#ifndef __USB_UPDATE_H_ #define __USB_UPDATE_H_单片机.h文件中这两个有什么用

时间: 2025-07-11 22:36:14 浏览: 5
<think>好的,我现在需要帮助用户理解C语言预处理指令中的#ifndef和#define在单片机头文件中的作用,特别是它们如何防止重复包含。首先,我应该回顾用户提供的引用内容,确保回答准确。 根据用户提供的引用[3],.h文件中使用#ifndef、#define、#endif是为了避免重复包含导致的错误。例如,当main.c包含stm32f10x.h,而board_init.h也包含该头文件时,如果没有这些预处理指令,就会出现重复定义的错误。所以,这三个指令的作用是确保头文件内容只被编译一次。 接下来,引用[2]提到#ifdef用于条件编译,如果标识符已定义则编译某段代码,否则跳过。结合#ifndef,就是检查是否未定义某个宏,如果未定义,则执行#define定义它,并继续包含头文件内容,直到#endif结束。这样,即使多个文件多次包含同一个头文件,宏定义的存在会阻止重复处理。 用户还提到了引用[4],其中说明#define类似于文本替换,而不是常量。这可能涉及到宏定义在头文件中的使用方式,但当前问题主要关注防止重复包含,所以这点暂时可以忽略。 用户的问题集中在#ifndef和#define的用途及防止重复包含的机制。需要分步骤解释: 1. 当第一次包含头文件时,检查宏是否未定义(#ifndef),由于未定义,进入条件编译块。 2. 使用#define定义该宏,标记为已包含。 3. 头文件的内容被包含进来。 4. 当再次尝试包含同一头文件时,#ifndef检测到宏已定义,跳过内容,避免重复。 这整个过程可以防止头文件内容被多次包含,避免重复定义变量、函数等导致的编译错误。例如,结构体或全局变量的重复声明会引发错误,使用这些预处理指令可以避免这种情况。 另外,需要注意宏命名的唯一性,通常使用头文件名的大写加下划线形式,如__STM32F10X_H,以防止与其他宏冲突。 可能用户还会想知道如果不使用这些指令会有什么后果,或者实际应用中的例子。根据引用[3]的例子,重复包含头文件会导致重定义错误,所以这些指令是必要的。 总结回答结构:首先解释#ifndef和#define的作用,然后说明如何防止重复包含,接着举例说明,最后可能提到相关注意事项,比如宏命名规则。同时,需要引用提供的资料来支持每个点,例如引用[3]和[2]。 现在需要确保回答符合用户的要求:使用中文,结构清晰,正确使用LaTeX格式,并在末尾生成相关问题。同时,检查是否有遗漏的引用内容,确保回答的准确性。</think>C预处理指令 `#ifndef` 和 `#define` 在单片机头文件中的核心作用是**防止重复包含导致的编译错误**,并通过条件编译优化代码管理。以下是详细说明: --- ### 1. **作用与机制** - **`#ifndef`(if not defined)**: 检查某个宏是否未被定义。若未定义,则执行后续代码;若已定义,则跳过该代码块。 - **`#define`**: 定义一个宏,通常用于标记头文件已被包含。 **示例结构**: ```c #ifndef __HEADER_NAME_H #define __HEADER_NAME_H // 头文件内容(函数声明、宏定义等) #endif ``` --- ### 2. **防止重复包含的原理** - **首次包含头文件时**: `#ifndef` 检测到宏 `__HEADER_NAME_H` 未定义,进入代码块。 `#define` 定义该宏,后续内容被编译。 - **重复包含时**: `#ifndef` 检测到宏已存在,直接跳过整个代码块,避免重复编译头文件内容[^3]。 **应用场景**: 当多个文件间接包含同一头文件时(例如 `main.c` 同时包含 `A.h` 和 `B.h`,而 `B.h` 也包含 `A.h`),此机制可避免重复定义变量、函数或结构体导致的错误。 --- ### 3. **实际代码示例 假设头文件 `stm32f10x.h` 包含以下内容: ```c #ifndef __STM32F10X_H #define __STM32F10X_H typedef struct { int pin; } GPIO_TypeDef; #endif ``` - 第一次包含时:定义 `__STM32F10X_H` 并声明 `GPIO_TypeDef`。 - 第二次包含时:由于宏已存在,跳过 `typedef` 声明,防止重复定义结构体。 --- ### 4. **注意事项** - **宏命名唯一性**: 宏名称需与头文件名强相关(如 `__STM32F10X_H`),避免与其他头文件冲突[^3]。 - **与 `#pragma once` 的区别**: `#pragma once` 是另一种防重复包含的方式,但它是编译器特性,而非标准预处理指令,可移植性较差[^5]。 --- ### 5. **扩展应用** - **条件编译功能**: 结合 `#ifdef` 和 `#define`,可根据不同条件编译特定代码块(例如针对不同单片机型号选择不同驱动)[^2]。 - **代码模块化**: 通过宏定义控制功能模块的启用或禁用,提升代码灵活性[^4]。 ---
阅读全文

相关推荐

MicroLIBmotor.h(17): error C141: syntax error near 'dir', expected ')'lcd1602.h(8): error C231: 'uchar': redefinitionlcd1602.h(9): error C141: syntax error near 'uint', expected 'hdata'main.c(10): error C321: missing '"'motor.h(17): error C141: syntax error near 'dir', expected ')'motor.c(17): error C202: 'P1_0': undefined identifiermotor.c(18): error C202: 'P1_1': undefined identifiermotor.c(19): error C202: 'P1_2': undefined identifiermotor.c(20): error C202: 'P1_3': undefined identifiermotor.h(17): error C141: syntax error near 'dir', expected ')'motor.h(17): error C141: syntax error near 'dir', expected ')'motor.h(17): error C141: syntax error near 'dir', expected ')'lcd1602.h(8): error C231: 'uchar': redefinitionlcd1602.h(9): error C141: syntax error near 'uint', expected 'hdata'lcd1602.c(38): error C236: '_lcd_show_str': different length of parameter listslcd1602.c(73): error C231: 'decimal': redefinitionlcd1602.c(74): error C202: 'decimal_places': undefined identifierlcd1602.c(81): error C202: 'decimal_places': undefined identifier#include "motor.h" #include "delay.h" #include "key.h" #include "typedefs.h" // ??????(???????????) extern uchar speed_level; // ???????? // ????????