------------------------------------ class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Sequential( torch.nn.Conv2d(1, 10, kernel_size=5), torch.nn.ReLU(), torch.nn.MaxPool2d(kernel_size=2), ) self.conv2 = torch.nn.Sequential( torch.nn.Conv2d(10, 20, kernel_size=5), torch.nn.ReLU(), torch.nn.MaxPool2d(kernel_size=2), ) self.fc = torch.nn.Sequential( torch.nn.Linear(320, 50), torch.nn.Linear(50, 10), ) def forward(self, x): batch_size = x.size(0) x = self.conv1(x) # 一层卷积层,一层池化层,一层激活层(图是先卷积后激活再池化,差别不大) x = self.conv2(x) # 再来一次 x = x.view(batch_size, -1) # flatten 变成全连接网络需要的输入 (batch, 20,4,4) ==> (batch,320), -1 此处自动算出的是320 x = self.fc(x) return x # 最后输出的是维度为10的,也就是(对应数学符号的0~9) model = Net() # Construct loss and optimizer ------------------------------------------------------------------------------ criterion = torch.nn.CrossEntropyLoss() # 交叉熵损失 optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum) # lr学习率,momentum冲量 # Train and Test CLASS -------------------------------------------------------------------------------------- # 把单独的一轮一环封装在函数类里 def train(epoch): running_loss = 0.0 # 这整个epoch的loss清零 running_total = 0 running_correct = 0 for batch_idx, data in enumerate(train_loader, 0): inputs, target = data optimizer.zero_grad() # forward + backward + update outputs = model(inputs) loss = criterion(outputs, target) loss.backward() optimizer.step() # 把运行中的loss累加起来,为了下面300次一除 running_loss += loss.item() # 把运行中的准确率acc算出来 _, predicted = torch.max(outputs.data, dim=1) running_total += inputs.shape[0] running_correct += (predicted == target).sum().item() if batch_idx % 300 == 299: # 不想要每一次都出loss,浪费时间,选择每300次出一个平均损失,和准确率 print('[%d, %5d]: loss: %.3f , acc: %.2f %%' % (epoch + 1, batch_idx + 1, running_loss / 300, 100 * running_correct / running_total)) running_loss = 0.0 # 这小批300的loss清零 running_total = 0 running_correct = 0 # 这小批300的acc清零 #保存模型 torch.save(model.state_dict(), './model_Mnist.pth') # torch.save(optimizer.state_dict(), './optimizer_Mnist.pth') def test(): correct = 0 total = 0 with torch.no_grad(): # 测试集不用算梯度 for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, dim=1) # dim = 1 列是第0个维度,行是第1个维度,沿着行(第1个维度)去找1.最大值和2.最大值的下标 total += labels.size(0) # 张量之间的比较运算 correct += (predicted == labels).sum().item() acc = correct / total print('[%d / %d]: Accuracy on test set: %.1f %% ' % (epoch+1, EPOCH, 100 * acc)) # 求测试的准确率,正确数/总数 return acc # Start train and Test -------------------------------------------------------------------------------------- if __name__ == '__main__': acc_list_test = [] for epoch in range(EPOCH): train(epoch) # if epoch % 10 == 9: #每训练10轮 测试1次 acc_test = test() acc_list_test.append(acc_test) plt.plot(acc_list_test) plt.xlabel('Epoch') plt.ylabel('Accuracy On TestSet') plt.show() 基于开始给你提供的将pth转化为onnx的代码,分析我这次提供给你的手写体数字识别的pytorch代码,生成适合本源码的将pth转化为onnx的代码,要和我开始提供给你的内容结构一样

