java ArrayList<>中,可以再继续添加ArrayList元素吗

时间: 2023-06-02 12:07:21 浏览: 260
可以,你可以通过添加ArrayList实例的方式继续向其添加元素。例如: ```java ArrayList<ArrayList<String>> list = new ArrayList<ArrayList<String>>(); ArrayList<String> innerList1 = new ArrayList<String>(); innerList1.add("inner1"); list.add(innerList1); ArrayList<String> innerList2 = new ArrayList<String>(); innerList2.add("inner2"); list.add(innerList2); ``` 这样,在`list`中就包含了两个`ArrayList`实例。第一个`ArrayList`实例中包含了一个元素"inner1",第二个`ArrayList`实例中包含了一个元素"inner2"。
相关问题

class Solution { List<List<Integer>> ret; List<Integer> path; public List<List<Integer>> subsets(int[] nums) { ret = new ArrayList<>(); path = new ArrayList<>(); dfs(nums,0); return ret; } public void dfs(int[] nums,int post){ ret.add(new ArrayList<>(path)); for(int i = post;i<nums.length;i++){ path.add(nums[i]); dfs(nums,i+1); path.remove(path.size()-1); } } }j举例描述 最好带图片描述

<think>好的,我现在需要解释用户提供的Java代码,这段代码是用于生成一个整数数组的所有子集。用户还希望最好有图片描述,但这里可能只能用文字和示例来说明。首先,我得理解代码的结构和逻辑。 首先,代码定义了一个Solution类,里面有ret和path两个成员变量。ret用于存储所有子集的结果,而path记录当前的路径,也就是正在构建的子集。subsets方法初始化这两个变量,并调用dfs方法进行深度优先搜索。 接下来是dfs方法,参数是nums数组和post起始位置。在dfs中,首先将当前path的副本添加到ret中,这应该是为了保存当前路径所代表的子集。然后进入循环,从post开始遍历数组,将当前元素加入path,递归调用dfs,之后移除最后一个元素,进行回溯。 我需要理清这里的递归和回溯过程。例如,假设nums是[1,2,3],那么初始调用dfs(nums, 0),这时path为空,但会被添加到ret中,所以第一个子集是空集。然后循环从i=0开始,加入1,递归调用dfs(nums,1)。这时候在下一层递归中,又会先添加当前path(即[1])到ret,然后循环从i=1开始,添加2,递归到i=2,添加3,然后递归到i=3,循环不执行,返回。然后回溯,移除3,再回到i=2的循环结束,继续回溯,移除2,此时回到i=1的循环,继续i=2的时候添加3,形成[1,3]。这样依次类推,生成所有可能的子集。 为了详细说明这个过程,可以举例nums = [1,2,3],然后画出递归树或者步骤图。但用户希望有图片描述,但由于无法生成图片,只能用文字和示例展示递归的每一步。 可能的步骤分解: 1. 初始调用dfs(0),path为空,ret添加空集。 2. 进入循环i=0,添加1到path,递归调用dfs(1)。 - 此时在dfs(1),ret添加当前path [1]。 - 循环i=1,添加2,递归调用dfs(2)。 - 在dfs(2),ret添加[1,2]。 - 循环i=2,添加3,递归调用dfs(3)。 - 在dfs(3),ret添加[1,2,3]。 - 循环i=3不满足条件,返回。 - 回溯,移除3,path变为[1,2]。 - i=2循环结束,返回。 - 回溯,移除2,path变为[1]。 - i=1循环继续,i=2,添加3,递归调用dfs(3)。 - ret添加[1,3]。 - 循环i=3不满足,返回。 - 回溯,移除3。 - i=2循环结束,返回。 3. 回溯,移除1,path变空。 4. 循环i=0结束,接着i=1开始。 - 添加2到path,递归调用dfs(2)。 - ret添加[2]。 - 循环i=2,添加3,递归调用dfs(3)。 - ret添加[2,3]。 - 返回。 - 回溯移除3。 - i=2循环结束,返回。 - 回溯移除2。 5. 接着i=2开始,添加3到path,递归调用dfs(3)。 - ret添加[3]。 - 返回。 - 回溯移除3。 6. 所有循环结束,得到所有子集。 这样的过程应该生成所有可能的子集,包括空集、单元素、双元素和三元素的组合。生成的子集顺序是按照元素在数组中的顺序,并且没有重复,因为每次递归都从下一个索引开始,避免重复选择之前的元素。 为了验证是否正确,可以手动列出nums = [1,2,3]的所有子集,看是否与代码输出一致。正确的子集应该包括:[], [1], [1,2], [1,2,3], [1,3], [2], [2,3], [3]。这正好是8个子集,符合2^3=8的数量。 现在需要将这些过程以清晰的中文步骤呈现给用户,可能需要用文字描述递归的每一层和回溯过程,并举例说明。同时,可以提到代码中的关键点,比如回溯时的add和remove操作,以及如何避免重复子集。 可能的错误点或需要注意的地方:在将path添加到ret时,必须新建一个ArrayList,否则后续的修改会影响已添加到ret中的列表。例如,代码中使用ret.add(new ArrayList<>(path)),这确保了每次添加的是当前path的快照,而不是引用。如果直接添加path,那么之后对path的修改会导致ret中的子集也被改变。 总结来说,这段代码通过深度优先搜索和回溯的方法,逐步构建所有可能的子集。每次递归调用都从当前元素的下一个位置开始,确保不会重复之前的元素,从而生成不重复的子集。每个递归步骤都先记录当前路径,然后尝试添加后续元素,再回溯继续其他可能性。</think>以下是对代码的逐步解析及示例说明: --- ### **问题分析** 生成数组的所有子集(不重复)。例如:输入 $nums = [1,2,3]$,输出所有可能的子集:$[], [1], [2], [3], [1,2], [1,3], [2,3], [1,2,3]$。 --- ### **算法思路** 使用 **深度优先搜索(DFS)** 和 **回溯** 的策略: 1. **递归构建子集**:每次递归记录当前路径(已选的元素组合)。 2. **避免重复**:每次递归从当前索引的下一个位置开始,确保元素按顺序选择,不重复。 --- ### **代码逐行解析** ```java class Solution { List<List<Integer>> ret; // 存储所有子集的结果 List<Integer> path; // 记录当前路径(子集) public List<List<Integer>> subsets(int[] nums) { ret = new ArrayList<>(); path = new ArrayList<>(); dfs(nums, 0); // 从索引0开始递归 return ret; } public void dfs(int[] nums, int post) { ret.add(new ArrayList<>(path)); // 记录当前路径为一个子集(关键!必须新建对象) for (int i = post; i < nums.length; i++) { path.add(nums[i]); // 选择当前元素 dfs(nums, i + 1); // 递归下一层(从下一个索引开始) path.remove(path.size() - 1); // 回溯,撤销选择 } } } ``` --- ### **示例演示(以 $nums = [1,2,3]$ 为例)** 通过递归树描述执行过程: ``` 初始调用:dfs(0) | ├── 添加空集 [] 到 ret ├── i=0: path添加1 → [1] │ ├── 递归 dfs(1) │ │ ├── 添加 [1] 到 ret │ │ ├── i=1: path添加2 → [1,2] │ │ │ ├── 递归 dfs(2) │ │ │ │ ├── 添加 [1,2] 到 ret │ │ │ │ ├── i=2: path添加3 → [1,2,3] │ │ │ │ │ ├── 递归 dfs(3) → 添加 [1,2,3] │ │ │ │ │ └── 回溯移除3 → [1,2] │ │ │ │ └── 循环结束 │ │ │ └── 回溯移除2 → [1] │ │ ├── i=2: path添加3 → [1,3] │ │ │ ├── 递归 dfs(3) → 添加 [1,3] │ │ │ └── 回溯移除3 → [1] │ │ └── 循环结束 │ └── 回溯移除1 → [] ├── i=1: path添加2 → [2] │ ├── 递归 dfs(2) │ │ ├── 添加 [2] 到 ret │ │ ├── i=2: path添加3 → [2,3] │ │ │ ├── 递归 dfs(3) → 添加 [2,3] │ │ │ └── 回溯移除3 → [2] │ │ └── 循环结束 │ └── 回溯移除2 → [] └── i=2: path添加3 → [3] ├── 递归 dfs(3) → 添加 [3] └── 回溯移除3 → [] ``` --- ### **关键点总结** 1. **新建列表**:`ret.add(new ArrayList<>(path))` 确保添加的是当前路径的副本。 2. **递归与回溯**: - **选择元素**:`path.add(nums[i])` 将当前元素加入路径。 - **递归下一层**:`dfs(nums, i+1)` 从下一个索引开始,避免重复。 - **撤销选择**:`path.remove` 回溯到上一层状态。 3. **时间复杂度**:$O(2^n)$,每个元素有“选”或“不选”两种可能,共 $2^n$ 个子集。 --- 通过这种策略,代码能高效生成所有不重复的子集。