(???motor.h????,???) #ifndef MOTOR_A #define MOTOR_A P1_0 #define MOTOR_B P1_1 #define MOTOR_C P1_2 #define MOTOR_D P1_3 #endif void motor_init(void) { MOTOR_A = 0; MOTOR_B = 0; MOTOR_C = 0; MOTOR_D = 0; } void motor_step(bool dir); { static uchar phase = 0; const uchar phase_table[8] = {0x08, 0x0C, 0x04, 0x06, 0x02, 0x03, 0x01, 0x09}; if (dir) phase = (phase + 1) % 8; // ?? else phase = (phase + 7) % 8; // ?? MOTOR_A = (phase_table[phase] & 0x01); MOTOR_B = (phase_table[phase] & 0x02); MOTOR_C = (phase_table[phase] & 0x04); MOTOR_D = (phase_table[phase] & 0x08); delay_ms(200 / speed_level); // ?????????? } #ifndef __MOTOR_H__ #define __MOTOR_H__ #include <STC89C5xRC.H> #include "typedefs.h" // ???????? #ifndef MOTOR_A #define MOTOR_A P1_0 #define MOTOR_B P1_1 #define MOTOR_C P1_2 #define MOTOR_D P1_3 #endif // ???? void motor_init(void); void motor_step(uint8_t dir); #endif#include "lcd1602.h" #include "delay.h" #include <STC89C5xRC.H> // ?????????? // ?????? extern uchar mode; extern uchar speed_level; extern float angle; extern float pressure; extern float target_angle; void lcd_init(void) { lcd_write_cmd(0x38); // 8???,2???,5x7?? delay_ms(5); lcd_write_cmd(0x0C); // ???,??? delay_ms(5); lcd_write_cmd(0x06); // ????,?????1 delay_ms(5); lcd_write_cmd(0x01); // ?? delay_ms(5); } void lcd_write_cmd(uchar cmd) { RS = 0; RW = 0; P0 = cmd; EN = 1; delay_us(5); EN = 0; delay_ms(2); } void lcd_write_dat(uchar dat) { RS = 1; RW = 0; P0 = dat; EN = 1; delay_us(5); EN = 0; delay_ms(2); } // ????? void lcd_show_str(uchar *str) { while(*str != '\0') { lcd_write_dat(*str++); } } // ???? void lcd_show_num(uint num, uchar len) { uchar buf[10]; uchar i = 0; if(num == 0) { lcd_write_dat('0'); return; } while(num > 0) { buf[i++] = num % 10 + '0'; num /= 10; } while(i < len) buf[i++] = '0'; // ??????,?????? for(i = i - 1; i != 255; i--) { lcd_write_dat(buf[i]); } } // ????? void lcd_show_float(float num, uchar decimal) { uint integer = (uint)num; float decimal_part = num - integer; uchar i; // ????????? // ??????????????? uint decimal = 1; for(i = 0; i < decimal_places; i++) { decimal_part *= 10; decimal *= 10; } lcd_show_num(integer, 3); lcd_write_dat('.'); lcd_show_num((uint)decimal_part, decimal_places); } // ?????? void update_display() { lcd_write_cmd(0x80); // ?????????? lcd_show_str("M:"); lcd_write_dat(mode ? 'A' : 'S'); // ??:A-??,S-?? lcd_show_str(" S:"); lcd_write_dat(speed_level + '0'); // ?????? lcd_write_cmd(0xC0); // ?????????? lcd_show_str("A:"); lcd_show_float(angle, 2); // ????,??2??? lcd_show_str(" P:"); lcd_show_float(pressure, 2); // ????,??2??? // ??????(???????) if (mode == 1) { lcd_write_cmd(0x8C); lcd_show_str("Ta:"); lcd_show_float(target_angle, 2); } }// lcd1602.h #ifndef __LCD1602_H__ #define __LCD1602_H__ #include <STC89C5xRC.H> #include "motor.h" #include "typedefs.h" typedef unsigned char uchar; typedef unsigned int uint; // ??LCD?? sbit RS = P2^0; sbit RW = P2^1; sbit EN = P2^2; // ????????(????????????) void lcd_init(void); void lcd_write_cmd(uchar cmd); void lcd_write_dat(uchar dat); void lcd_show_str(uchar x, uchar y, const uchar *str); void lcd_show_float(float num, uchar decimal); #endif

#ifndef __MATRIX_LED_H__ #define __MATRIX_LED_H__ void MatrixLED_Init(); void MatrixLED_SC(unsigned char lie,hang); #endif#include <REGX52.H> #include "Delay.h" sbit SER=P3^4; //SER sbit RCK=P3^5; //RCLK sbit SCK=P3^6; //SRCLK #define MATRIX_LED_PORT P0 /** * @brief 74595写入一个字节 * @param Byte 要写入的字节 * @retval 无 */ void _74595_WByte(unsigned char Byte) { unsigned char i; for(i=0;i<8;i++) { SER=Byte&(0x80>>i); //非0即1,i=0时移动0位 SCK=1; SCK=0; } RCK=1; RCK=0; } /** * @brief 点阵屏初始化 * @param 无 * @retval 无 */ void MatrixLED_Init() { SCK=0; RCK=0; } /** * @brief LED点阵屏显示一列数据 * @param Column 要选择的列,范围:0~7,0在最左边 * @param Data 选择列显示的数据,高位在上,1为亮,0为灭 * @retval 无 */ void MatrixLED_SC(unsigned char lie,Data) { _74595_WByte(Data); MATRIX_LED_PORT=~(0x80>>lie); //给0选中,给1不选中 