import os import torch from transformers import ( AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, BitsAndBytesConfig, DataCollatorWithPadding, set_seed, ) from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training from datasets import load_dataset, load_from_disk import bitsandbytes as bnb import numpy as np from transformers import Trainer, TrainerCallback import logging import gc import matplotlib # 设置matplotlib后端,避免GUI问题 matplotlib.use('Agg') import matplotlib.pyplot as plt # 添加评估指标库 from rouge_score import rouge_scorer import nltk from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction # 下载NLTK数据(如果尚未下载) try: nltk.data.find('tokenizers/punkt') except LookupError: nltk.download('punkt') # 设置随机种子 set_seed(42) # 更激进的显存管理配置 os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32" torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True def clear_gpu_memory(): """清理GPU显存""" gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.synchronize() def print_gpu_utilization(): if torch.cuda.is_available(): allocated = torch.cuda.memory_allocated()/1024**3 reserved = torch.cuda.memory_reserved()/1024**3 print(f"GPU memory allocated: {allocated:.2f} GB") print(f"GPU memory reserved: {reserved:.2f} GB") # 检查 CUDA 状态 print(f"CUDA available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"Total GPU memory: {torch.cuda.get_device_properties(0).total_memory/1024**3:.2f} GB") print("初始显存使用情况:") print_gpu_utilization() # 模型路径 model_name = "/root/autodl-tmp/deepseek-ai/deepseek-llm-7b-chat" # 4-bit 量化配置 - 更节省显存的配置 quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) # 加载 tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) # 清理显存 clear_gpu_memory() # 加载模型(量化) print("加载模型中...") print_gpu_utilization() model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=quantization_config, device_map="auto", torch_dtype=torch.float16, low_cpu_mem_usage=True, # 减少CPU内存使用 ) print("模型加载完成:") print_gpu_utilization() # 准备模型进行 k-bit 训练 model.config.use_cache = False model.gradient_checkpointing_enable() model = prepare_model_for_kbit_training(model) # 配置 LoRA lora_config = LoraConfig( r=4, # 保持较小的rank lora_alpha=16, target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], lora_dropout=0.1, bias="none", task_type="CAUSAL_LM", inference_mode=False ) # 应用 LoRA 到模型 model = get_peft_model(model, lora_config) # 打印可训练参数信息 def print_trainable_parameters(model): trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || " f"all params: {all_param} || " f"trainable%: {100 * trainable_params / all_param:.2f}" ) print_trainable_parameters(model) # 数据路径 data_dir = "/root/autodl-tmp/self-llm-master/medical data/" # 自动判断加载方式(支持 .jsonl 或 .arrow) def load_dataset_smart(path): if os.path.isdir(path): dataset = load_from_disk(path) elif os.path.isfile(path) and path.endswith(".jsonl"): dataset = load_dataset("json", data_files=path) else: raise ValueError(f"不支持的文件类型:{path}") return dataset # 只加载训练集和验证集 print("加载数据集...") train_dataset = load_dataset_smart(os.path.join(data_dir, "train.jsonl"))["train"] # 加载验证集用于评估指标 eval_dataset = load_dataset_smart(os.path.join(data_dir, "dev.jsonl"))["train"] print(f"Train size: {len(train_dataset)}") print(f"Eval size: {len(eval_dataset)}") # 编码函数:合并 Question + Response 并生成 labels def tokenize_function(examples): prompts = [str(p) for p in examples["Question"]] completions = [str(c) for c in examples["Response"]] full_text = [p + "\n" + c for p, c in zip(prompts, completions)] # 进一步减小序列长度以节省显存 result = tokenizer(full_text, truncation=True, max_length=64, padding="max_length", return_tensors="pt") result["labels"] = result["input_ids"].clone() return result # 用于评估的编码函数(保留原始文本) def tokenize_function_for_eval(examples): prompts = [str(p) for p in examples["Question"]] completions = [str(c) for c in examples["Response"]] full_text = [p + "\n" + c for p, c in zip(prompts, completions)] # 对于评估,我们需要保留原始文本以便生成和比较 result = tokenizer(full_text, truncation=True, max_length=64, padding="max_length", return_tensors="pt") result["labels"] = result["input_ids"].clone() result["prompts"] = prompts # 保留原始问题 result["references"] = completions # 保留原始答案 return result print("开始tokenize数据...") print_gpu_utilization() # 应用 tokenize (处理训练集和验证集) tokenized_train = train_dataset.map( tokenize_function, batched=True, batch_size=8, # 减小批次大小 num_proc=1, # 减少进程数到1 remove_columns=["Question", "Response", "Complex_CoT"], desc="Tokenizing train dataset" ) tokenized_eval = eval_dataset.map( tokenize_function_for_eval, batched=True, batch_size=8, num_proc=1, remove_columns=["Question", "Response", "Complex_CoT"], desc="Tokenizing eval dataset" ) print("数据处理完成:") print_gpu_utilization() # 数据整理器(用于动态 padding) data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="longest") # 训练参数配置 - 添加验证相关参数 training_args = TrainingArguments( output_dir="./deepseek-medical", overwrite_output_dir=True, num_train_epochs=1, per_device_train_batch_size=1, per_device_eval_batch_size=1, gradient_accumulation_steps=32, learning_rate=1e-4, weight_decay=0.01, warmup_steps=100, save_steps=50, logging_steps=10, save_total_limit=2, bf16=False, fp16=True, logging_dir="./logs", report_to="none", optim="adamw_torch", evaluation_strategy="steps", # 每隔一定步骤进行验证 eval_steps=50, # 每50步验证一次 save_strategy="steps", disable_tqdm=False, group_by_length=True, save_safetensors=False, load_best_model_at_end=True, # 训练结束后加载最佳模型 dataloader_pin_memory=False, remove_unused_columns=True, dataloader_num_workers=0, gradient_checkpointing=True, max_grad_norm=1.0, greater_is_better=False, # 损失越小越好 metric_for_best_model="eval_loss", # 使用验证损失作为最佳模型选择标准 ) # 用于存储训练过程中的损失值 class LossLoggingCallback(TrainerCallback): def __init__(self): self.train_losses = [] self.eval_losses = [] self.steps = [] self.eval_steps = [] self.logged = False # 标记是否已记录数据 def on_log(self, args, state, control, logs=None, **kwargs): # 检查日志中是否有损失信息 if logs and "loss" in logs: self.train_losses.append(logs["loss"]) self.steps.append(state.global_step) self.logged = True print(f"记录损失 - Step: {state.global_step} | Train Loss: {logs['loss']:.4f}") elif logs and "eval_loss" in logs: self.eval_losses.append(logs["eval_loss"]) self.eval_steps.append(state.global_step) print(f"记录验证损失 - Step: {state.global_step} | Eval Loss: {logs['eval_loss']:.4f}") elif logs: print(f"日志内容: {list(logs.keys())}") # 调试信息,查看日志中有什么键 # 计算评估指标的函数 def compute_metrics(eval_preds): preds, labels = eval_preds # 如果预测是logits,需要转换为token IDs if isinstance(preds, tuple): preds = preds[0] # 获取预测的token IDs pred_ids = np.argmax(preds, axis=-1) # 计算基本指标(准确率等) accuracy = (pred_ids == labels).astype(np.float32).mean().item() # 初始化ROUGE评分器 scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True) # 存储所有分数 rouge1_scores = [] rouge2_scores = [] rougeL_scores = [] bleu_scores = [] # 使用平滑函数计算BLEU smoothing = SmoothingFunction().method1 # 遍历每个样本计算指标 for i in range(len(pred_ids)): # 解码预测和参考文本 pred_text = tokenizer.decode(pred_ids[i], skip_special_tokens=True) ref_text = tokenizer.decode(labels[i], skip_special_tokens=True) # 计算ROUGE分数 try: scores = scorer.score(ref_text, pred_text) rouge1_scores.append(scores['rouge1'].fmeasure) rouge2_scores.append(scores['rouge2'].fmeasure) rougeL_scores.append(scores['rougeL'].fmeasure) except Exception as e: # 如果计算出错,添加0分 rouge1_scores.append(0.0) rouge2_scores.append(0.0) rougeL_scores.append(0.0) # 计算BLEU分数 try: # 将文本分词 ref_tokens = nltk.word_tokenize(ref_text.lower()) pred_tokens = nltk.word_tokenize(pred_text.lower()) # 计算BLEU-1到BLEU-4分数并取平均 bleu_score = sentence_bleu( [ref_tokens], pred_tokens, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=smoothing ) bleu_scores.append(bleu_score) except Exception as e: bleu_scores.append(0.0) # 返回平均分数 return { "accuracy": accuracy, "rouge1": np.mean(rouge1_scores) if rouge1_scores else 0.0, "rouge2": np.mean(rouge2_scores) if rouge2_scores else 0.0, "rougeL": np.mean(rougeL_scores) if rougeL_scores else 0.0, "bleu": np.mean(bleu_scores) if bleu_scores else 0.0, } # 简化的 Trainer (移除评估函数) class SimpleTrainer(Trainer): def log(self, logs): if "loss" in logs: logs["Train Loss"] = logs.pop("loss") if "eval_loss" in logs: logs["Eval Loss"] = logs.pop("eval_loss") if "learning_rate" in logs: logs["Learning Rate"] = logs.pop("learning_rate") if "train_samples_per_second" in logs: logs["Train Samples/Second"] = f"{logs.pop('train_samples_per_second'):.2f}" super().log(logs) # 自定义 Callback (移除验证相关日志) class CustomCallback(TrainerCallback): def on_log(self, args, state, control, logs=None, **kwargs): epoch = logs.get("epoch", 0) train_loss = logs.get("Train Loss", "N/A") eval_loss = logs.get("Eval Loss", "N/A") learning_rate = logs.get("Learning Rate", 0) log_str = f"Epoch: {epoch:.2f}" if train_loss != "N/A": log_str += f" | Train Loss: {train_loss:.4f}" if eval_loss != "N/A": log_str += f" | Eval Loss: {eval_loss:.4f}" log_str += f" | Learning Rate: {learning_rate:.2e}" print(log_str) # 设置日志 for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig(level=logging.INFO) ch = logging.StreamHandler() ch.setFormatter(logging.Formatter('%(message)s')) logging.root.addHandler(ch) # 创建损失记录回调 loss_callback = LossLoggingCallback() # 初始化 Trainer (使用验证集和评估指标) trainer = SimpleTrainer( model=model, args=training_args, train_dataset=tokenized_train, eval_dataset=tokenized_eval, tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, # 添加评估指标计算函数 ) # 添加回调 trainer.add_callback(CustomCallback()) trainer.add_callback(loss_callback) # 清理显存 clear_gpu_memory() print("开始训练...") print_gpu_utilization() # 开始训练 train_result = trainer.train() # 绘制并保存损失曲线 def plot_loss_curve(steps, train_losses, eval_losses=None, save_path="./loss_curve.png"): print(f"尝试绘制损失曲线,训练数据点数: {len(steps)}") if len(steps) == 0 or len(train_losses) == 0: print("警告: 没有足够的数据来绘制损失曲线") return plt.figure(figsize=(10, 6)) plt.plot(steps, train_losses, marker='o', linestyle='-', color='b', label='Training Loss') if eval_losses and len(eval_losses) > 0: eval_steps = [(i+1) * training_args.eval_steps for i in range(len(eval_losses))] plt.plot(eval_steps, eval_losses, marker='s', linestyle='-', color='r', label='Evaluation Loss') plt.title('Training Loss Curve') plt.xlabel('Steps') plt.ylabel('Loss') plt.grid(True) plt.legend() plt.tight_layout() plt.savefig(save_path) plt.close() print(f"损失曲线已保存到: {save_path}") # 检查是否有记录到损失数据 print(f"是否记录到损失数据: {loss_callback.logged}") print(f"记录的步骤数: {len(loss_callback.steps)}") print(f"记录的训练损失值数: {len(loss_callback.train_losses)}") print(f"记录的验证损失值数: {len(loss_callback.eval_losses)}") # 绘制损失曲线 plot_loss_curve(loss_callback.steps, loss_callback.train_losses, loss_callback.eval_losses) # 获取训练结果 print("\n" + "="*50) print("训练统计信息:") print("="*50) print(f"全局步数: {train_result.global_step}") print(f"训练损失: {train_result.training_loss}") # 在最终模型上进行评估以获取最终指标 print("正在计算最终评估指标...") final_metrics = trainer.evaluate() print("\n" + "="*50) print("最终评估指标:") print("="*50) for key, value in final_metrics.items(): print(f"{key}: {value:.4f}") # 保存模型 model.save_pretrained("./deepseek-medical-final") tokenizer.save_pretrained("./deepseek-medical-final") trainer.save_model("./deepseek-medical-final") # 手动创建 generation_config.json from transformers import GenerationConfig generation_config = GenerationConfig( bos_token_id=tokenizer.bos_token_id if tokenizer.bos_token_id else 1, eos_token_id=tokenizer.eos_token_id if tokenizer.eos_token_id else 2, pad_token_id=tokenizer.pad_token_id if tokenizer.pad_token_id else 0, max_length=2048, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.9, ) # 保存生成配置 generation_config.save_pretrained("./deepseek-medical-final") # 保存训练结果到文件 import json with open("./deepseek-medical-final/train_result.json", "w") as f: json.dump({ "train_result": train_result.metrics if hasattr(train_result, 'metrics') else {}, "final_metrics": final_metrics, "training_args": training_args.to_dict(), "loss_history": { "steps": loss_callback.steps, "train_losses": loss_callback.train_losses, "eval_losses": loss_callback.eval_losses } }, f, indent=2, ensure_ascii=False) print(f"\n模型和训练结果已保存到: ./deepseek-medical-final")

WARNING ⚠️ no model scale passed. Assuming scale='n'. New https://pypi.org/project/ultralytics/8.3.144 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.18 🚀 Python-3.11.11 torch-2.7.0+cu126 CUDA:0 (NVIDIA GeForce RTX 4090, 24111MiB) engine/trainer: task=detect, mode=train, model=ultralytics/cfg/models/11/yolo11-DCNv2.yaml, data=data/NEU-DET.yaml, epochs=100, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=0, project=runs/train, name=exp, exist_ok=False, pretrained=True, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs/train/exp Traceback (most recent call last): File "/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/ultralytics/engine/trainer.py", line 557, in get_dataset data = check_det_dataset(self.args.data) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/ultralytics/data/utils.py", line 329, in check_det_dataset raise FileNotFoundError(m) FileNotFoundError: Dataset 'data/NEU-DET.yaml' images not found ⚠️, missing path '/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/datasets/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/data/NEU-DET/val.txt' Note dataset download directory is '/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/datasets'. You can update this in '/root/.config/Ultralytics/settings.json' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/train.py", line 8, in <module> model.train(data='data/NEU-DET.yaml', File "/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/ultralytics/engine/model.py", line 796, in train self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/ultralytics/engine/trainer.py", line 133, in __init__ self.trainset, self.testset = self.get_dataset() ^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/ultralytics/engine/trainer.py", line 561, in get_dataset raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e RuntimeError: Dataset 'data/NEU-DET.yaml' error ❌ Dataset 'data/NEU-DET.yaml' images not found ⚠️, missing path '/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/datasets/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/data/NEU-DET/val.txt' Note dataset download directory is '/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/datasets'. You can update this in '/root/.config/Ultralytics/settings.json'