java求并集public static ArrayList<Integer> Union(ArrayList<Integer> list1, ArrayList<Integer> list2)

在Java中,求两个ArrayList整数集合的并集,可以使用`addAll()`方法将一个集合添加到另一个集合,然后再转换回ArrayList。这里是一个简单的示例: ```java import java.util.ArrayList; public static ArrayList<Integer> union(ArrayList<Integer> list1, ArrayList<Integer> list2) { // 创建一个新的ArrayList用于存储结果 ArrayList<Integer> result = new ArrayList<>(); // 将list1的所有元素添加到result result.addAll(list1); // 如果list2还有元素,将其添加到result if (!list2.isEmpty()) { result.addAll(list2); } return result; } ``` 这个函数首先把`list1`的元素复制到结果列表,然后检查`list2`是否为空,如果不为空,则继续添加其所有元素到结果列表。最后返回包含两个集合所有唯一元素的结果集合。
阅读全文

相关推荐

本篇主要讲解泛型最基本的定义与用法,刚接触Java的同学可以来简单了解一下泛型到底是怎么回事。下面我们开始进入正题。2.1泛型介绍泛型是在JDK5之后引入的一个新特性,可以在编译阶段约束操作的数据类型,并进行检查。泛型的格式为 <数据类型>用大白话来说,泛型就好比是给一个标签,通常情况下我们会在开发过程中或者个人学习或练习的过程中使用到泛型;就拿数组的泛型举例来说,我们把数组比作一个药瓶子,我们药瓶子贴上了什么标签,就放什么药,如果不管什么药都放在一个药瓶子里,那不得出大事吗?同样容器写上什么泛型,就存放什么数据;这样就不会导致我们存取数据的混乱。也就解决了我们引言中提到的问题,也就解释了什么是泛型。2.2 泛型的细节注意点(1)泛型的数据类型只能填写引用数据类型,基本数据类型不可以。至于原因,我在下面高级篇会提到;(2)指定泛型的具体类型之后,可以传入该类类型或其子类类型;(3)如果不手动添加泛型,则默认泛型为 Object 。2.3 泛型用法简单演示简单点来说,当我们使用了泛型之后,就好比是给我们要操作的数据贴上了一个标签,你贴上的是什么标签,就存什么样的数据,否则编译器会报错。如下所示我们先 new 一个ArrayList数组,然后添加泛型,如果这里填 int 类型,编译器会报错,让你替换为包装类 Integer ,因为int 类型不是引用类型,而它的包装类 Integer 则是引用类型。如果有谁不懂什么是包装类的,或者有兴趣想要了解的,可以去看我的另一篇文章 “Java中的包装类有什么用?”里面我讲述了八种基本数据类型对应的包装类以及基本用法。(1条消息) Java中包装类有什么用?_m0_70325779的博客-CSDN博客https://blog.csdn.net/m0_70325779/article/details/130994541?spm=1001.2014.3001.5501所以,这里我们需要把 int 改为Integer,改过之后就不会报错了,如下所示这个时候我们存入的“123”,“456”,“789”就会被当作Integer对象,那么我来试试存入一个String字符串会怎么样。这里编译器告诉了我们几种方法,第一种方法是将字符串“abcdefg”变为Integer类型,但这种方法显然是不行的;另一种方法就是改变 List 的泛型为 String。如下,写一个 main 方法,定义了多个 List 对象并标注不同的泛型,添加元素 package cn.itcast.order.pojo; import java.util.ArrayList;import java.util.List; public class FanXing { public static void main(String[] args) { // 存放字符串类型数据 List<String> list1 = new ArrayList<>(); list1.add("abcdefg"); list1.add("hijklmn"); System.out.println(list1); // 存放 Integer 类型数据 List<Integer> list2 = new ArrayList<>(); list2.add(123); list2.add(456); list2.add(789); System.out.println(list2); // 存放自定义类型数据,提前定义好的Order订单实体类 List<Order> list3 = new ArrayList<>(); list3.add(new Order()); list3.add(new Order()); System.out.println(list3); try { System.out.println(Class.forName("cn.itcast.order.pojo.FanXing")); } catch (ClassNotFoundException e) { e.printStackTrace(); } }}然后运行main方法,打印容器中的内容打印输出成功!所以我们也证实了一个结论,一个容器泛型是什么,就要存入什么类型的数据,否则会报错。2.4 泛型的好处通过刚才的简单展示,这里可以简单总结出泛型的几点好处(1)统一数据类型,对于后续业务层中取出数据有很强的统一规范性,方便对数据的管理;(2)把运行时期的问题提前到了编译期,避免了强转类型转换可能出现的异常,降低了程序出错的概率;3. 泛型高级篇以下就是关于泛型知识的高级篇,可能会有些晦涩难懂,主要以 ArrayList 数组为例,结合ArrayList 源码讲解泛型的用法,包括泛型能用在哪些地方,几乎解说了泛型所有的用法,如果看不懂可以多看几遍,或者下先掌握基础篇,以后慢慢提升。