Delay(1); MATRIX_LED_PORT=0xFF; //位清零 }#ifndef __DELAY_H__ #define __DELAY_H__ void Delay(unsigned int xms); #endif void Delay(unsigned int xms) { unsigned char i, j; while(xms--) { i = 2; j = 239; do { while (--j); } while (--i); } } #include <REGX52.H> #include "Delay.h" #include "MatrixLED.h" unsigned char code Animation[]={ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x7F,0x49,0x3E,0x00,0x5E,0x52,0x72,0x00,0x08,0x18,0x28,0x5E,0x08,0x00,0x7E,0x42, 0x7E,0x00,0x52,0x52,0x7E,0x00,0x7E,0x42,0x7E,0x00,0x7E,0x52,0x7E,0x00,0x7E,0x42, 0x7E,0x00,0x08,0x18,0x28,0x5E,0x08,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, }; void main() { unsigned char i,Offset=0,Count=0,Zhen=0,Ci=0; MatrixLED_Init(); while(1) { for(i=0;i<8;i++) //Ñ­»·°Ë´Î£¬ÏÔʾ°ËÁÐÊý¾Ý { MatrixLED_SC(i,Animation[i+Offset]); } Count++; //¼Æ´ÎÑÓʱ if(Count>10) { Count=0; Offset++; if(Offset>40) { Offset=0; } } } } 为这个动画加一个定时器,使其按下按键后可以将动画流动速度加快,松开后变回正常速度

完成一个仓储环境监测的模拟系统。具体要求如下: 1. DHT11模块完成温湿度测量,5s更新,数值显示于数码管,同时打印到串口。温度超过阈值触发蜂鸣器短鸣,同时启动风扇小马达; 2. LDR模块完成环境照度测量,4s更新,数值显示于数码管,同时打印到串口。照度超过阈值启动PWM调光(高、中、低三级调光)。 3. 按键循环切换显示模式,按第1下固定显示温度,按第二下固定显示照度,按第三下恢复默认的自动显示模式。按键用外部中断实现 int main(void) { systick_init(72); led_init(); usart1_init(115200); display_init(); tim4_init(1000,72); // 1ms的定时间隔 TIM3_CH2_PWM_Init(500-1,72-1); dht11_init(); ldr_init(); //key_init(); while(1) { // 轮询DHT11的状态 if(dht11.state == WORK) { if(dht11.getData(&dht11.temp, &dht11.humi) == SUCCESS) // DHT11温湿度数据更新 { printf("temperature:%d℃ humidity(RH):%d \r\n", dht11.temp, dht11.humi); dsp.interface = TEMP; dht11.onTempChange(dht11.temp_threshold); // 温度超过阈值的处理 } dht11.state = STANDBY; } // 轮询LDR的状态 if(ldr.state == WORK) { ldr.light = ldr.getData(); printf("light intensity:%d \r\n", ldr.light); dsp.interface = LIGHT; ldr.onLightChange(ldr.high_threshold,ldr.low_threshold); // 照度超过阈值的处理 ldr.state = STANDBY; } // 轮询数码管界面状态 switch(dsp.interface) { case LIGHT: setLightValue(&dsp,1); break; case TEMP: setTempValue(&dsp,1); break; case HUMI: setHumiValue(&dsp,1); break; default: break; } } }#include "systick.h" static u8 fac_us=0; //us延时倍乘数 static u16 fac_ms=0; //ms延时倍乘数 //初始化延迟函数 //SYSTICK的时钟固定为AHB时钟的1/8 //SYSCLK:系统时钟频率 void systick_init(u8 SYSCLK) { SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); fac_us = SYSCLK/8; fac_ms = (u16)fac_us * 1000; } //延时nus //nus为要延时的us数. void delay_us(u32 nus) { u32 temp; SysTick->LOAD=nus*fac_us; //时间加载 SysTick->VAL=0x00; //清空计数器 SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数 do { temp=SysTick->CTRL; }while((temp&0x01)&&!(temp&(1<<16))); //等待时间到达 SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器 SysTick->VAL =0X00; //清空计数器 } //延时nms //注意nms的范围 //SysTick->LOAD为24位寄存器,所以,最大延时为: //nms<=0xffffff*8*1000/SYSCLK //SYSCLK单位为Hz,nms单位为ms //对72M条件下,nms<=1864 void delay_ms(u16 nms) { u32 temp; SysTick->LOAD = (u32)nms*fac_ms; //时间加载(SysTick->LOAD为24bit) SysTick->VAL = 0x00; //清空计数器 SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk ; //开始倒数 do { temp=SysTick->CTRL; } while((temp&0x01) && !(temp&(1<<16))); //等待时间到达 SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk; //关闭计数器 SysTick->VAL = 0x00; //清空计数器 } #include "display.h" DisplayStruct dsp; void segDisplay(void); // 共阴极数码管,阴极位选(0有效),阳极段选(1有效) const u16 segCode[11] = { /* 0 1 2 3 4 5 6 7 */ 0x003F, 0x0006, 0x005B, 0x004F, 0x0066, 0x006D, 0x007D, 0x0007, /* 8 9 off */ 0x007F, 0x006F, 0x0000 }; /******************************************************************************* * @brief 初始化数码管用到的GPIO端口和dsp结构体 * @param None * @retval None *******************************************************************************/ void display_init(void) { GPIO_InitTypeDef GPIO_InitStructure = {0}; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB, ENABLE); // PA0~PA7: 段选(分别连接引脚A~G); // PB12~PB15:位选(分别连接引脚D1~D4) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOB, &GPIO_InitStructure); dsp.currDigit = 1; // dsp结构体的初始化 dsp.SegDisplay = segDisplay; } /*********************************************************************************** * @brief 设置数码管要显示的4位数值。 * @param dsp:数码管结构体指针;value[4]:4位数值;dotBit:小数点位置(没有小数点则置0) * @retval None ***********************************************************************************/ void setValue(DisplayStruct *dsp, u8 value[4], u8 dotBit) { dsp->digit[0] = value[0]; dsp->digit[1] = value[1]; dsp->digit[2] = value[2]; dsp->digit[3] = value[3]; dsp->dotDigit = dotBit; } void setLightValue(DisplayStruct *dsp, u8 dotBit) { dsp->digit[0] = 1; // 参数编号 dsp->digit[1] = 10; // 第二位空缺 dsp->digit[2] = ldr.light/10; dsp->digit[3] = ldr.light%10; // dsp->dotDigit = dotBit; // 小数点位置 } void setTempValue(DisplayStruct *dsp, u8 dotBit) { dsp->digit[0] = 2; dsp->digit[1] = 10; dsp->digit[2] = dht11.temp/10; dsp->digit[3] = dht11.temp%10; dsp->dotDigit = dotBit; } void setHumiValue(DisplayStruct *dsp, u8 dotBit) { dsp->digit[0] = 3; dsp->digit[1] = 10; dsp->digit[2] = dht11.humi/10; dsp->digit[3] = dht11.humi%10; dsp->dotDigit = dotBit; } /******************************************************************************* * @简 介 段选,让某一位数码管显示指定的数字 * @输入参数 value:段码数组的序号(0~9),代表要显示的数字 * @retval * 备注:只操作PA的低8位,不要影响高8位。 ********************************************************************************/ void seg(uint8_t value) { if(value < sizeof(segCode)) // 避免数组溢出 { GPIOA->ODR &= 0xFF00; GPIOA->ODR |= segCode[value]; } } /******************************************************************************** * 简 介 位选,一次只能选一位。 * 输入参数 com:位数(取值1~4,从左到右) * 返回值 无 * 备注:只操作PB的高4位(置0),不要影响其他位。 ********************************************************************************/ void com(uint8_t currDigit) { // 数码管位选(0有效) GPIOB->ODR |= 0xF000; GPIOB->ODR &= ~(0x1000<<(currDigit-1)); } /******************************************************************************** * 简介 在数码管上逐位显示其段码(由Timer中断服务函数调用) * 参数 无 * 返回值 无 ********************************************************************************/ void segDisplay(void) { seg(10); // 消隐之前的显示内容 com(dsp.currDigit); // 位选,从COM1到COM4逐次移位,实现动态显示 if(dsp.currDigit != dsp.dotDigit) // 当前位不显示小数点 seg(dsp.digit[dsp.currDigit-1]); else // 当前位要显示小数点 { GPIO_Write(GPIOA, segCode[dsp.digit[dsp.currDigit-1]]| 0x0080); //GPIOA->ODR &= 0xFF00; //GPIOA->ODR |= (segCode[dsp.currDigit-1]|0x0080); } if(++dsp.currDigit > DSP_DIGIT) // 从当前位右移到下一位 dsp.currDigit = 1; } #include "usart.h" int fputc(int ch,FILE *p) //函数默认的,在使用printf函数时自动调用 { USART_SendData(USART1,(u8)ch); while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET); return ch; } //串口1中断服务程序 //注意,读取USARTx->SR能避免莫名其妙的错误 u8 USART1_RX_BUF[USART1_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节. //接收状态 //bit15, 接收完成标志 //bit14, 接收到0x0d //bit13~0, 接收到的有效字节数目 u16 USART1_RX_STA=0; //接收状态标记 /******************************************************************************* * 函 数 名 : USART1_Init * 函数功能 : USART1初始化函数 * 输 入 : bound:波特率 * 输 出 : 无 *******************************************************************************/ void usart1_init(u32 baud) { //GPIO端口设置 GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE); /* 配置GPIO的模式和IO口 */ GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9; //串口输出TX:PA9 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP; //复用推挽输出 GPIO_Init(GPIOA,&GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin=GPIO_Pin_10; //串口输入RX:PA10 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IN_FLOATING; //模拟输入 GPIO_Init(GPIOA,&GPIO_InitStructure); //USART1 