FileNotFoundError Traceback (most recent call last) /usr/local/lib/python3.10/dist-packages/ultralytics/engine/trainer.py in get_dataset(self) 581 }: --> 582 data = check_det_dataset(self.args.data) 583 if "yaml_file" in data: /usr/local/lib/python3.10/dist-packages/ultralytics/data/utils.py in check_det_dataset(dataset, autodownload) 371 m += f"\nNote dataset download directory is '{DATASETS_DIR}'. You can update this in '{SETTINGS_FILE}'" --> 372 raise FileNotFoundError(m) 373 t = time.time() FileNotFoundError: Dataset '/kaggle/input/trashh/ultralytics-8.2.45/ultralytics/cfg/datasets/underwater_trash_data.yaml' images not found ⚠️, missing path '/kaggle/input/trashhh/ultralytics-8.2.45/ultralytics/cfg/datasets/images/val' Note dataset download directory is '/kaggle/working/datasets'. You can update this in '/root/.config/Ultralytics/settings.json' The above exception was the direct cause of the following exception: RuntimeError Traceback (most recent call last) <ipython-input-14-4a5f632dc27b> in <cell line: 7>() 5 6 # 开始训练模型 ----> 7 model.train( 8 data='/kaggle/input/trashh/ultralytics-8.2.45/ultralytics/cfg/datasets/underwater_trash_data.yaml', # 指定数据集配置文件路径 9 batch=32, # 每个批次的样本数量 /usr/local/lib/python3.10/dist-packages/ultralytics/engine/model.py in train(self, trainer, **kwargs) 783 args["resume"] = self.ckpt_path 784 --> 785 self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks) 786 if not args.get("resume"): # manually set model only if not resuming 787 self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml) /usr/local/lib/python3.10/dist-packages/ultralytics/engine/trainer.py in __init__(self, cfg, overrides, _

import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt # 设备配置 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f"Using device: {device}") # 定义数据转换 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) # MNIST单通道 ]) # 加载MNIST数据集 train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.Compose([transforms.Resize(size=28), transforms.ToTensor()]),) test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.Compose([transforms.Resize(size=28), transforms.ToTensor()]),) # 创建数据加载器 batch_size = 28 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) class DiffusionModel: def __init__(self, T=300, beta_start=1e-4, beta_end=0.02): self.T = T # 线性噪声调度 self.betas = torch.linspace(beta_start, beta_end, T) self.alphas = 1. - self.betas self.alpha_bars = torch.cumprod(self.alphas, dim=0) def forward_process(self, x0, t): """前向扩散过程:添加噪声""" sqrt_alpha_bar = torch.sqrt(self.alpha_bars[t]) sqrt_one_minus_alpha_bar = torch.sqrt(1 - self.alpha_bars[t]) # 生成随机噪声 noise = torch.randn_like(x0) # 添加噪声 noisy_image = sqrt_alpha_bar * x0 + sqrt_one_minus_alpha_bar * noise return noisy_image, noise def reverse_process(self, model, x, t): """反向去噪过程:预测噪声""" return model(x, t) def generate(self, model, shape, num_samples=1): """从随机噪声生成样本""" model.eval() with torch.no_grad(): # 初始随机噪声 x = torch.randn((num_samples, *shape), device=device) # 逐步去噪 for t in range(self.T - 1, -1, -1): t_tensor = torch.full((num_samples,), t, device=device, dtype=torch.long) predicted_noise = self.reverse_process(model, x, t_tensor) # 计算系数 alpha_t = self.alphas[t] alpha_bar_t = self.alpha_bars[t] beta_t = self.betas[t] # 更新x if t > 0: z = torch.randn_like(x) else: z = torch.zeros_like(x) x = (1 / torch.sqrt(alpha_t)) * ( x - ((1 - alpha_t) / torch.sqrt(1 - alpha_bar_t)) * predicted_noise) + torch.sqrt( beta_t) * z return x.clamp(-1, 1) # 将输出限制在[-1,1]范围内 class UNetBlock(nn.Module): def __init__(self, in_channels, out_channels, time_embed_dim): super().__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, 3, padding=1) self.conv2 = nn.Conv2d(out_channels, out_channels, 3, padding=1) self.relu = nn.ReLU() self.time_embed = nn.Linear(time_embed_dim, out_channels) self.norm = nn.BatchNorm2d(out_channels) def forward(self, x, t): # 时间嵌入 t_embed = self.relu(self.time_embed(t)) t_embed = t_embed.view(t_embed.shape[0], t_embed.shape[1], 1, 1) # 卷积操作 h = self.relu(self.conv1(x)) h = self.norm(h) h = h + t_embed # 加入时间信息 h = self.relu(self.conv2(h)) return h class UNet(nn.Module): def __init__(self, T=300, image_channels=1, time_embed_dim=32): super().__init__() self.T = T self.time_embed = nn.Embedding(T, time_embed_dim) # 编码器路径 self.enc1 = UNetBlock(image_channels, 64, time_embed_dim) self.enc2 = UNetBlock(64, 128, time_embed_dim) self.pool = nn.MaxPool2d(2) # 中间层 self.mid = UNetBlock(128, 256, time_embed_dim) # 解码器路径 self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.dec2 = UNetBlock(256 + 128, 128, time_embed_dim) # 跳跃连接 self.dec1 = UNetBlock(128 + 64, 64, time_embed_dim) # 跳跃连接 # 输出层 self.final_conv = nn.Conv2d(64, image_channels, 1) def forward(self, x, t): # 时间嵌入 t = self.time_embed(t) # 编码器路径 enc1 = self.enc1(x, t) enc2 = self.enc2(self.pool(enc1), t) # 中间层 mid = self.mid(self.pool(enc2), t) # 解码器路径(带跳跃连接) dec2 = self.up(mid) dec2 = torch.cat([dec2, enc2], dim=1) # 跳跃连接 dec2 = self.dec2(dec2, t) dec1 = self.up(dec2) dec1 = torch.cat([dec1, enc1], dim=1) # 跳跃连接 dec1 = self.dec1(dec1, t) # 输出 return self.final_conv(dec1) # 初始化模型和扩散过程 diffusion = DiffusionModel(T=1000) model = UNet(T=1000).to(device) optimizer = optim.Adam(model.parameters(), lr=1e-3) # 训练参数 epochs = 20 loss_fn = nn.MSELoss() # 训练循环 for epoch in range(epochs): model.train() total_loss = 0 for images, _ in train_loader: images = images.to(device) # 随机采样时间步 t = torch.randint(0, diffusion.T, (images.size(0),), device=device) # 前向扩散过程 noisy_images, noise = diffusion.forward_process(images, t) # 预测噪声 predicted_noise = model(noisy_images, t) # 计算损失 loss = loss_fn(predicted_noise, noise) total_loss += loss.item() # 反向传播 optimizer.zero_grad() loss.backward() optimizer.step() avg_loss = total_loss / len(train_loader) print(f"Epoch [{epoch + 1}/{epochs}], Loss: {avg_loss:.4f}") # 保存模型 torch.save(model.state_dict(), 'mnist_diffusion_model.pth') # 加载预训练模型 model.load_state_dict(torch.load('mnist_diffusion_model.pth')) model.eval() # 生成16个新样本 generated_images = diffusion.generate(model, shape=(1, 28, 28), num_samples=16) # 可视化结果 fig, axes = plt.subplots(4, 4, figsize=(8, 8)) for i, ax in enumerate(axes.flat): ax.imshow(generated_images[i].squeeze().cpu().detach().numpy(), cmap='gray') ax.axis('off') plt.tight_layout() plt.savefig('generated_mnist.png') plt.show() 检查代码是否有错误并改正