3.1 泛型底层数据存取的实质刚才我说到了泛型只能用引用数据类型,是有原因的;当我们往写入泛型的集合中添加元素的时候,泛型其实可以理解成一个看门大爷,你在添加数据之前,它会看看你要添加的数据类型是否与标注的泛型类型相匹配,不匹配则不会让你存入,匹配的话,在存入之后,容器底层还是会把你存入的所有数据类型当作 Object 类型保存起来,当你取数据的时候,它会做一个强转,再从 Object 类型强转变成泛型对应的类型。这也就是为什么泛型只能写引用数据类型,因为泛型的底层会做一个强转,在存取时会在Object类型与泛型类型之间互相强转,显然,int,float,double等基本数据类型是不能强转为Object类型的,所以泛型必须为引用数据类型,如果想存入 int 类型数据,只能写 int 的包装类 Integer。3.2 泛型的擦除通过刚才的讲解,我们知道了,泛型需要定义在容器的后面,并用 <> 进行标注。其实,Java中的泛型是伪泛型。为什么要这么说呢?其实我们在编码时期所指定的泛型,只在代码编译时期可以看到,当我们编写的类生成字节码文件之后,我们加入的泛型 <数据类型> 就会消失,不会在字节码中体现出来,这种现象在Java中有个专业的名词就叫 “泛型的擦除”。这里我就不做演示了,感兴趣的小伙伴可以自己试一试,定义一个类,类中添加一个带有泛型的容器,简单写几个添加打印操作,然后使用编译器编译成字节码文件,查看该字节码文件时你就会发现,我们在编写代码时所写的泛型其实在字节码文件中并不存在。3.3 泛型类泛型的使用方法非常多,这里来简单说一下泛型类的使用;泛型类,就是把泛型定义在类上。泛型类的使用场景:当一个类中,某个变量的数据不确定时,就可以定义带有泛型的类。我们平常所用的ArrayList类,就是一个泛型类,我们看如下源码ArrayList 源码上显示,在ArrayList类的后面,便是 <E>泛型,定义了这样的泛型,就可以让使用者在创建ArrayList对象时自主定义要存放的数据类型。这里的 E 可以理解成变量,它不是用来记录数据的,而是记录数据的类型的。可以写成很多字母,T,V,K都可以,通常这些字母都是英文单词的首字母,V表示 value,K表示 key,E表示   element,T表示 type;如果你想,自己练习的时候写成ABCDEFG都可以,但建议养成好习惯,用专业名词的首字母,便于理解。下面我简单自己写一个泛型类,// 自定义泛型类public class MyArrayList<T> { // 给出该数组的默认长度为10 Object[] obj = new Object[10]; // 定义一个指针,默认为0 int size; // 写一个泛型类中添加元素的方法 public boolean add(T t){ // size默认为0,刚好指向数组的第一个位置,添加元素,将要添加的元素t赋值给到obj数组的第一个位置 obj[size] = t; // size指针加一,指向下一个位置,下次元素添加到size指向的位置 size++; // 添加完成并size加一之后,操作完成,返回成功true return true; } // 写一个泛型类中取出元素的方法,index索引可以取出指定位置的元素 public T get(int index){ // 取出元素后,强转为我们泛型所指定的类型 return (T)obj[index]; }}定义一个 main 方法,创建我的自定义泛型类的类对象,测试 add 方法,如下所示 这里打印出来的是 list 的内存地址,说明我们自定义的 泛型类没有问题。其实 ArrayList 底层源码就是这样写的,这里我只是简单的写了两个方法,有兴趣的可以把删除方法和修改方法也写出来,动手测试一下。3.4 泛型方法我们什么时候会用到泛型方法呢?通常情况下,当一个方法的形参不确定的情况下,我们会使用到泛型方法。泛型方法其实与泛型类有着紧密的联系,通过上面我写的自定义泛型类不难看出,在泛型类中,所有方法都可以使用类上定义的泛型。但是,泛型方法却可以脱离泛型类单独存在,泛型方法上定义的泛型只有本方法上可以使用,其他方法不可用。泛型方法的格式如下所示 根据上面泛型方法的模板,我们就可以定义一个简单的泛型方法模板根据模板写一个泛型方法public class MyArrayList { private MyArrayList(){} // 定义一个静态泛型方法,可以封装到工具类中以备后期使用 public static<E> void addAll(ArrayList<E> list, E e1, E e2, E e3){ list.add(e1); list.add(e2); list.add(e3); } // 写一个main方法测试刚才所写的泛型方法 public static void main(String[] args) { // 因为泛型方法中需要一个集合对象,所以提前先定义一个集合对象,泛型就写String ArrayList<String> list = new ArrayList<String>(); // 调用静态方法, 类名.方法名调用 MyArrayList.addAll(list,); } }看下图,当我向泛型为String集合中添加 int 类型的元素时,编译器报错,给出的解决方案是修改定义的addAll方法,或重新定义一个addAll方法。这里要知道一点,我们调用了addAll方法,并传入了参数 list ,而list我们定义的泛型为String,所以我们后续添加的元素类型也只能是String。因此,当我们传入的参数为String类型的数据时,报错就会消失,打印数组,如下图运行成功!这里可以总结出一点:泛型方法,在调用它的时候参数类型就已经确定了,该泛型方法会根据给定的参数类型执行相应的逻辑,得出结果。泛型方法的使用场景也并不少见,在开发过程中,我们通常会把一些重复或者相似的方法写成一个泛型通用方法,我们只需要在方法上指定泛型。这样在调用过程中,传入什么样的参数,方法就会执行什么样的逻辑,可以简化开发,减少代码量,提高编程效率;但对开发者对泛型的理解以及方法的执行逻辑有一定深入的把控与理解。如果你能写出来,说明你对泛型的理解已经提高了一个层次。3.5 泛型接口泛型接口与泛型方法相似,当我们的接口中,参数类型不确定的时候,就可以使用泛型。泛型接口的格式也很简单,和泛型方法相似,如下图 在Java中,List 接口就是一个泛型接口,我们看源码就可以得知泛型接口的格式虽然简单,但这不是我们要学习的重点。