YOLOv8平均精度曲线图
时间: 2025-04-22 15:58:05 浏览: 37
### YOLOv8 平均精度 (mAP) 曲线图可视化
为了实现YOLOv8模型的平均精度(mAP)曲线图可视化,可以利用Python脚本读取训练日志数据并绘制相应的图表。通常情况下,在YOLOv8训练过程中会记录各种评估指标,包括不同IoU阈值下的mAP。
#### 准备工作
确保已经安装了必要的库来处理绘图操作,比如`matplotlib`和`pandas`用于数据分析与图形展示:
```bash
pip install matplotlib pandas
```
#### 获取实验数据
假设已经在YOLO项目根目录下保存了一个或多份训练报告文件(CSV或JSON格式),这些文件包含了每次迭代后的验证集上的性能度量结果,特别是mAP@[.5:.95]这样的综合评分。
#### 编写Python代码
下面是一个简单的例子,展示了如何加载多个实验的数据,并在同一张图表上比较它们的表现情况:
```python
import os
import json
import pandas as pd
from matplotlib import pyplot as plt
def load_experiment_data(experiment_name):
"""Load experiment data from JSON file."""
with open(f"./runs/detect/{experiment_name}/results.json", 'r') as f:
return json.load(f)
def plot_map_curves(experiments, title="Comparison of mAP Curves"):
"""Plot the mAP curves for given experiments."""
fig, ax = plt.subplots(figsize=(10, 6))
colors = ['b', 'g', 'r', 'c', 'm']
max_epochs = 0
for idx, exp in enumerate(experiments):
epochs = []
map_scores = []
# Load and process each epoch's result
results = load_experiment_data(exp['name'])
for i, res in enumerate(results["metrics"]):
epochs.append(i + 1)
map_scores.append(res.get('metrics/mAP_0.5:0.95_bbox'))
max_epochs = max(max_epochs, len(epochs))
# Plot individual curve
ax.plot(
epochs,
map_scores,
color=colors[idx % len(colors)],
label=f"{exp['label']} ({map_scores[-1]:.3f})"
)
ax.set_xlim([1, max_epochs])
ax.grid(True)
ax.legend(loc='best')
ax.set_xlabel('Epochs')
ax.set_ylabel('[email protected]:.95')
ax.set_title(title)
plt.show()
if __name__ == "__main__":
# Define your experiments here by their folder names under ./runs/detect/
experiments_to_compare = [
{"name": "train_exp1", "label": "Experiment 1"},
{"name": "train_exp2", "label": "Experiment 2"}
]
plot_map_curves(experiments_to_compare)
```
此段代码通过遍历指定路径中的各个实验子文件夹(`./runs/detect/`),从中提取出每一轮次结束时所获得的最佳mAP分数,并将其作为时间序列的一部分来进行可视化[^4]。
阅读全文
相关推荐


