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Train a YOLOv5 model on a custom dataset. Models and datasets download automatically from the latest YOLOv5 release. Usage - Single-GPU training: $ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended) $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch Usage - Multi-GPU DDP training: $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3 Models: https://github.com/ultralytics/yolov5/tree/master/models Datasets: https://github.com/ultralytics/yolov5/tree/master/data Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data """ import argparse import math import os os.environ["GIT_PYTHON_REFRESH"] = "quiet" # add there import random import sys import time from copy import deepcopy from datetime import datetime from pathlib import Path import numpy as np import torch import torch.distributed as dist import torch.nn as nn import yaml from torch.optim import lr_scheduler from tqdm import tqdm # import numpy # import torch.serialization # torch.serialization.add_safe_globals([numpy._core.multiarray._reconstruct]) FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative import val as validate # for end-of-epoch mAP from models.experimental import attempt_load from models.yolo import Model from utils.autoanchor import check_anchors from utils.autobatch import check_train_batch_size from utils.callbacks import Callbacks from utils.dataloaders import create_dataloader from utils.downloads import attempt_download, is_url from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info, check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer, yaml_save) from utils.loggers import Loggers from utils.loggers.comet.comet_utils import check_comet_resume from utils.loss import ComputeLoss from utils.metrics import fitness from utils.plots import plot_evolve from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer, smart_resume, torch_distributed_zero_first) LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html RANK = int(os.getenv('RANK', -1)) WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) GIT_INFO = check_git_info() def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze callbacks.run('on_pretrain_routine_start') # Directories w = save_dir / 'weights' # weights dir (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir last, best = w / 'last.pt', w / 'best.pt' # Hyperparameters if isinstance(hyp, str): with open(hyp, errors='ignore') as f: hyp = yaml.safe_load(f) # load hyps dict LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) opt.hyp = hyp.copy() # for saving hyps to checkpoints # Save run settings if not evolve: yaml_save(save_dir / 'hyp.yaml', hyp) yaml_save(save_dir / 'opt.yaml', vars(opt)) # Loggers data_dict = None if RANK in {-1, 0}: loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance # Register actions for k in methods(loggers): callbacks.register_action(k, callback=getattr(loggers, k)) # Process custom dataset artifact link data_dict = loggers.remote_dataset if resume: # If resuming runs from remote artifact weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size # Config plots = not evolve and not opt.noplots # create plots cuda = device.type != 'cpu' init_seeds(opt.seed + 1 + RANK, deterministic=True) with torch_distributed_zero_first(LOCAL_RANK): data_dict = data_dict or check_dataset(data) # check if None train_path, val_path = data_dict['train'], data_dict['val'] nc = 1 if single_cls else int(data_dict['nc']) # number of classes names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset # Model check_suffix(weights, '.pt') # check weights pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(LOCAL_RANK): weights = attempt_download(weights) # download if not found locally ckpt = torch.load(weights, map_location='cpu', weights_only=False) # load checkpoint to CPU to avoid CUDA memory leak model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(csd, strict=False) # load LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report else: model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create amp = check_amp(model) # check AMP # Freeze freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze for k, v in model.named_parameters(): v.requires_grad = True # train all layers # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results) if any(x in k for x in freeze): LOGGER.info(f'freezing {k}') v.requires_grad = False # Image size gs = max(int(model.stride.max()), 32) # grid size (max stride) imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple # Batch size if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size batch_size = check_train_batch_size(model, imgsz, amp) loggers.on_params_update({"batch_size": batch_size}) # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay']) # Scheduler if opt.cos_lr: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] else: lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA ema = ModelEMA(model) if RANK in {-1, 0} else None # Resume best_fitness, start_epoch = 0.0, 0 if pretrained: if resume: best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume) del ckpt, csd # DP mode if cuda and RANK == -1 and torch.cuda.device_count() > 1: LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n' 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.') model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and RANK != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) LOGGER.info('Using SyncBatchNorm()') # Trainloader train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, hyp=hyp, augment=True, cache=None if opt.cache == 'val' else opt.cache, rect=opt.rect, rank=LOCAL_RANK, workers=workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '), shuffle=True) labels = np.concatenate(dataset.labels, 0) mlc = int(labels[:, 0].max()) # max label class assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}' # Process 0 if RANK in {-1, 0}: val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls, hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1, workers=workers * 2, pad=0.5, prefix=colorstr('val: '))[0] if not resume: if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor model.half().float() # pre-reduce anchor precision callbacks.run('on_pretrain_routine_end', labels, names) # DDP mode if cuda and RANK != -1: model = smart_DDP(model) # Model attributes nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps) hyp['box'] *= 3 / nl # scale to layers hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = time.time() nb = len(train_loader) # number of batches nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training last_opt_step = -1 maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0) # P, R, [email protected], [email protected], val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move scaler = torch.cuda.amp.GradScaler(enabled=amp) stopper, stop = EarlyStopping(patience=opt.patience), False compute_loss = ComputeLoss(model) # init loss class callbacks.run('on_train_start') LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' f"Logging results to {colorstr('bold', save_dir)}\n" f'Starting training for {epochs} epochs...') for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ callbacks.run('on_train_epoch_start') model.train() # Update image weights (optional, single-GPU only) if opt.image_weights: cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Update mosaic border (optional) # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(3, device=device) # mean losses if RANK != -1: train_loader.sampler.set_epoch(epoch) pbar = enumerate(train_loader) LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size')) if RANK in {-1, 0}: pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar optimizer.zero_grad() for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- callbacks.run('on_train_batch_start') ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward # with torch.cuda.amp.autocast(amp): with torch.amp.autocast(device_type='cuda'): pred = model(imgs) # forward loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size if RANK != -1: loss *= WORLD_SIZE # gradient averaged between devices in DDP mode if opt.quad: loss *= 4. # Backward scaler.scale(loss).backward() # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html if ni - last_opt_step >= accumulate: scaler.unscale_(optimizer) # unscale gradients torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) last_opt_step = ni # Log if RANK in {-1, 0}: mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) pbar.set_description(('%11s' * 2 + '%11.4g' * 5) % (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss)) if callbacks.stop_training: return # end batch ------------------------------------------------------------------------------------------------ # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for loggers scheduler.step() if RANK in {-1, 0}: # mAP callbacks.run('on_train_epoch_end', epoch=epoch) ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) final_epoch = (epoch + 1 == epochs) or stopper.possible_stop if not noval or final_epoch: # Calculate mAP results, maps, _ = validate.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, half=amp, model=ema.ema, single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, plots=False, callbacks=callbacks, compute_loss=compute_loss) # Update best mAP fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, [email protected], [email protected]] stop = stopper(epoch=epoch, fitness=fi) # early stop check if fi > best_fitness: best_fitness = fi log_vals = list(mloss) + list(results) + lr callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) # Save model if (not nosave) or (final_epoch and not evolve): # if save ckpt = { 'epoch': epoch, 'best_fitness': best_fitness, 'model': deepcopy(de_parallel(model)).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'opt': vars(opt), 'git': GIT_INFO, # {remote, branch, commit} if a git repo 'date': datetime.now().isoformat()} # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if opt.save_period > 0 and epoch % opt.save_period == 0: torch.save(ckpt, w / f'epoch{epoch}.pt') del ckpt callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) # EarlyStopping if RANK != -1: # if DDP training broadcast_list = [stop if RANK == 0 else None] dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks if RANK != 0: stop = broadcast_list[0] if stop: break # must break all DDP ranks # end epoch ---------------------------------------------------------------------------------------------------- # end training ----------------------------------------------------------------------------------------------------- if RANK in {-1, 0}: LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.') for f in last, best: if f.exists(): strip_optimizer(f) # strip optimizers if f is best: LOGGER.info(f'\nValidating {f}...') results, _, _ = validate.run( data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=attempt_load(f, device).half(), iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65 single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, save_json=is_coco, verbose=True, plots=plots, callbacks=callbacks, compute_loss=compute_loss) # val best model with plots if is_coco: callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi) callbacks.run('on_train_end', last, best, epoch, results) torch.cuda.empty_cache() return results def parse_opt(known=False): parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='./weights/yolov5s.pt', help='initial weights path') parser.add_argument('--cfg', type=str, default='./models/yolov5s.yaml', help='model.yaml path') parser.add_argument('--data', type=str, default=r'C:data/AAAA.yaml', help='data.yaml path') parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path') parser.add_argument('--epochs', type=int, default=100, help='total training epochs') parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs, -1 for autobatch') parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') parser.add_argument('--noval', action='store_true', help='only validate final epoch') parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor') parser.add_argument('--noplots', action='store_true', help='save no plot files') parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk') parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer') parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name') parser.add_argument('--name', default='welding_defect_yolov5s_20241101_300', help='save to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--quad', action='store_true', help='quad dataloader') parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler') parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)') parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2') parser.add_argument('--save-period', type=int, default=5, help='Save checkpoint every x epochs (disabled if < 1)') parser.add_argument('--seed', type=int, default=0, help='Global training seed') parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify') # Logger arguments parser.add_argument('--entity', default=None, help='Entity') parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option') parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval') parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use') return parser.parse_known_args()[0] if known else parser.parse_args() def main(opt, callbacks=Callbacks()): # Checks if RANK in {-1, 0}: print_args(vars(opt)) check_git_status() check_requirements() # Resume (from specified or most recent last.pt) if opt.resume and not check_comet_resume(opt) and not opt.evolve: last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run()) opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml opt_data = opt.data # original dataset if opt_yaml.is_file(): with open(opt_yaml, errors='ignore') as f: d = yaml.safe_load(f) else: d = torch.load(last, map_location='cpu')['opt'] opt = argparse.Namespace(**d) # replace opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate if is_url(opt_data): opt.data = check_file(opt_data) # avoid HUB resume auth timeout else: opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \ check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' if opt.evolve: if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve opt.project = str(ROOT / 'runs/evolve') opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume if opt.name == 'cfg': opt.name = Path(opt.cfg).stem # use model.yaml as name opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # DDP mode device = select_device(opt.device, batch_size=opt.batch_size) if LOCAL_RANK != -1: msg = 'is not compatible with YOLOv5 Multi-GPU DDP training' assert not opt.image_weights, f'--image-weights {msg}' assert not opt.evolve, f'--evolve {msg}' assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size' assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' torch.cuda.set_device(LOCAL_RANK) device = torch.device('cuda', LOCAL_RANK) dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo") # Train if not opt.evolve: train(opt.hyp, opt, device, callbacks) # Evolve hyperparameters (optional) else: # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) meta = { 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr 'box': (1, 0.02, 0.2), # box loss gain 'cls': (1, 0.2, 4.0), # cls loss gain 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight 'iou_t': (0, 0.1, 0.7), # IoU training threshold 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) 'translate': (1, 0.0, 0.9), # image translation (+/- fraction) 'scale': (1, 0.0, 0.9), # image scale (+/- gain) 'shear': (1, 0.0, 10.0), # image shear (+/- deg) 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 'flipud': (1, 0.0, 1.0), # image flip up-down (probability) 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) 'mosaic': (1, 0.0, 1.0), # image mixup (probability) 'mixup': (1, 0.0, 1.0), # image mixup (probability) 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability) with open(opt.hyp, errors='ignore') as f: hyp = yaml.safe_load(f) # load hyps dict if 'anchors' not in hyp: # anchors commented in hyp.yaml hyp['anchors'] = 3 if opt.noautoanchor: del hyp['anchors'], meta['anchors'] opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv' if opt.bucket: os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists for _ in range(opt.evolve): # generations to evolve if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate # Select parent(s) parent = 'single' # parent selection method: 'single' or 'weighted' x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1) n = min(5, len(x)) # number of previous results to consider x = x[np.argsort(-fitness(x))][:n] # top n mutations w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0) if parent == 'single' or len(x) == 1: # x = x[random.randint(0, n - 1)] # random selection x = x[random.choices(range(n), weights=w)[0]] # weighted selection elif parent == 'weighted': x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination # Mutate mp, s = 0.8, 0.2 # mutation probability, sigma npr = np.random npr.seed(int(time.time())) g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1 ng = len(meta) v = np.ones(ng) while all(v == 1): # mutate until a change occurs (prevent duplicates) v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) hyp[k] = float(x[i + 7] * v[i]) # mutate # Constrain to limits for k, v in meta.items(): hyp[k] = max(hyp[k], v[1]) # lower limit hyp[k] = min(hyp[k], v[2]) # upper limit hyp[k] = round(hyp[k], 5) # significant digits # Train mutation results = train(hyp.copy(), opt, device, callbacks) callbacks = Callbacks() # Write mutation results keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss', 'val/obj_loss', 'val/cls_loss') print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket) # Plot results plot_evolve(evolve_csv) LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n' f"Results saved to {colorstr('bold', save_dir)}\n" f'Usage example: $ python train.py --hyp {evolve_yaml}') def run(**kwargs): # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt') opt = parse_opt(True) for k, v in kwargs.items(): setattr(opt, k, v) main(opt) return opt if __name__ == "__main__": opt = parse_opt() main(opt) 为什么训练之后,他的runs里面并没有显示best.pt跟last.pt 请查找原因