我们的重点是:如何使用一个带有泛型的接口?通常情况下,我们有两种方式方式一:实现类给出具体的类型。方式二:实现类延续泛型,在创建对象时再指定泛型类型。相比于方式一,方式二的扩展性更强。Java中 List 的实现类 ArrayList 就是采用的第二种方式,延续泛型,我们看源码即可得知别的不用看,只看我画红线的部分,ArrayList 实现了list接口,但后面还是泛型<E>,延续了泛型,是方式二。那么我再给各位演示一下方式一,如下我自己定义的一个泛型接口// 定义一个泛型接口public interface MyList<E> { // 定义一个方法做简单测试 public boolean add(E e);}再定义一个类实现该接口,// 定义MyArrayList类实现MyList接口,并在实现时就指定泛型类型public class MyArrayList implements MyList<String> { // 定义一个长度为十的默认数组 Object[] object = new Object[10]; // 定义一个size作为指针 int size; @Override public boolean add(String s) { /** * size初始化为零,刚好指向数组的第一个位置,添加第一个元素时,我们默认将元素添加到数组的第一个位置 */ object[size] = s; // size则合理可以作为指针,当添加第一个元素之后,size++,向后移动一位,下一次就会添加到第二个元素的位置,循环往复 size++; return true; }}可以看到,在实现类中重写add方法,方法的参数就已经确定,就是我们在实现它时指定的String类型。然后我们写一个main方法测试是否成功创建对象,添加元素,打印结果,运行发现成功但这里是一个内存地址,因为我这里只是简单的定义了一个接口,在Java中ArrayList的源码上千行,里面定义了很多方法,我这里只做简单测试验证一下方式一是如何完成的,很多东西都没有写,大家明白即可。3.6 泛型的继承和通配符泛型本身并不具备继承性,但是数据具备继承性。3.6.1 泛型不具备继承性如下图,我定义了GrandFathor类,Fathor类,Son类;Fathor类继承GrandFathor类,Son类又继承Fathor类。我们再定义一个空方法体的 method 方法,方法需要传入一个带泛型的集合,我就写 GrandFathor;分别创建泛型为 GrandFathor,Fathor,Son 的集合对象 list1,list2,list3;调用method方法,传入list1,编译器不报错,传入list2,编译器报错;传入list3,编译器又报错;我们可以得出结论,当然了也是事实,泛型是不具备继承性的,也就是说,一个方法传入的对象泛型是什么类型,我们不能把参数泛型的子类泛型对象作为参数传递给方法,该泛型是不具备继承性的,传入编译器会报错。3.6.2 何为数据具备继承性刚才我们验证了也演示了泛型不具备继承性,那么接下来我们来说一下,数据具备继承性是什么意思。还拿刚才的代码举例,我们把刚才的代码注释,然后往 list1 对象中添加对象;添加 GrandFathor 类对象,添加成功,这也是当然的,因为该类的泛型指定的就是 GrandFathor;添加 Fathor 类对象,发现也添加成功;添加 Son 类对象,发现也添加成功;执行 main 方法,如下结果,说明没有问题如果一个例子不能说明问题,我们再写一个,如下图: 定义一个 list2,还是和刚才一样,运行如下图这也从侧面说明了一个结论当我们为一个类指定泛型并创建对象之后,对象中不仅可以加入泛型所指定的类对象,还可以加入泛型类子类的类对象,这就是数据的继承性。注意这里说的是对象,上面不具备继承性中说的是参数,不要混为一谈。3.6.3 泛型的通配符说回我们刚才3.6.1泛型不具备继承性的例子,method()方法,假设我希望能将GrandFathor类,Fathor类,Son类的类对象都加入到list集合中去,该怎么做?很显然,以我们现在的想法和所学的知识,可以给 ArrayList 数组添加一个不确定的泛型<E>,因为不确定类型,所以 method() 方法中的参数可以是GrandFathor类,Fathor类,Son类的任意类对象,就可以达到我们的目的了。但各位想过没有,如果传入一个不确定的类型<E>,这样做有没有什么缺点?其实这样做是有很大一个缺点的,那就是如果添加了这个不确定的泛型<E>,虽然能将GrandFathor类,Fathor类,Son类的类对象都加入到list集合中去,但其它所有类的类对象也都能加入到该 list,那这还和不使用泛型有什么区别呢?继续我们的话题,3.6.1的method()方法,虽然我不确定传入method()方法的类型,但我能确定我要传入的是GrandFathor类,Fathor类,Son类这三个其中的一个,而且它们三个有继承关系。但是泛型又不具备继承性,我们又不能直接传入GrandFathor作为泛型,否则另外两个无法作为参数传递进去,那该怎么做呢?这就要用到我们下面要说的通配符了。在Java中,泛型的通配符是一个 "?","?" 也代表不确定的类型,它配合关键词 extend 或 super 可以对类型做出限定。我们可以写出如下两种写法?extend <E>:这个写法表示可以传递泛型E包括泛型E的所有子类类型。?super <E>:这个写法表示可以传递泛型E包括泛型E的所有父类类型。根据上面这两种写法,我们就可以对method()方法作出修改,如下图我们把 method方法中的泛型改为<? extend GrandFathor>,表示可以传入GrandFathor类对象包括其子类对象,修改之后可以发现,再次调用method方法传入list1,list2,list3,编译器就不报错了。同理,也可以把泛型改成 <? super Son> 表示Son类以及Son类的所有父类对象,这里就不做演示了,也很简单。根据上面的例子,我们可以总结出来泛型通配符的使用场景:如果类型不确定,但是知道要传入的参数类型是某个继承体系中的一个,就可以使用泛型通配符来表示。关注博主即可阅读全文 程序猿ZhangSir关注