初始化设置 USART_InitStructure.USART_BaudRate = baud; //波特率设置 USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式 USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位 USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式 USART_Init(USART1, &USART_InitStructure); //初始化串口1 USART_Cmd(USART1, ENABLE); //使能串口1 USART_ClearFlag(USART1, USART_FLAG_TC); USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启相关中断 //Usart1 NVIC 配置 NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;//串口1中断通道 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3;//抢占优先级3 NVIC_InitStructure.NVIC_IRQChannelSubPriority =3; //子优先级3 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能 NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器、 } /******************************************************************************* * 函 数 名 : USART1_IRQHandler * 函数功能 : USART1中断函数 * 输 入 : 无 * 输 出 : 无 *******************************************************************************/ void USART1_IRQHandler(void) //串口1中断服务程序 { u8 r; if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //接收中断 { r =USART_ReceiveData(USART1);//(USART1->DR); //读取接收到的数据 if((USART1_RX_STA&0x8000)==0)//接收未完成 { if(USART1_RX_STA&0x4000)//接收到了0x0d { if(r!=0x0a)USART1_RX_STA=0;//接收错误,重新开始 else USART1_RX_STA|=0x8000; //接收完成了 } else //还没收到0X0D { if(r==0x0d)USART1_RX_STA|=0x4000; else { USART1_RX_BUF[USART1_RX_STA&0X3FFF]=r; USART1_RX_STA++; if(USART1_RX_STA>(USART1_REC_LEN-1))USART1_RX_STA=0;//接收数据错误,重新开始接收 } } } } } #include "timer.h" #include "beep.h" volatile uint16_t beep_time; /******************************************************************************* * 函 数 名 : tim4_init * 函数功能 : TIM4初始化函数 * 输 入 : per:重装载值 psc:分频系数 * 输 出 : 无 *******************************************************************************/ void tim4_init(u16 per,u16 psc) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE); // 使能TIM4的时钟 // 配置TIM的时基参数 TIM_TimeBaseInitStructure.TIM_Period = per; // 自动装载值 TIM_TimeBaseInitStructure.TIM_Prescaler = psc; // 分频系数 TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; // 设置向上计数模式 TIM_TimeBaseInit(TIM4,&TIM_TimeBaseInitStructure); // 设置参数生效 // 配置中断参数 TIM_ITConfig(TIM4,TIM_IT_Update,ENABLE); // 开启定时器的更新中断 TIM_ClearITPendingBit(TIM4,TIM_IT_Update); // 中断标志位清零 // 配置NVIC NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); // 中断优先级分组(组2) NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn; // 定时器4的中断通道(30号通道) NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2; // 抢占优先级 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; // 响应优先级 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; // 中断通道使能 NVIC_Init(&NVIC_InitStructure); // NVIC设置参数生效 TIM_Cmd(TIM4,ENABLE); // 使能Timer4 } /******************************************************************************* * 函 数 名 : TIM4_IRQHandler * 函数功能 : TIM4中断函数 * 输 入 : 无 * 输 出 : 无 * 备 注 : 定时间隔1ms ** *****************************************************************************/ void TIM4_IRQHandler(void) { static u16 cnt_dht11; static u16 cnt_ldr; // 蜂鸣器时间处理 if(beep_time > 0) { beep_time--; if(beep_time == 0) { BEEP_OFF(); } } if(TIM_GetITStatus(TIM4,TIM_IT_Update)) // 检查更新中断是否产生 { // 处理定时任务 if(++cnt_dht11 == dht11.period) { if(dht11.state == STANDBY) { dht11.state = WORK; // DHT11状态从STANDBY切换到WORK } cnt_dht11 = 0; } if(++cnt_ldr == ldr.period) { if (ldr.state == STANDBY) { ldr.state = WORK; // LDR状态从STANDBY切换到WORK } cnt_ldr = 0; } // 刷新数码管显示 dsp.SegDisplay(); } TIM_ClearITPendingBit(TIM4,TIM_IT_Update); // 手动清除中断标志位 } #include "dht11.h" #include "relay.h" #include "beep.h" Dht11Struct dht11 = {0}; void SET_DHT11_IO_OUT(void); void SET_DHT11_IO_IN(void); void DHT11_RequestData(void); u8 DHT11_RespondRequest(void); u8 DHT11_Read_Data(u8 *temp, u8 *humi); void DHT11_OnTempChange(u8 temp_threshold); // DHT11_PIN初始化 // 返回值: 无 extern void dht11_init() { GPIO_InitTypeDef GPIO_InitStructure; // 数据引脚初始化 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); // 数据引脚 GPIO_InitStructure.GPIO_Pin = DHT11_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_Init(DHT11_PORT, &GPIO_InitStructure); GPIO_SetBits(DHT11_PORT, DHT11_PIN); // 初始输出状态:高电平 // 结构体初始化 dht11.period = DHT11_PERIOD; dht11.temp_threshold = TEMP_THRESHOLD; dht11.getData = DHT11_Read_Data; // 获取温湿度数据的函数 dht11.onTempChange = DHT11_OnTempChange; // 温度超过阈值的处理函数 // 做一次数据请求测试,检查设备状态 DHT11_RequestData(); if (DHT11_RespondRequest() == SUCCESS) { dht11.state = STANDBY; printf("DHT11 Init OK!\r\n"); } else { dht11.state = FAIL; printf("DHT11 Check Error!\r\n"); } } // 复位DHT11,单片机向DHT11发起数据采集请求 // 时序图的黑线部分 static void DHT11_RequestData() { SET_DHT11_IO_OUT(); // 数据引脚配置为输出模式 DHT11_DQ_OUT = 0; delay_ms(20); // 低电平持续至少18ms DHT11_DQ_OUT = 1; delay_us(30); // 高电平持续20~40us } // DHT11响应单片机的数据请求 // 返回值:SUCCESS or FAILURE static u8 DHT11_RespondRequest() { u8 retry=0; SET_DHT11_IO_IN(); // 数据引脚设为输入模式,接收DHT11的响应 while (DHT11_DQ_IN && retry<100) // 等待输入由高变低 { retry++; if(retry >= 100) return FAILURE; // 等待时间过长,返回异常。 delay_us(1); } retry=0; while (!DHT11_DQ_IN && retry<100) // 低电平持续时间80us { retry++; if(retry >= 100) return FAILURE; // 低电平持续时间过长,返回异常。 delay_us(1); } return SUCCESS; } //DHT11输出模式配置 static void SET_DHT11_IO_OUT() { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = DHT11_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // 推挽输出模式 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_Init(DHT11_PORT,&GPIO_InitStructure); } //DHT11输入模式配置 static void SET_DHT11_IO_IN() { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = DHT11_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; // 浮空输入模式,最小系统板和DHT11之间并未接上拉电阻 GPIO_Init(DHT11_PORT,&GPIO_InitStructure); } //从DHT11读取一位 //返回值:bit 1或0 //注:此函数处并未做高低电平持续时间异常的处理,因DHT11自身有校验和,即便读错1位也不会造成最终数据的错误。 // 严格来讲,除了正常情况下返回“1”或“0”,还应增加异常情况的返回值(比如“2”)。 static u8 DHT11_Read_Bit(void) { u8 retry=0; while(DHT11_DQ_IN && retry<100) // 等待输入电平由高变低(低电平持续50us) { retry++; delay_us(1); } retry=0; while(!DHT11_DQ_IN && retry<100) // 等待输入电平由低变高 { retry++; delay_us(1); } delay_us(40); // 等待40us(高电平持续26~28us表示0,持续70us表示1) if(DHT11_DQ_IN) return 1; // 40us后如果输入仍为高电平,则表示读入1;否则表示读入0。 else return 0; } //从DHT11读取一个字节 //返回值:读到的8位数据 static u8 DHT11_Read_Byte(void) { u8 i,byte; byte = 0; for (i=0;i<8;i++) { byte <<= 1; // 先前读取的数据(不足8位)全部左移一位 byte |= DHT11_Read_Bit(); // 最低位填入新读取的1位 } return byte; } //从DHT11读取一次完整的数据 //temp:温度值(整数,范围:0~50°) //humi:湿度值(整数,范围:20%~90%) //返回值:0,正常; 1,失败 static u8 DHT11_Read_Data(u8 *temp, u8 *humi) { u8 buf[5]; u8 i; DHT11_RequestData(); if(DHT11_RespondRequest() == SUCCESS) { for(i=0;i<5;i++) // 读取5组共40位数据 { buf[i] = DHT11_Read_Byte(); } if((buf[0]+buf[1]+buf[2]+buf[3]) == buf[4]) // 数据校验 { *humi = buf[0]; // 湿度整数部分 *temp = buf[2]; // 温度整数部分 return SUCCESS; } } return FAILURE; } // 采集DHT11数据并打印至串口 void dht11DataCollect() { u8 temp; u8 humi; if (DHT11_Read_Data(&temp, &humi) == SUCCESS) printf("temperature:%d℃ humidity(RH):%d \r\n", temp, humi); // 输出到串口(重定向) else printf("DHT11 data error! \r\n"); } // 温度阈值处理 void DHT11_OnTempChange(u8 temp_threshold) { if (dht11.temp > temp_threshold) { // 启动风扇(继电器低电平触发) Relay_Low(); // 蜂鸣器短鸣(100ms) BEEP_ON(); beep_time = 100; // 100ms } else { // 关闭风扇 Relay_High(); } } #include "ldr.h" LdrStruct ldr; static u8 getLightIntensity(void); static void OnLightChange(u8 hiLight, u8 loLight); /******************************************************************************* * 函 数 名 : adc_init * 函数功能 : ADC外设的初始化 * 输 入 : 无 * 输 出 : 无 *******************************************************************************/ static void adc_init(void) { GPIO_InitTypeDef GPIO_InitStructure; ADC_InitTypeDef ADC_InitStructure; // 1.