import torch import numpy as np from matplotlib import pyplot as plt from torch.utils.data import DataLoader from torchvision import transforms from torchvision import datasets import torch.nn.functional as F “”" 卷积运算 使用mnist数据集,和10-4,11类似的,只是这里:1.输出训练轮的acc 2.模型上使用torch.nn.Sequential “”" Super parameter ------------------------------------------------------------------------------------ batch_size = 64 learning_rate = 0.01 momentum = 0.5 EPOCH = 10 Prepare dataset ------------------------------------------------------------------------------------ transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) softmax归一化指数函数(https://blog.csdn.net/lz_peter/article/details/84574716),其中0.1307是mean均值和0.3081是std标准差 train_dataset = datasets.MNIST(root=‘./data/mnist’, train=True, transform=transform) # 本地没有就加上download=True test_dataset = datasets.MNIST(root=‘./data/mnist’, train=False, transform=transform) # train=True训练集,=False测试集 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) fig = plt.figure() for i in range(12): plt.subplot(3, 4, i+1) plt.tight_layout() plt.imshow(train_dataset.train_data[i], cmap=‘gray’, interpolation=‘none’) plt.title(“Labels: {}”.format(train_dataset.train_labels[i])) plt.xticks([]) plt.yticks([]) plt.show() 训练集乱序,测试集有序 Design model using class ------------------------------------------------------------------------------ class Net(torch.nn.Module): def init(self): super(Net, self).init() self.conv1 = torch.nn.Sequential( torch.nn.Conv2d(1, 10, kernel_size=5), torch.nn.ReLU(), torch.nn.MaxPool2d(kernel_size=2), ) self.conv2 = torch.nn.Sequential( torch.nn.Conv2d(10, 20, kernel_size=5), torch.nn.ReLU(), torch.nn.MaxPool2d(kernel_size=2), ) self.fc = torch.nn.Sequential( torch.nn.Linear(320, 50), torch.nn.Linear(50, 10), ) def forward(self, x): batch_size = x.size(0) x = self.conv1(x) # 一层卷积层,一层池化层,一层激活层(图是先卷积后激活再池化,差别不大) x = self.conv2(x) # 再来一次 x = x.view(batch_size, -1) # flatten 变成全连接网络需要的输入 (batch, 20,4,4) ==> (batch,320), -1 此处自动算出的是320 x = self.fc(x) return x # 最后输出的是维度为10的,也就是(对应数学符号的0~9) model = Net() Construct loss and optimizer ------------------------------------------------------------------------------ criterion = torch.nn.CrossEntropyLoss() # 交叉熵损失 optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum) # lr学习率,momentum冲量 Train and Test CLASS -------------------------------------------------------------------------------------- 把单独的一轮一环封装在函数类里 def train(epoch): running_loss = 0.0 # 这整个epoch的loss清零 running_total = 0 running_correct = 0 for batch_idx, data in enumerate(train_loader, 0): inputs, target = data optimizer.zero_grad() # forward + backward + update outputs = model(inputs) loss = criterion(outputs, target) loss.backward() optimizer.step() # 把运行中的loss累加起来,为了下面300次一除 running_loss += loss.item() # 把运行中的准确率acc算出来 _, predicted = torch.max(outputs.data, dim=1) running_total += inputs.shape[0] running_correct += (predicted == target).sum().item() if batch_idx % 300 == 299: # 不想要每一次都出loss,浪费时间,选择每300次出一个平均损失,和准确率 print('[%d, %5d]: loss: %.3f , acc: %.2f %%' % (epoch + 1, batch_idx + 1, running_loss / 300, 100 * running_correct / running_total)) running_loss = 0.0 # 这小批300的loss清零 running_total = 0 running_correct = 0 # 这小批300的acc清零 #保存模型 torch.save(model.state_dict(), ‘./model_Mnist.pth’) torch.save(optimizer.state_dict(), ‘./optimizer_Mnist.pth’) def test(): correct = 0 total = 0 with torch.no_grad(): # 测试集不用算梯度 for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, dim=1) # dim = 1 列是第0个维度,行是第1个维度,沿着行(第1个维度)去找1.最大值和2.最大值的下标 total += labels.size(0) # 张量之间的比较运算 correct += (predicted == labels).sum().item() acc = correct / total print('[%d / %d]: Accuracy on test set: %.1f %% ’ % (epoch+1, EPOCH, 100 * acc)) # 求测试的准确率,正确数/总数 return acc Start train and Test -------------------------------------------------------------------------------------- if name == ‘main’: acc_list_test = [] for epoch in range(EPOCH): train(epoch) # if epoch % 10 == 9: #每训练10轮 测试1次 acc_test = test() acc_list_test.append(acc_test) plt.plot(acc_list_test) plt.xlabel('Epoch') plt.ylabel('Accuracy On TestSet') plt.show() 在原始训练代码文件末尾追加以下内容(确保Net类已定义) import torch import onnx import onnxruntime as ort 模型定义必须与训练时完全一致(此处直接使用原文件中的Net类) class Net(torch.nn.Module): def init(self): super(Net, self).init() self.conv1 = torch.nn.Sequential( torch.nn.Conv2d(1, 10, kernel_size=5), torch.nn.ReLU(), torch.nn.MaxPool2d(kernel_size=2), ) self.conv2 = torch.nn.Sequential( torch.nn.Conv2d(10, 20, kernel_size=5), torch.nn.ReLU(), torch.nn.MaxPool2d(kernel_size=2), ) self.fc = torch.nn.Sequential( torch.nn.Linear(320, 50), torch.nn.Linear(50, 10), ) def forward(self, x): batch_size = x.size(0) x = self.conv1(x) x = self.conv2(x) x = x.view(batch_size, -1) x = self.fc(x) return x 导出配置 ------------------------------------------------------------------ PTH_PATH = ‘./model_Mnist.pth’ ONNX_PATH = ‘./model_Mnist.onnx’ 初始化并加载模型 model = Net() model.load_state_dict(torch.load(PTH_PATH)) model.eval() 创建符合MNIST输入的虚拟数据(1,1,28,28) dummy_input = torch.randn(1, 1, 28, 28) 执行导出 torch.onnx.export( model, dummy_input, ONNX_PATH, input_names=[“input”], output_names=[“output”], opset_version=13, dynamic_axes={ ‘input’: {0: ‘batch_size’}, ‘output’: {0: ‘batch_size’} } ) 验证导出结果 ------------------------------------------------------------- def validate_onnx(): # 加载ONNX模型 onnx_model = onnx.load(ONNX_PATH) onnx.checker.check_model(onnx_model) # 对比原始模型与ONNX模型输出 with torch.no_grad(): torch_out = model(dummy_input) ort_session = ort.InferenceSession(ONNX_PATH) onnx_out = ort_session.run( None, {'input': dummy_input.numpy()} )[0] # 输出相似度验证 print(f"PyTorch输出: {torch_out.numpy()}") print(f"ONNX输出: {onnx_out}") print(f"最大差值: {np.max(np.abs(torch_out.numpy() - onnx_out))}") validate_onnx() 这是我的手写体识别代码,生成了onnx文件,现在我想在Ubuntu上将onnx转化为rknn模型,请基于下面的代码结构与内容,生成适配我的源码的转化rknn代码,且注意,下面代码的rknn-toolkit2版本是2.3.0,但我的Ubuntu安装的是1.6.0版本的按照这些要求来生成需要的正确的代码 if __name__ == '__main__': # Create RKNN object rknn = RKNN(verbose=True) if not os.path.exists(ONNX_MODEL): print('Dosent exists ONNX_MODEL') # pre-process config print('--> config model') rknn.config(mean_values=None, std_values=None, target_platform='rk3588') print('done') # Load model print('--> Loading model') ret = rknn.load_onnx(model=ONNX_MODEL) if ret != 0: print('Load model failed!') exit(ret) print('done') # Build model print('--> Building model') ret = rknn.build(do_quantization=False) # No quantization if ret != 0: print('Build model failed!') exit(ret) print('done') # Export rknn model print('--> Export rknn model') ret = rknn.export_rknn(RKNN_MODEL) if ret != 0: print('Export rknn model failed!') exit(ret) print('done') # Init runtime environment print('--> Init runtime environment') ret = rknn.init_runtime() # target = 'rk3588' if ret != 0: print('Init runtime environment failed!') exit(ret) print('done') # Inference print('--> Running model')

--------------------------------------------------------------------------- PermissionError Traceback (most recent call last) Cell In[70], line 1 ----> 1 train_iter, test_iter = load_data_fashion_mnist(32, resize=64) 2 for X, y in train_iter: 3 print(X.shape, X.dtype, y.shape, y.dtype) Cell In[69], line 7, in load_data_fashion_mnist(batch_size, resize) 5 trans.insert(0, transforms.Resize(resize)) 6 trans = transforms.Compose(trans) ----> 7 mnist_train = torchvision.datasets.FashionMNIST( 8 root="../data", train=True, transform=trans, download=True) 9 mnist_test = torchvision.datasets.FashionMNIST( 10 root="../data", train=False, transform=trans, download=True) 11 return (data.DataLoader(mnist_train, batch_size, shuffle=True, 12 num_workers=get_dataloader_workers()), 13 data.DataLoader(mnist_test, batch_size, shuffle=False, 14 num_workers=get_dataloader_workers())) File E:\Anaconda\envs\d2l\lib\site-packages\torchvision\datasets\mnist.py:100, in MNIST.__init__(self, root, train, transform, target_transform, download) 97 return 99 if download: --> 100 self.download() 102 if not self._check_exists(): 103 raise RuntimeError("Dataset not found. You can use download=True to download it") File E:\Anaconda\envs\d2l\lib\site-packages\torchvision\datasets\mnist.py:180, in MNIST.download(self) 177 if self._check_exists(): 178 return --> 180 os.makedirs(self.raw_folder, exist_ok=True) 182 # download files 183 for filename, md5 in self.resources: File E:\Anaconda\envs\d2l\lib\os.py:215, in makedirs(name, mode, exist_ok) 213 if head and tail and not path.exists(head): 214 try: --> 215 makedirs(head, exist_ok=exist_ok) 216 except FileExistsError: 217 # Defeats race condition when another thread created the path 218 pass File E:\Anaconda\envs\d2l\lib\os.py:215, in makedirs(name, mode, exist_ok) 213 if head and tail and not path.exists(head): 214 try: --> 215 makedirs(head, exist_ok=exist_ok) 216 except FileExistsError: 217 # Defeats race condition when another thread created the path 218 pass File E:\Anaconda\envs\d2l\lib\os.py:225, in makedirs(name, mode, exist_ok) 223 return 224 try: --> 225 mkdir(name, mode) 226 except OSError: 227 # Cannot rely on checking for EEXIST, since the operating system 228 # could give priority to other errors like EACCES or EROFS 229 if not exist_ok or not path.isdir(name): PermissionError: [WinError 5] 拒绝访问。: '../data'shenmeyisi