下面是我的代码,目的是在Java中实现A*算法并且在不同的图中测试它的效率,计算找到最短路径的时间,请问有什么需要修改优化的地方吗?并且输出优化后的完整代码package AStarAlgorithm; import java.util.*; class Node { String name; int x, y; // 节点的坐标 Map<Node, Integer> neighbors = new HashMap<>(); // 邻居节点和边权重 Node(String name, int x, int y) { this.name = name; this.x = x; this.y = y; } // 计算曼哈顿距离 public int manhattanDistance(Node other) { return Math.abs(this.x - other.x) + Math.abs(this.y - other.y); } /*计算欧几里得距离 public double euclideanDistance(Node other) { return Math.sqrt(Math.pow(this.x - other.x, 2) + Math.pow(this.y - other.y, 2)); } */ } public class AStarAlgorithm { public List<Node> aStar(Node start, Node goal) { Set<Node> closedSet = new HashSet<>(); Map<Node, Integer> gScore = new HashMap<>(); Map<Node, Integer> fScore = new HashMap<>(); PriorityQueue<Node> openSet = new PriorityQueue<>(Comparator.comparingInt(n -> fScore.get(n))); Map<Node, Node> cameFrom = new HashMap<>(); // 初始化 gScore.put(start, 0); fScore.put(start, start.manhattanDistance(goal)); // 这里可以选择曼哈顿或欧几里得距离 openSet.add(start); while (!openSet.isEmpty()) { Node current = openSet.poll(); // 如果到达目标节点 if (current.equals(goal)) { return reconstructPath(cameFrom, current); } closedSet.add(current); for (Map.Entry<Node, Integer> neighborEntry : current.neighbors.entrySet()) { Node neighbor = neighborEntry.getKey(); int tentative_gScore = gScore.get(current) + neighborEntry.getValue(); if (closedSet.contains(neighbor) && tentative_gScore >= gScore.getOrDefault(neighbor, Integer.MAX_VALUE)) { continue; // 不处理已访问的节点 } if (!openSet.contains(neighbor) || tentative_gScore < gScore.getOrDefault(neighbor, Integer.MAX_VALUE)) { cameFrom.put(neighbor, current); gScore.put(neighbor, tentative_gScore); fScore.put(neighbor, tentative_gScore + neighbor.manhattanDistance(goal)); // 这里也可以选择欧几里得距离 if (!openSet.contains(neighbor)) { openSet.add(neighbor); } } } } return Collections.emptyList(); // 没有路径 } private List<Node> reconstructPath(Map<Node, Node> cameFrom, Node current) { List<Node> totalPath = new ArrayList<>(); totalPath.add(current); while (cameFrom.containsKey(current)) { current = cameFrom.get(current); totalPath.add(current); } Collections.reverse(totalPath); return totalPath; } public static void main(String[] args) { // TODO Auto-generated method stub // 创建节点 Node a = new Node("A", 0, 0); Node b = new Node("B", 1, 0); Node c = new Node("C", 1, 1); Node d = new Node("D", 2, 1); Node e = new Node("E", 2, 2); // 建立图 a.neighbors.put(b, 1); a.neighbors.put(c, 4); b.neighbors.put(c, 2); b.neighbors.put(d, 5); c.neighbors.put(e, 3); d.neighbors.put(e, 1); //创建A*算法实例 AStarAlgorithm aStar = new AStarAlgorithm(); // 开始测量时间 long startTime = System.nanoTime(); //执行算法 List<Node> path = aStar.aStar(a, e); // 结束测量时间 long endTime = System.nanoTime(); // 计算运行时间(纳秒) long duration = endTime - startTime; // 输出路径 System.out.println("Path from A to E:"); for (Node node : path) { System.out.print(node.name + " "); } // 输出运行时间(毫秒) System.out.println("算法运行时间: " + duration + " 纳秒"); System.out.println("算法运行时间: " + (duration / 1_000_000.0) + " 毫秒"); // 转换为毫秒 } }

