cross attention代码
时间: 2024-12-29 10:24:46 浏览: 174
### 关于Cross Attention的代码实现
在处理跨模态数据或多源信息融合的任务时,cross attention机制能够有效地捕捉不同序列间的关系。下面是一个基于TensorFlow框架下的cross attention模块的具体实现方法[^2]。
```python
import tensorflow as tf
class CrossAttention(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads):
super(CrossAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
assert d_model % self.num_heads == 0
self.depth = d_model // self.num_heads
self.wq = tf.keras.layers.Dense(d_model)
self.wk = tf.keras.layers.Dense(d_model)
self.wv = tf.keras.layers.Dense(d_model)
self.dense = tf.keras.layers.Dense(d_model)
def split_heads(self, x, batch_size):
"""分头操作"""
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, v, k, q, mask=None):
batch_size = tf.shape(q)[0]
q = self.wq(q)
k = self.wk(k)
v = self.wv(v)
q = self.split_heads(q, batch_size)
k = self.split_heads(k, batch_size)
v = self.split_heads(v, batch_size)
scaled_attention, _ = self.scaled_dot_product_attention(q, k, v, mask=mask)
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
concat_attention = tf.reshape(scaled_attention,(batch_size, -1, self.d_model))
output = self.dense(concat_attention)
return output
@staticmethod
def scaled_dot_product_attention(q, k, v, mask=None):
matmul_qk = tf.matmul(q, k, transpose_b=True)
dk = tf.cast(tf.shape(k)[-1], tf.float32)
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
if mask is not None:
scaled_attention_logits += (mask * -1e9)
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)
output = tf.matmul(attention_weights, v)
return output, attention_weights
```
上述代码定义了一个`CrossAttention`类来完成cross attention的功能。通过线性变换将查询(query),键(key)以及值(value)映射到相同维度空间下,并采用多头机制提高模型表达能力。scaled dot-product attention部分实现了对齐权重计算过程中的缩放和平滑处理,使得梯度更加稳定。
阅读全文
相关推荐

