请给出具体且详细的步骤,以下是我的代码:# train.py (完整最终版 - 完全切换到在线数据增强) import os import torch import logging import json import copy # --- Detectron2 Imports --- import detectron2.utils.comm as comm from detectron2 import model_zoo from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch from detectron2.config import get_cfg from detectron2.data import MetadataCatalog, DatasetCatalog, build_detection_train_loader from detectron2.data.datasets import register_coco_instances from detectron2.evaluation import COCOEvaluator from detectron2.projects import point_rend # --- [新增] 导入数据增强和工具模块 --- from detectron2.data import detection_utils as utils import detectron2.data.transforms as T # --- 用于格式化输出的辅助函数 (无变化) --- def print_section_header(title): """打印分节标题""" print("\n" + "="*10 + f" {title} " + "="*10) def print_script_header(title): """打印脚本顶部标题""" print("="*50) print(f"{title:^50}") print("="*50 + "\n") def print_script_footer(title): """打印脚本底部脚注""" print("\n" + "="*50) print(f"{title:^50}") print("="*50) # --- [新增] 自定义数据加载器 (在线数据增强核心) --- def custom_mapper(dataset_dict): """ 自定义数据加载和增强函数 (Mapper)。 在每次读取图像时,实时、随机地应用一系列数据增强,以提高模型的鲁棒性。 """ # 必须深拷贝,否则会修改原始的全局数据集字典 dataset_dict = copy.deepcopy(dataset_dict) # 1. 从文件读取原始图像 image = utils.read_image(dataset_dict["file_name"], format="BGR") # 2. 定义一系列强大的在线数据增强操作 # 这些操作会以随机参数实时应用到每张图像上 augs = T.AugmentationList([ # --- 颜色和光照增强 (模拟不同天气和光照条件) --- T.RandomBrightness(0.8, 1.2), T.RandomContrast(0.8, 1.2), T.RandomSaturation(0.8, 1.2), # --- 几何变换 --- T.RandomFlip(prob=0.5, horizontal=True, vertical=False), # 水平翻转 # --- 模拟图像质量下降和干扰 --- # 随机应用高斯模糊 (模拟失焦或运动模糊) T.RandomApply(T.GaussianBlur(sigma=(0.2, 1.5)), prob=0.4), # 随机应用随机擦除 (模拟部分遮挡) T.RandomApply(T.RandomErasing(scale=(0.02, 0.1), ratio=(0.3, 3.3)), prob=0.5), # --- 尺度变换 (多尺度训练) --- T.ResizeShortestEdge( short_edge_length=cfg.INPUT.MIN_SIZE_TRAIN, # 从配置中获取尺度范围 max_size=cfg.INPUT.MAX_SIZE_TRAIN, sample_style=cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING # 'choice' 或 'range' ) ]) # 3. 应用增强 aug_input = T.AugInput(image) transforms = augs(aug_input) image_transformed = aug_input.image # 4. 转换图像格式以适应模型输入 dataset_dict["image"] = torch.as_tensor(image_transformed.transpose(2, 0, 1).astype("float32")) # 5. 对标注 (边界框、掩码) 应用相同的几何变换 annos = [ utils.transform_instance_annotations(obj, transforms, image_transformed.shape[:2]) for obj in dataset_dict.pop("annotations") if obj.get("iscrowd", 0) == 0 ] instances = utils.annotations_to_instances(annos, image_transformed.shape[:2], mask_format="bitmask") # 6. 过滤掉增强后可能变为空的实例 dataset_dict["instances"] = utils.filter_empty_instances(instances) return dataset_dict # --- 1. 数据集注册 (无变化) --- def setup_datasets(dataset_root="dataset"): # ... (这部分代码与你之前提供的版本完全相同,此处省略) ... """ 注册所有数据集,并返回训练集的类别名称列表。 """ print_section_header("数据集注册与类别名称提取") class_names = None if not os.path.isdir(dataset_root): print(f"[错误] 基础数据集目录 '{dataset_root}' 未找到。无法继续进行数据集注册。") return None for subset in ["train", "valid", "test"]: print(f"[信息] 尝试注册数据集: 'cable_{subset}'") json_file = os.path.join(dataset_root, subset, "_annotations.coco.json") image_root = os.path.join(dataset_root, subset) if not os.path.exists(json_file): print(f"[警告] 未找到 'cable_{subset}' 的标注文件: {json_file},跳过注册。") if subset == "train": print("[错误] 训练集标注文件缺失,无法提取类别名称。") return None continue if not os.path.isdir(image_root): print(f"[警告] 未找到 'cable_{subset}' 的图像目录: {image_root},跳过注册。") continue try: register_coco_instances( name=f"cable_{subset}", metadata={}, json_file=json_file, image_root=image_root ) print(f"[成功] 已注册 'cable_{subset}'") except Exception as e: print(f"[错误] 注册 'cable_{subset}' 失败: {e}") if subset == "train": return None continue print("[信息] 尝试从 'cable_train' 提取类别名称...") train_json_path = os.path.join(dataset_root, "train", "_annotations.coco.json") if not os.path.exists(train_json_path): print(f"[错误] 训练集标注文件 '{train_json_path}' 未找到。") return None try: with open(train_json_path, 'r', encoding='utf-8') as f: coco_json_data = json.load(f) if 'categories' in coco_json_data and coco_json_data['categories']: class_names = [cat['name'] for cat in coco_json_data['categories']] MetadataCatalog.get("cable_train").thing_classes = class_names # 手动为 valid 和 test 也设置元数据,确保评估时一致 if "cable_valid" in DatasetCatalog.list(): MetadataCatalog.get("cable_valid").thing_classes = class_names if "cable_test" in DatasetCatalog.list(): MetadataCatalog.get("cable_test").thing_classes = class_names print(f"[成功] 直接从JSON提取的类别名称: {class_names}") else: print("[错误] 训练JSON中未找到或为空的 'categories' 字段。") return None except Exception as e: print(f"[错误] 类别名称提取过程中发生错误: {e}") return None if class_names: print(f"[信息] 最终派生的类别名称: {class_names}。类别数量: {len(class_names)}") return class_names # --- 2. 自定义评估器Trainer (核心修改) --- class CocoTrainer(DefaultTrainer): @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") print(f"[信息] 为数据集 '{dataset_name}' 构建 COCOEvaluator, 输出到 '{output_folder}'") return COCOEvaluator(dataset_name, cfg, True, output_folder) @classmethod def build_train_loader(cls, cfg): """ [核心修改] 重写此方法以使用我们自定义的 custom_mapper。 这样,训练数据加载器就会在运行时进行在线数据增强。 """ print("[信息] 使用自定义的 custom_mapper 进行在线数据增强。") return build_detection_train_loader(cfg, mapper=custom_mapper) # --- 3. 主训练函数 --- def main(args): print_script_header("Detectron2 PointRend 训练流程开始 (在线增强模式)") class_names = setup_datasets(dataset_root="dataset") if not class_names: print("[严重] 未能获取到有效的类别列表。终止训练。") return num_classes = len(class_names) print(f"[成功] 数据集注册完成。共找到 {num_classes} 个类别: {class_names}") print_section_header("模型配置") global cfg # [新增] 将 cfg 设为全局变量,以便 custom_mapper 可以访问 cfg = get_cfg() config_file_local_path = os.path.join("detectron2-main", "projects", "PointRend", "configs", "InstanceSegmentation", "implicit_pointrend_R_50_FPN_3x_coco.yaml") print(f"[配置] 从本地文件加载基础配置: '{config_file_local_path}'") if not os.path.exists(config_file_local_path): print(f"[错误] 配置文件未找到: '{config_file_local_path}'") return cfg.set_new_allowed(True) cfg.merge_from_file(config_file_local_path) # --- [新增] 配置在线数据增强相关的参数 --- print("[配置] 设置多尺度训练参数...") cfg.INPUT.MIN_SIZE_TRAIN = (640, 672, 704, 736, 768, 800) cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING = "choice" print(f"[配置] 设置训练数据集为: ('cable_train',)") cfg.DATASETS.TRAIN = ("cable_train",) print(f"[配置] 设置测试/验证数据集为: ('cable_valid',)") cfg.DATASETS.TEST = ("cable_valid",) cfg.OUTPUT_DIR = "model_output_pointrend_augmented" # 建议换个名字以区分 print(f"[配置] 设置输出目录为: '{cfg.OUTPUT_DIR}'") os.makedirs(cfg.OUTPUT_DIR, exist_ok=True) print("[配置] 正在从本地加载预训练权重...") local_weight_path = os.path.join("pretrained_models", "model_final_f17282.pkl") if os.path.exists(local_weight_path): cfg.MODEL.WEIGHTS = local_weight_path print(f"[成功] 预训练权重路径已设置为: '{local_weight_path}'") else: print(f"[警告] 本地预训练权重文件未找到: '{local_weight_path}'。模型将从头开始训练。") cfg.MODEL.WEIGHTS = "" print(f"[配置] 为 {num_classes} 个类别调整模型。") cfg.MODEL.ROI_HEADS.NUM_CLASSES = num_classes if hasattr(cfg.MODEL, "POINT_HEAD"): cfg.MODEL.POINT_HEAD.NUM_CLASSES = num_classes # --- 修复 PointRend 缺失配置的健壮写法 --- if "PointRend" in cfg.MODEL.META_ARCHITECTURE: cfg.MODEL.ROI_MASK_HEAD.NUM_CLASSES = num_classes # PointRend的配置文件可能不包含这些,手动添加以确保兼容性 if not hasattr(cfg.MODEL.ROI_MASK_HEAD, "IN_FEATURES") or not cfg.MODEL.ROI_MASK_HEAD.IN_FEATURES: cfg.MODEL.ROI_MASK_HEAD.IN_FEATURES = cfg.MODEL.ROI_HEADS.IN_FEATURES if not hasattr(cfg.MODEL.ROI_MASK_HEAD, "OUTPUT_SIDE_RESOLUTION"): cfg.MODEL.ROI_MASK_HEAD.OUTPUT_SIDE_RESOLUTION = 7 print_section_header("超参数设置") cfg.DATALOADER.NUM_WORKERS = 2 print(f"[配置] DATALOADER.NUM_WORKERS (数据加载器工作进程数): {cfg.DATALOADER.NUM_WORKERS}") cfg.SOLVER.IMS_PER_BATCH = 3 print(f"[配置] SOLVER.IMS_PER_BATCH (每批图像数): {cfg.SOLVER.IMS_PER_BATCH}") cfg.SOLVER.BASE_LR = 0.00025 print(f"[配置] SOLVER.BASE_LR (基础学习率): {cfg.SOLVER.BASE_LR}") # 使用余弦退火学习率调度器,比阶梯下降更平滑 cfg.SOLVER.LR_SCHEDULER_NAME = "WarmupCosineLR" print(f"[配置] SOLVER.LR_SCHEDULER_NAME (学习率调度器): {cfg.SOLVER.LR_SCHEDULER_NAME}") cfg.SOLVER.MAX_ITER = 10000 print(f"[配置] SOLVER.MAX_ITER (最大迭代次数): {cfg.SOLVER.MAX_ITER}") cfg.SOLVER.STEPS = [] # 在使用 WarmupCosineLR 时,此项应为空 cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512 print(f"[配置] MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE (每图RoI批大小): {cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE}") cfg.TEST.EVAL_PERIOD = 500 print(f"[配置] TEST.EVAL_PERIOD (评估周期): {cfg.TEST.EVAL_PERIOD} 次迭代") print("[信息] 执行默认设置 (日志、环境检查等)...") default_setup(cfg, args) print_section_header("训练器初始化与模型结构保存") print("[信息] 正在初始化 CocoTrainer...") trainer = CocoTrainer(cfg) if comm.is_main_process(): # ... (模型结构保存代码无变化,此处省略) ... model_arch_file_path = os.path.join(cfg.OUTPUT_DIR, "model_architecture.txt") try: with open(model_arch_file_path, "w", encoding="utf-8") as f: f.write(f"Model Configuration Path: {config_file_local_path}\n") f.write(f"Number of Classes: {num_classes}\n\n") f.write("Model Architecture:\n") f.write("="*80 + "\n") f.write(str(trainer.model)) print(f"[成功] 模型结构已保存到: {model_arch_file_path}") except Exception as e: print(f"[错误] 保存模型结构到文件 '{model_arch_file_path}' 失败: {e}") resume_training = args.resume print(f"[信息] 训练器将尝试加载权重。是否从检查点恢复: {resume_training}") trainer.resume_or_load(resume=resume_training) print_section_header("训练开始") print(f"[信息] 开始使用 PointRend R-CNN 进行训练,共 {cfg.SOLVER.MAX_ITER} 次迭代...") try: trainer.train() print("\n[成功] 训练成功完成!") except Exception as e: print(f"\n[错误] 训练过程中发生错误: {e}") finally: print_script_footer("Detectron2 PointRend 训练流程结束") if __name__ == "__main__": parser = default_argument_parser() args = parser.parse_args() print_script_header("命令行参数") print("生效的命令行参数:") for arg, value in sorted(vars(args).items()): print(f" {arg}: {value}") print("\n[信息] 正在启动训练过程...") launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )

PermissionError Traceback (most recent call last) Cell In[75], line 6 3 from d2l import torch as d2l 5 batch_size = 256 ----> 6 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) File E:\Anaconda\envs\d2l\lib\site-packages\d2l\torch.py:3018, in load_data_fashion_mnist(batch_size, resize) 3016 trans.insert(0, transforms.Resize(resize)) 3017 trans = transforms.Compose(trans) -> 3018 mnist_train = torchvision.datasets.FashionMNIST( 3019 root="../data", train=True, transform=trans, download=True) 3020 mnist_test = torchvision.datasets.FashionMNIST( 3021 root="../data", train=False, transform=trans, download=True) 3022 return (torch.utils.data.DataLoader(mnist_train, batch_size, shuffle=True, 3023 num_workers=get_dataloader_workers()), 3024 torch.utils.data.DataLoader(mnist_test, batch_size, shuffle=False, 3025 num_workers=get_dataloader_workers())) File E:\Anaconda\envs\d2l\lib\site-packages\torchvision\datasets\mnist.py:100, in MNIST.__init__(self, root, train, transform, target_transform, download) 97 return 99 if download: --> 100 self.download() 102 if not self._check_exists(): 103 raise RuntimeError("Dataset not found. You can use download=True to download it") File E:\Anaconda\envs\d2l\lib\site-packages\torchvision\datasets\mnist.py:180, in MNIST.download(self) 177 if self._check_exists(): 178 return --> 180 os.makedirs(self.raw_folder, exist_ok=True) 182 # download files 183 for filename, md5 in self.resources: File E:\Anaconda\envs\d2l\lib\os.py:215, in makedirs(name, mode, exist_ok) 213 if head and tail and not path.exists(head): 214 try: --> 215 makedirs(head, exist_ok=exist_ok) 216 except FileExistsError: 217 # Defeats race condition when another thread created the path 218 pass File E:\Anaconda\envs\d2l\lib\os.py:215, in makedirs(name, mode, exist_ok) 213 if head and tail and not path.exists(head): 214 try: --> 215 makedirs(head, exist_ok=exist_ok) 216 except FileExistsError: 217 # Defeats race condition when another thread created the path 218 pass File E:\Anaconda\envs\d2l\lib\os.py:225, in makedirs(name, mode, exist_ok) 223 return 224 try: --> 225 mkdir(name, mode) 226 except OSError: 227 # Cannot rely on checking for EEXIST, since the operating system 228 # could give priority to other errors like EACCES or EROFS 229 if not exist_ok or not path.isdir(name): PermissionError: [WinError 5] 拒绝访问。: '../data'什么意思

大家在看

recommend-type

美敦力BIS监护仪串口通讯协议手册

Document Title: BIS, MONITORING SYSTEMS, SERIAL PORT TECHNICAL SPEC
recommend-type

Cisco Enterprise Print System-开源

一组使大量打印机的管理和支持变得更加容易的工具。
recommend-type

web仿淘宝项目

大一时团队做的一个仿淘宝的web项目,没有实现后台功能
recommend-type

只输入固定-vc实现windows多显示器编程的方法

P0.0 只输入固定 P0.1 P0CON.1 P0.2 P0CON.2 PORT_SET.PORT_REFEN P0.3 P0CON.3 自动“偷”从C2的交易应用程序在. PORT_SET.PORT_CLKEN PORT_SET.PORT_CLKOUT[0] P0.4 P0CON.4 C2调试的LED驱动器的时钟输入,如果作为 未启用. P0.5 PORT_CTRL.PORT_LED[1:0] 输出港口被迫为.阅读 实际LED驱动器的状态(开/关) 用户应阅读 RBIT_DATA.GPIO_LED_DRIVE 14只脚 不能用于在开发系统中,由于C2交易扰 乱输出. 参考区间的时钟频率 对抗 控制控制 评论评论 NVM的编程电压 VPP = 6.5 V 矩阵,和ROFF工业* PORT_CTRL 2 GPIO 1 矩阵,和ROFF工业* PORT_CTRL 3 参考 clk_ref GPIO 矩阵 4 C2DAT 产量 CLK_OUT GPIO 5 C2CLK LED驱动器 1 2 工业* PORT_CTRL 1 2 3 1 2 6 产量 CLK_OUT GPIO 1 2 1 1 1 PORT_SET.PORT_CLKEN PORT_SET.PORT_CLKOUT[1] P0.6 P0CON.6 P0.7 P0CON.7 P1.0 P1CON.0 P1.1 P1CON.1 7 8 9 GPIO GPIO GPIO 14只脚 14只脚 14只脚 *注:工业注:工业 代表“独立报”设置. “ 矩阵矩阵 and Roff 模式控制模拟垫电路. 116 修订版修订版1.0
recommend-type

小游戏源码-端午节龙舟大赛.rar

小游戏源码-端午节龙舟大赛.rar

最新推荐

recommend-type

2022年网站美工个人年度工作总结(1).doc

2022年网站美工个人年度工作总结(1).doc
recommend-type

财务软件销售实习报告格式范文-实习报告格式(1).doc

财务软件销售实习报告格式范文-实习报告格式(1).doc
recommend-type

【航迹关联】基于标准 Hough 变换、修正 Hough 变换和序列 Hough 变换实现航迹起始算法研究Matlab代码.rar

【航迹关联】基于标准 Hough 变换、修正 Hough 变换和序列 Hough 变换实现航迹起始算法研究Matlab代码
recommend-type

获取本机IP地址的程序源码分析

从给定文件信息中我们可以提取出的关键知识点是“取本机IP”的实现方法以及与之相关的编程技术和源代码。在当今的信息技术领域中,获取本机IP地址是一项基本技能,广泛应用于网络通信类的软件开发中,下面将详细介绍这一知识点。 首先,获取本机IP地址通常需要依赖于编程语言和操作系统的API。不同的操作系统提供了不同的方法来获取IP地址。在Windows操作系统中,可以通过调用Windows API中的GetAdaptersInfo()或GetAdaptersAddresses()函数来获取网络适配器信息,进而得到IP地址。在类Unix操作系统中,可以通过读取/proc/net或是使用系统命令ifconfig、ip等来获取网络接口信息。 在程序设计过程中,获取本机IP地址的源程序通常会用到网络编程的知识,比如套接字编程(Socket Programming)。网络编程允许程序之间进行通信,套接字则是在网络通信过程中用于发送和接收数据的接口。在许多高级语言中,如Python、Java、C#等,都提供了内置的网络库和类来简化网络编程的工作。 在网络通信类中,IP地址是区分不同网络节点的重要标识,它是由IP协议规定的,用于在网络中唯一标识一个网络接口。IP地址可以是IPv4,也可以是较新的IPv6。IPv4地址由32位二进制数表示,通常分为四部分,每部分由8位构成,并以点分隔,如192.168.1.1。IPv6地址则由128位二进制数表示,其表示方法与IPv4有所不同,以冒号分隔的8组16进制数表示,如2001:0db8:85a3:0000:0000:8a2e:0370:7334。 当编写源代码以获取本机IP地址时,通常涉及到以下几个步骤: 1. 选择合适的编程语言和相关库。 2. 根据目标操作系统的API或系统命令获取网络接口信息。 3. 分析网络接口信息,提取出IP地址。 4. 将提取的IP地址转换成适合程序内部使用的格式。 5. 在程序中提供相应功能,如显示IP地址或用于网络通信。 例如,在Python中,可以使用内置的socket库来获取本机IP地址。一个简单的示例代码如下: ```python import socket # 获取主机名 hostname = socket.gethostname() # 获取本机IP local_ip = socket.gethostbyname(hostname) print("本机IP地址是:", local_ip) ``` 在实际应用中,获取本机IP地址通常是为了实现网络通信功能,例如建立客户端与服务器的连接,或者是在开发涉及到IP地址的其他功能时使用。 关于文件名称“getIP”,这是一个自解释的文件名,明显表示该文件或程序的作用是获取本机的IP地址。从标签“控件 源码 网络通信类 资源”中我们可以看出,这个文件很可能是一个可以嵌入其他软件中的代码片段,用以实现网络通信功能的一部分,具有较高的灵活性和重用性。 综上所述,获取本机IP地址是一个涉及到操作系统API、网络编程以及特定编程语言知识的技能。它不仅需要对编程语言提供的库函数有深入的理解,还要对操作系统的网络配置和IP协议有足够的认识。通过阅读和分析相关的源代码,如“getIP”,可以加深对网络编程实现细节的理解,并能够在实际开发中快速地应用这一技术。
recommend-type