import java.util.ArrayList; import java.util.Collection; import java.util.Iterator; import java.util.Scanner; // 定义员工类 class Employee { private String name; private int age; public Employee() {} public Employee(String name, int age) { this.name = name; this.age = age; } public String getName() { return name; } public void setName(String name) { this.name = name; } public int getAge() { return age; } public void setAge(int age) { this.age = age; } } // 主函数 public class Main { public static void main(String[] args) { // 1. 创建有序集合对象 Collection<Employee> employees = new ArrayList<>(); // 提示用户输入数据 Scanner scanner = new Scanner(System.in); for (int i = 0; i < 3; i++) { // 输入员工姓名 String name = scanner.nextLine().trim(); // 输入员工年龄 int age = Integer.parseInt(scanner.nextLine().trim()); // 创建员工对象并添加到集合中 employees.add(new Employee(name, age)); } // 关闭Scanner scanner.close(); // 2. 使用迭代器遍历集合 Iterator<Employee> iterator = employees.iterator(); // 3. 输出所有员工信息 StringBuilder outputBuilder = new StringBuilder(); while (iterator.hasNext()) { Employee emp = iterator.next(); outputBuilder.append(emp.getName()).append("---").append(emp.getAge()).append("\n"); } // 打印结果 System.out.print(outputBuilder.toString()); } }输入样例: 在这里给出一组输入。例如: zs 10 ls 20 ww 30 输出样例: 在这里给出相应的输出。例如: zs---10 ls---20 ww---30 将此代码严格按照该输入输出样例进行修改

最新推荐

recommend-type

基于单片机的水位自动检测与控制系统开题报告.doc

基于单片机的水位自动检测与控制系统开题报告.doc
recommend-type

cc65 Windows完整版发布:6502 C开发工具

cc65是一个针对6502处理器的完整C编程开发环境,特别适用于Windows操作系统。6502处理器是一种经典的8位微处理器,于1970年代被广泛应用于诸如Apple II、Atari 2600、NES(任天堂娱乐系统)等早期计算机和游戏机中。cc65工具集能够允许开发者使用C语言编写程序,这对于那些希望为这些老旧系统开发软件的程序员来说是一大福音,因为相较于汇编语言,C语言更加高级、易读,并且具备更好的可移植性。 cc65开发工具包主要包含以下几个重要组件: 1. C编译器:这是cc65的核心部分,它能够将C语言源代码编译成6502处理器的机器码。这使得开发者可以用高级语言编写程序,而不必处理低级的汇编指令。 2. 链接器:链接器负责将编译器生成的目标代码和库文件组合成一个单独的可执行程序。在6502的开发环境中,链接器还需要处理各种内存段的定位和映射问题。 3. 汇编器:虽然主要通过C语言进行开发,但某些底层操作仍然可能需要使用汇编语言来实现。cc65包含了一个汇编器,允许程序员编写汇编代码段。 4. 库和运行时:cc65提供了一套标准库,这些库函数为C语言提供了支持,并且对于操作系统级别的功能进行了封装,使得开发者能够更方便地进行编程。运行时支持包括启动代码、中断处理、内存管理等。 5. 开发工具和文档:除了基本的编译、链接和汇编工具外,cc65还提供了一系列辅助工具,如反汇编器、二进制文件编辑器、交叉引用器等。同时,cc65还包含丰富的文档资源,为开发者提供了详尽的使用指南、编程参考和示例代码。 cc65可以广泛用于学习和开发6502架构相关的软件,尤其适合那些对6502处理器、复古计算机或者早期游戏系统有兴趣的开发者。这些开发者可能想要创建或修改旧式游戏、系统软件、仿真器,或者进行技术研究和学习。 尽管cc65是一个功能强大的工具,但它也要求开发者对目标平台的硬件架构和操作系统有足够的了解。这是因为6502并非现代处理器,它对内存访问、I/O操作和中断管理等有着特殊的限制和要求。因此,使用cc65需要开发者具备一定的背景知识,包括但不限于6502指令集、内存映射、硬件寄存器操作等方面的内容。 此外,cc65针对Windows平台进行了优化和封装,使得它可以在Windows操作系统上无缝运行,这对于习惯于Windows环境的用户是一个好消息。不过,如果用户使用的是其他操作系统,可能需要通过相应的兼容层或虚拟机来运行Windows环境,以便使用cc65工具。 总的来说,cc65提供了一种相对简单的方式来开发运行在6502处理器上的软件。它极大地降低了开发难度,使得更多的人能够接触和参与到基于6502平台的软件开发中来,为这个历史悠久的平台注入了新的活力。
recommend-type

【CLIP模型实战】:从数据预处理到代码实现的图文相似度计算完全指南

# 1. CLIP模型概述 在人工智能领域中,CLIP(Contrastive Language-Image Pre-training)模型作为一款开创性的多模态学习技术,已经成为业界瞩目的焦点。CLIP模型是由OpenAI在2021年推出的,其创新之处在于通过大规模的图文对齐数据进行预训练,能够理解和匹配图像与自然语言描述之间的关联性。CLIP突破了传统方法在特定任务上需要大规模标注数据的限制
recommend-type

车载以太网doip协议格式

<think>首先,用户的问题是:“我想查找关于车载以太网DOIP协议的数据格式或规范”。用户引用了站内内容,其中提到DoIP是基于以太网的通讯协议,用于传输UDS协议的数据,规范于ISO13400标准。关键点:-DoIP协议:DiagnosticcommunicationoverInternetProtocol-规范:ISO13400标准-数据格式:我需要提供关于DoIP数据格式的详细信息根据系统级指令:-所有行内数学表达式使用$...$格式-独立公式使用$$...$$格式并单独成段-LaTeX语法正确-使用中文回答-生成相关问题-回答中引用的段落末尾自然地添加引用标识-回答结构清晰,帮助用
recommend-type

JavaScript中文帮助手册:初学者实用指南

### JavaScript中文帮助手册知识点概述 #### 1. JavaScript简介 JavaScript是一种轻量级的编程语言,广泛用于网页开发。它能够增强用户与网页的交互性,使得网页内容变得动态和富有生气。JavaScript能够操纵网页中的HTML元素,响应用户事件,以及与后端服务器进行通信等。 #### 2. JavaScript基本语法 JavaScript的语法受到了Java和C语言的影响,包括变量声明、数据类型、运算符、控制语句等基础组成部分。以下为JavaScript中常见的基础知识点: - 变量:使用关键字`var`、`let`或`const`来声明变量,其中`let`和`const`是ES6新增的关键字,提供了块级作用域和不可变变量的概念。 - 数据类型:包括基本数据类型(字符串、数值、布尔、null和undefined)和复合数据类型(对象、数组和函数)。 - 运算符:包括算术运算符、关系运算符、逻辑运算符、位运算符等。 - 控制语句:条件判断语句(if...else、switch)、循环语句(for、while、do...while)等。 - 函数:是JavaScript中的基础,可以被看作是一段代码的集合,用于封装重复使用的代码逻辑。 #### 3. DOM操作 文档对象模型(DOM)是HTML和XML文档的编程接口。JavaScript可以通过DOM操作来读取、修改、添加或删除网页中的元素和内容。以下为DOM操作的基础知识点: - 获取元素:使用`getElementById()`、`getElementsByTagName()`等方法获取页面中的元素。 - 创建和添加元素:使用`document.createElement()`创建新元素,使用`appendChild()`或`insertBefore()`方法将元素添加到文档中。 - 修改和删除元素:通过访问元素的属性和方法,例如`innerHTML`、`textContent`、`removeChild()`等来修改或删除元素。 - 事件处理:为元素添加事件监听器,响应用户的点击、鼠标移动、键盘输入等行为。 #### 4. BOM操作 浏览器对象模型(BOM)提供了独立于内容而与浏览器窗口进行交互的对象和方法。以下是BOM操作的基础知识点: - window对象:代表了浏览器窗口本身,提供了许多属性和方法,如窗口大小调整、滚动、弹窗等。 - location对象:提供了当前URL信息的接口,可以用来获取URL、重定向页面等。 - history对象:提供了浏览器会话历史的接口,可以进行导航历史操作。 - screen对象:提供了屏幕信息的接口,包括屏幕的宽度、高度等。 #### 5. JavaScript事件 JavaScript事件是用户或浏览器自身执行的某些行为,如点击、页面加载、键盘按键、鼠标移动等。通过事件,JavaScript可以对这些行为进行响应。以下为事件处理的基础知识点: - 事件类型:包括鼠标事件、键盘事件、表单事件、窗口事件等。 - 事件监听:通过`addEventListener()`方法为元素添加事件监听器,规定当事件发生时所要执行的函数。 - 事件冒泡:事件从最深的节点开始,然后逐级向上传播到根节点。 - 事件捕获:事件从根节点开始,然后逐级向下传播到最深的节点。 #### 6. JavaScript高级特性 随着ECMAScript标准的演进,JavaScript引入了许多高级特性,这些特性包括但不限于: - 对象字面量增强:属性简写、方法简写、计算属性名等。 - 解构赋值:可以从数组或对象中提取数据,赋值给变量。 - 模板字符串:允许嵌入表达式。 - 异步编程:Promise、async/await等用于处理异步操作。 - 模块化:使用`import`和`export`关键字导入和导出模块。 - 类和模块:引入了`class`关键字,允许使用面向对象编程风格定义类,以及模块的声明。 #### 7. 开发工具和调试技巧 为了提高JavaScript开发效率和调试问题,以下是一些常用的工具和调试技巧: - 浏览器的开发者工具:包括控制台(Console)、元素查看器(Elements)、网络监控(Network)、源码编辑器(Sources)等。 - 断点调试:在源码编辑器中设置断点,逐步执行代码,查看变量值和程序流程。 - console.log:在控制台输出日志,帮助理解程序执行流程和变量状态。 - 使用JavaScript验证工具:如JSHint、ESLint等,可以在开发过程中进行代码质量检查。 以上就是《JavaScript中文帮助手册》中可能包含的主要知识点。作为初学者,通过这些内容可以系统地学习和掌握JavaScript基础和进阶知识,实现从初学到实践的跨越。在实际应用中,还需结合具体实例和项目练习,不断加深理解和熟练操作。
recommend-type