【权威指南】:Win11笔记本上RTX4080驱动的安装与调试秘籍

# 1. Win11笔记本与RTX4080显卡介绍 随着技术的不断发展,笔记本电脑已不再是仅仅满足办公需求的移动设备,而是逐渐成为可以胜任复杂图形处理和游戏任务的强大工具。微软推出的Windows 11操作系统,以其全新的用户界面和改进的系统性能,为用户提供了更为流畅的操作体验。而在硬件方面,NVIDIA的RTX 4080显卡以其卓越的图形处理能力和AI支持,为笔记本电脑带来了前所未有的性能提升。本章节将带您初步了解Windows 11笔记本与NVIDIA RTX 4080显卡的基础信息,为进一步深入探讨它们的优化和调试技巧奠定基础。 ## 1.1 Win11笔记本的优势 Windows
recommend-type

windows环境举例

<think>好的,用户现在想在Windows环境下创建C函数库,需要具体的方法和示例代码。我需要结合之前的回答和用户提供的引用内容来给出合适的指导。 首先回顾之前的回答,用户已经了解了在Linux下创建静态库和动态库的方法,现在需要切换到Windows环境。根据引用[2],Windows下的C标准库和动态链接库的处理与Linux不同,比如使用dlfcn.h在Linux,而Windows可能需要其他方式。另外,引用[1]提到了在Windows下配置gcc环境(MinGW-w64),这可能是一个关键点,因为用户可能需要使用MinGW来编译库。 用户提供的引用[3]提到了使用MSVC编译器,这
recommend-type

QQ自动发送/回复系统源代码开放

根据提供的文件信息,我们可以了解到以下几点关键的知识点: ### 标题:“qqhelp” 1. **项目类型**: 标题“qqhelp”暗示这是一个与QQ相关的帮助工具或项目。QQ是中国流行的即时通讯软件,因此这个标题表明项目可能提供了对QQ客户端功能的辅助或扩展。 2. **用途**: “help”表明此项目的主要目的是提供帮助或解决问题。由于它提到了QQ,并且涉及“autosend/reply”功能,我们可以推测该项目可能用于自动化发送消息回复,或提供某种形式的自动回复机制。 ### 描述:“I put it to my web, but nobody sendmessage to got the source, now I public it. it supply qq,ticq autosend/reply ,full sourcecode use it as you like” 1. **发布情况**: 描述提到该项目原先被放置在某人的网站上,并且没有收到请求源代码的消息。这可能意味着项目不够知名或者需求不高。现在作者决定公开发布,这可能是因为希望项目能够被更多人了解和使用,或是出于开源共享的精神。 2. **功能特性**: 提到的“autosend/reply”表明该项目能够实现自动发送和回复消息。这种功能对于需要进行批量或定时消息沟通的应用场景非常有用,例如客户服务、自动化的营销通知等。 3. **代码可用性**: 作者指出提供了“full sourcecode”,意味着源代码完全开放,用户可以自由使用,无论是查看、学习还是修改,用户都有很大的灵活性。这对于希望学习编程或者有特定需求的开发者来说是一个很大的优势。 ### 标签:“综合系统类” 1. **项目分类**: 标签“综合系统类”表明这个项目可能是一个多功能的集成系统,它可能不仅限于QQ相关的功能,还可能包含了其他类型的综合服务或特性。 2. **技术范畴**: 这个标签可能表明该项目的技术实现比较全面,可能涉及到了多个技术栈或者系统集成的知识点,例如消息处理、网络编程、自动化处理等。 ### 压缩包子文件的文件名称列表: 1. **Unit1.dfm**: 这是一个Delphi或Object Pascal语言的窗体定义文件,用于定义应用程序中的用户界面布局。DFM文件通常用于存储组件的属性和位置信息,使得开发者可以快速地进行用户界面的设计和调整。 2. **qqhelp.dpr**: DPR是Delphi项目文件的扩展名,包含了Delphi项目的核心设置,如程序入口、使用的单元(Units)等。这个文件是编译和构建Delphi项目的起点,它能够帮助开发者了解项目的组织结构和编译指令。 3. **Unit1.pas**: PAS是Delphi或Object Pascal语言的源代码文件。这个文件可能包含了与QQ帮助工具相关的核心逻辑代码,例如处理自动发送和回复消息的算法等。 4. **readme.txt**: 这是一个常见的文本文件,包含项目的基本说明和使用指导,帮助用户了解如何获取、安装、运行和定制该项目。README文件通常是用户与项目首次交互时首先阅读的文件,因此它对于一个开源项目的用户友好度有着重要影响。 通过以上分析,我们可以看出“qqhelp”项目是一个针对QQ通讯工具的自动化消息发送与回复的辅助工具。项目包含完整的源代码,用户可以根据自己的需要进行查看、修改和使用。它可能包含Delphi语言编写的窗体界面和后端逻辑代码,具有一定的综合系统特性。项目作者出于某种原因将其开源,希望能够得到更广泛的使用和反馈。
recommend-type

【7步打造Win11深度学习利器】:Tensorflow-GPU与RTX4080终极优化指南

# 1. 深度学习与Windows 11的融合 在人工智能时代,深度学习已渗透到生活的方方面面,而Windows 11作为最新一代的操作系统,为深度学习提供了一个高效的工作平台。本章节将探讨深度学习技术如何与Windows 11系统融合,以及这一
recommend-type

ue画笔画画蓝图版

<think>我们正在讨论的是在UnrealEngine中使用蓝图实现画笔绘画功能。根据用户需求,重点在于通过蓝图系统实现类似毛笔的绘画效果。结合之前的回答和引用内容,我们将详细展开实现方法。核心思路:通过捕捉输入轨迹,动态生成笔触网格,并应用材质模拟墨迹效果。###详细实现步骤####1.创建绘画蓝图创建一个名为`BP_PaintBrush`的Actor蓝图:-**根组件**:SceneComponent-**关键组件**:-`SplineComponent`:用于存储绘画路径点-`InstancedStaticMeshComponent`:高效渲染重复笔触段(替代单个SplineMesh组
recommend-type

VB.NET图表曲线组件实现多种图表绘制

在深入讨论所给文件信息中的知识点之前,我们首先需要明确这些信息所代表的内容。标题指出我们所讨论的是一款在VB.NET环境中使用的“三维图表曲线组件”。从描述中我们可以了解到该组件的功能特性,即它能够绘制包括柱状图、线条曲线图和饼图在内的多种类型图表,并且支持图例的展示。此外,组件的色彩使用比较鲜艳,它不仅适用于标准的Windows Forms应用程序,还能够在ASP.NET环境中使用。而“压缩包子文件的文件名称列表”提供的信息则指向了可能包含该组件示例代码或说明文档的文件名,例如“PSC_ReadMe_4556_10.txt”可能是一个说明文档,而“GraphingV3Testing”和“Graphing.V3”则可能是一些测试文件或组件的实际使用案例。 下面详细说明标题和描述中提到的知识点: 1. VB.NET环境中的图表组件开发: 在VB.NET中开发图表组件需要开发者掌握.NET框架的相关知识,包括但不限于Windows Forms应用程序的开发。VB.NET作为.NET框架的一种语言实现,它继承了.NET框架的面向对象特性和丰富的类库支持。图表组件作为.NET类库的一部分,开发者可以通过继承相关类、使用系统提供的绘图接口来设计和实现图形用户界面(GUI)中用于显示图表的部分。 2. 图表的类型和用途: - 柱状图:主要用于比较各类别数据的数量大小,通过不同长度的柱子来直观显示数据间的差异。 - 线条曲线图:适用于展示数据随时间或顺序变化的趋势,比如股票价格走势、温度变化等。 - 饼图:常用于展示各部分占整体的比例关系,可以帮助用户直观地了解数据的组成结构。 3. 图例的使用和意义: 图例在图表中用来说明不同颜色或样式所代表的数据类别或系列。它们帮助用户更好地理解图表中的信息,是可视化界面中重要的辅助元素。 4. ASP.NET中的图表应用: ASP.NET是微软推出的一种用于构建动态网页的框架,它基于.NET平台运行。在ASP.NET中使用图表组件意味着可以创建动态的图表,这些图表可以根据Web应用程序中实时的数据变化进行更新。比如,一个电子商务网站可能会利用图表组件来动态显示产品销售排行或用户访问统计信息。 5. 色彩运用: 在设计图表组件时,色彩的运用非常关键。色彩鲜艳不仅能够吸引用户注意,还能够帮助用户区分不同的数据系列。正确的色彩搭配还可以提高信息的可读性和美观性。 在技术实现层面,开发者可能需要了解如何在VB.NET中使用GDI+(Graphics Device Interface)进行图形绘制,掌握基本的绘图技术(如画线、填充、颜色混合等),并且熟悉.NET提供的控件(如Panel, Control等)来承载和显示这些图表。 由于提供的文件名列表中包含有"Testing"和".txt"等元素,我们可以推测该压缩包内可能还包含了与图表组件相关的示例程序和使用说明,这对于学习如何使用该组件将十分有用。例如,“GraphingV3Testing”可能是一个测试项目,用于在真实的应用场景中检验该图表组件的功能和性能;“PSC_ReadMe_4556_10.txt”可能是一个详细的用户手册或安装说明,帮助用户了解如何安装、配置和使用该组件。 总结而言,了解并掌握在VB.NET环境下开发和使用三维图表曲线组件的知识点,对从事.NET开发的程序员来说,不仅可以增强他们在数据可视化方面的技能,还可以提高他们构建复杂界面和动态交互式应用的能力。