深入理解MySQL存储引擎:InnoDB与MyISAM的终极对决

# 1. MySQL存储引擎概述 MySQL数据库的灵活性和高性能在很大程度上得益于其存储引擎架构。**存储引擎**是MySQL中用于存储、索引、查询数据的底层软件模块。不同的存储引擎拥有不同的功能和特性,允许数据库管理员针对特定的应用需求选择最佳的存储引擎。例如,**InnoDB**提供事务支持和行级锁定,适用于需要ACID(原子
recommend-type

window中系统中断,cpu占用100%

<think>首先,用户的问题是关于解决Windows系统中“系统中断”导致CPU占用100%的问题。我需要基于提供的引用和系统指令来构建一个结构清晰的回答。系统指令:-所有行内数学表达式必须使用$...$格式。-独立公式使用$$...$$格式并单独成段。-LaTeX语法正确。-使用中文回答。-生成相关问题。-在回答中引用的段落末尾添加引用标识,例如[^1]。-回答结构清晰,帮助用户逐步解决问题。-参考站内引用:引用[1]是关于CPU使用率100%的应急措施,引用[2]是关于Java程序CPU占用过高的解决步骤,引用[3]是关于CPU软中断导致高利用率的分析与解决方案。用户的问题:Window
recommend-type

C++Builder6.0缺失帮助文件的解决方案

标题“BCB6.0帮助文件”和描述“很多用户的C++Builder6.0的版本没有帮助文件,help文件对学习和研究BCB6.0是很重要的。”表明了我们讨论的主题是关于C++Builder(通常简称BCB)6.0版本的官方帮助文件。C++Builder是一款由Borland公司(后被Embarcadero Technologies公司收购)开发的集成开发环境(IDE),专门用于C++语言的开发。该软件的第六版,即BCB6.0,于2002年发布,是该系列的一个重要版本。在这个版本中,提供了一个帮助文件,对于学习和研究BCB6.0至关重要。因为帮助文件中包含了大量关于IDE使用的指导、编程API的参考、示例代码等,是使用该IDE不可或缺的资料。 我们可以通过【压缩包子文件的文件名称列表】中的“BCB6.0_Help”推测,这可能是一个压缩文件,包含了帮助文件的副本,可能是一个ZIP或者其他格式的压缩文件。该文件的名称“BCB6.0_Help”暗示了文件中包含的是与C++Builder6.0相关的帮助文档。在实际获取和解压该文件后,用户能够访问到详尽的文档,以便更深入地了解和利用BCB6.0的功能。 BCB6.0帮助文件的知识点主要包括以下几个方面: 1. 环境搭建和配置指南:帮助文档会解释如何安装和配置BCB6.0环境,包括如何设置编译器、调试器和其他工具选项,确保用户能够顺利开始项目。 2. IDE使用教程:文档中应包含有关如何操作IDE界面的说明,例如窗口布局、菜单结构、快捷键使用等,帮助用户熟悉开发环境。 3. 语言参考:C++Builder6.0支持C++语言,因此帮助文件会包含C++语言核心特性的说明、标准库参考、模板和STL等。 4. VCL框架说明:BCB6.0是基于Visual Component Library(VCL)框架的,帮助文件会介绍如何使用VCL构建GUI应用程序,包括组件的使用方法、事件处理、窗体设计等。 5. 数据库编程:文档会提供关于如何利用C++Builder进行数据库开发的指导,涵盖了数据库连接、SQL语言、数据集操作等关键知识点。 6. 高级功能介绍:帮助文件还会介绍一些高级功能,如使用组件面板、定制组件、深入到编译器优化、代码分析工具的使用等。 7. 示例项目和代码:为了更好地演示如何使用IDE和语言特性,帮助文件通常包含了一个或多个示例项目以及一些实用的代码片段。 8. 第三方插件和工具:BCB6.0还可能支持第三方插件,帮助文件可能会对一些广泛使用的插件进行介绍和解释如何安装和使用它们。 9. 故障排除和调试:文档会提供一些常见问题的解决方案、调试技巧以及性能调优建议。 10. 版本更新记录:虽然版本更新记录通常不会在帮助文件内详细描述,但可能会提到重大的新增特性、改进和已知问题。 11. 联系方式和资源:帮助文件中可能会包含Embarcadero公司的技术支持联系方式,以及推荐的外部资源,比如论坛、在线文档链接和社区。 在学习和研究BCB6.0时,帮助文件是一个十分宝贵的资源,它能提供快速准确的信息和指导。对于任何一个使用BCB6.0进行开发的程序员来说,熟悉这些知识点是必不可少的。
recommend-type

【湖北专升本MySQL强化训练】:5大SQL语句编写技巧,迅速提升实战能力

# 1. SQL语言基础 ## 1.1 SQL语言简介 SQL,即结构化查询语言(Structured Query Language),是一种用于管理关系数据库管理系统(RDBMS)的标准编程语言。它广泛应用于数据的查询、插入、更新和删除操作,是数据库管理员和开发人员必须掌握的核心技能。 ## 1.2 SQL语言的组成 SQL语言主要由数据定义语言(DDL),数据操纵语言
recommend-type

HFSS如何设置网格化细化

<think>我们正在讨论HFSS中的网格细化设置。根据引用[2]和[3],HFSS使用自适应网格剖分技术,通过迭代细化网格直到满足收敛标准。用户想了解具体的设置方法。关键点:1.自适应网格剖分过程:HFSS通过比较连续迭代之间的S参数(或其他参数)的变化来判断收敛。2.收敛标准设置:用户可以设置收敛的阈值(如ΔS)。3.初始网格设置:在求解设置中,可以设置初始网格的选项(如Lambda细化)。步骤:1.在HFSS中,右键点击工程树中的“Analysis”节点,选择“AddSolutionSetup”来添加一个新的求解设置(或者编辑已有的求解设置)。2.在求解设置对话框中,切换到“Genera