打开相关外设的总线时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_ADC1,ENABLE); // 2.信号引脚的参数配置 GPIO_InitStructure.GPIO_Pin=LDR_PIN; // 信号引脚:PB0 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AIN; // 设置模拟输入模式 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_2MHz; // 设置传输速率 GPIO_Init(LDR_PORT,&GPIO_InitStructure); // 3. 输入时钟降频(<14MHz) RCC_ADCCLKConfig(RCC_PCLK2_Div6); // 分频因子6,输入时钟为72M/6=12MHz // 4. 初始化ADC参数 ADC_InitStructure.ADC_Mode=ADC_Mode_Independent; //独立模式 ADC_InitStructure.ADC_ScanConvMode=DISABLE; //单次扫描 ADC_InitStructure.ADC_ContinuousConvMode=DISABLE; //单次转换 ADC_InitStructure.ADC_ExternalTrigConv=ADC_ExternalTrigConv_None; //软件触发 ADC_InitStructure.ADC_DataAlign=ADC_DataAlign_Right; //数据右对齐 ADC_InitStructure.ADC_NbrOfChannel=1; //只有1个通道 ADC_Init(ADC1,&ADC_InitStructure); // 5. 使能ADC ADC_Cmd(ADC1,ENABLE); // 6. ADC校准 ADC_ResetCalibration(ADC1); //复位校准 while(ADC_GetResetCalibrationStatus(ADC1)); ADC_StartCalibration(ADC1); //开启并完成校准 while(ADC_GetCalibrationStatus(ADC1)); } // LDR的设备初始化 extern void ldr_init() { adc_init(); ldr.period = LDR_PERIOD; ldr.high_threshold = HI_THRESHOLD; ldr.low_threshold = LO_THRESHOLD; ldr.getData = getLightIntensity; ldr.onLightChange = OnLightChange; ldr.state = STANDBY; } /******************************************************************************* * 函 数 名 : GET_ADC_Value * 函数功能 : 获取通道ch的转换值,测量times次,取平均值 * 输 入 : ch:通道编号,Rank:规则序列中的第几个转换,取值1~16; times:测量次数 * 输 出 : 通道ch的times次转换结果的平均值 *******************************************************************************/ static u16 Get_ADC_Value(u8 ch, u8 times) //获取ADC1通道ch的转换值 { u8 i; u32 Temp_val=0; ADC_RegularChannelConfig(ADC1,ch,1,ADC_SampleTime_239Cycles5); for(i=0;i<times;i++) { ADC_SoftwareStartConvCmd(ADC1,ENABLE); // 开始转换 while(!ADC_GetFlagStatus(ADC1,ADC_FLAG_EOC)); // 等待至单次转换结束 Temp_val += ADC_GetConversionValue(ADC1); delay_ms(10); } return Temp_val/times; } /******************************************************************************* * 函 数 名 : getLightIntensity * 函数功能 : 将ADC转换值解读为光照强度 * 输 入 : 无 * 输 出 : 光照照度值(0~100, 0:照度最低;100:照度最高) *******************************************************************************/ static u8 getLightIntensity(void) //通过ADC1 通道0的值获取亮度值 { u16 value = 0; u8 lightvalue = 0; value = Get_ADC_Value(ADC_Channel_8,20); lightvalue = 100 - (u16)(value/40.95); return lightvalue; } // 添加PWM控制LED功能 static void set_led_brightness(u8 level) { switch(level) { case 0: // 低档 TIM_SetCompare2(TIM3, 125); // 25%占空比 break; case 1: // 中档 TIM_SetCompare2(TIM3, 250); // 50%占空比 break; case 2: // 高档 TIM_SetCompare2(TIM3, 375); // 75%占空比 break; } } /******************************************************************************* * 函 数 名 : OnLightChange * 函数功能 : 照度超过阈值(高阈值和低阈值)的处理措施 * 输 入 : hiLight-高阈值; loLight-低阈值 * 输 出 : 无 *******************************************************************************/ static void OnLightChange(u8 hiLight, u8 loLight) { if (ldr.light > hiLight) { set_led_brightness(0);// 照度过高,降低亮度 } else if (ldr.light < loLight) { set_led_brightness(2); // 照度过低,提升亮度 } else // 正常范围 { set_led_brightness(1); // 中等亮度 } } #include "key.h" #include "pwm.h" /******************************************************************************* * 函 数 名 : TIM3_CH2_PWM_Init * 函数功能 : TIM3通道2 PWM初始化函数 * 输 入 : per:重装载值 * psc:分频系数 * 输 出 : 无 *******************************************************************************/ void TIM3_CH2_PWM_Init(u16 per,u16 psc) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStructure; GPIO_InitTypeDef GPIO_InitStructure; /* 开启时钟 */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_AFIO,ENABLE); // PB5引脚启用复用模式 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE); // 选择TIM3部分重映射 GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3,ENABLE); /* PB5作为PWM的输出引脚 */ GPIO_InitStructure.GPIO_Pin=GPIO_Pin_5; GPIO_InitStructure.GPIO_Speed=GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP; //复用推挽输出 GPIO_Init(GPIOB,&GPIO_InitStructure); // 初始化TIM3 TIM_TimeBaseInitStructure.TIM_Period=per; //自动装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=psc; //分频系数 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //设置向上计数模式 TIM_TimeBaseInit(TIM3,&TIM_TimeBaseInitStructure); // 设置TIM3_CH2的PWM模式,使能CH2输出,呈现出PPT展示的PWM波形 // PWM1即mode1,先输出有效电平,再输出无效电平;PWM2即mode2则正好相反。 TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1; // 设置有效电平为低电平(此案例中低电平点亮D2) TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_Low; TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable; TIM_OC2Init(TIM3,&TIM_OCInitStructure); //输出比较通道2初始化 TIM_OC2PreloadConfig(TIM3,TIM_OCPreload_Enable); //使能TIM3在 CCR2 上的预装载寄存器 TIM_Cmd(TIM3,ENABLE); //使能定时器 } #include "relay.h" void Relay_Init(void) { GPIO_InitTypeDef GPIO_InitStruct; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE); GPIO_InitStruct.GPIO_Mode=GPIO_Mode_Out_PP; GPIO_InitStruct.GPIO_Pin=GPIO_Pin_11; GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz; GPIO_Init(GPIOA,&GPIO_InitStruct); //默认输出低电平 } void Relay_High(void) { GPIO_SetBits(GPIOA, GPIO_Pin_11); } void Relay_Low(void) { GPIO_ResetBits(GPIOA, GPIO_Pin_11); } #ifndef _RELAY_H_ #define _RELAY_H_ #include "main.h" #define RELAY_HIGH 1 #define RELAY_LOW 0 void Relay_Init(void); void Relay_High(void); void Relay_Low(void); #endif #ifndef __PWM_H #define __PWM_H #include "main.h" void TIM3_CH2_PWM_Init(u16 per,u16 psc); #endif #ifndef __LDR_H #define __LDR_H #include "main.h" #define LDR_PIN GPIO_Pin_0 #define LDR_PORT GPIOB #define LDR_PERIOD 4000 // ADC转换周期:4000ms #define HI_THRESHOLD 70 // 照度高阈值 #define LO_THRESHOLD 30 // 照度低阈值 typedef struct{ u8 light; // 光照强度(相对强度:0~100) u16 period; // 重复测量周期(s) u8 high_threshold; // 高亮阈值 u8 low_threshold; // 低亮阈值 SensorState state; // 工作状态 u8 (*getData)(void); // 获取光照强度数据 void (*onLightChange)(u8 hiLight, u8 loLight); // 亮度变化的响应操作 } LdrStruct; void ldr_init(void); extern LdrStruct ldr; #endif #ifndef __DHT11_H #define __DHT11_H #include "main.h" #define DHT11_PIN GPIO_Pin_12 #define DHT11_PORT GPIOA #define DHT11_DQ_IN PCin(12) // 输入 #define DHT11_DQ_OUT PCout(12) // 输出 #define SUCCESS 0 #define FAILURE 1 #define DHT11_PERIOD 5000 // 数据采集周期:5000ms #define TEMP_THRESHOLD 28 // 温度阈值(℃) // 定义DHT11结构体 typedef struct{ u8 temp; // 温度值 u8 humi; // 湿度值 u16 period; // 重复测量周期(s) u8 temp_threshold; // 温度阈值 u8 humi_threshold; // 湿度阈值 SensorState state; // 设备状态 u8 (*getData)(u8 *temp, u8 *humi); // 获取温湿度数据 void (*onTempChange)(u8 temp_threshold); // 高温的响应操作 } Dht11Struct; void dht11_init(void); extern Dht11Struct dht11; #endif #ifndef _usart_H #define _usart_H #include "main.h" #define USART1_REC_LEN 200 //定义最大接收字节数 200 extern u8 USART1_RX_BUF[USART1_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.末字节为换行符 extern u16 USART1_RX_STA; //接收状态标记 void usart1_init(u32 baud); #endif #ifndef __TIM_H #define __TIM_H #include "main.h" //#include "stm32f10x.h" void tim4_init(u16 per,u16 psc); #endif #ifndef __DISPLAY_H #define __DISPLAY_H #include "main.h" #define DSP_DIGIT 4 // 4位数码管 typedef enum{LIGHT, TEMP, HUMI} DSP_Interface; // 数码管界面 typedef struct { u16 digit[DSP_DIGIT]; // 数码管的4位数字 u8 currDigit; // 当前显示位(1~4) u8 dotDigit; // 小数点位置(0~4,0代表不显示小数点) DSP_Interface interface; // 界面显示哪个测量值 void(*SegDisplay)(void); }DisplayStruct; void display_init(void); void segDisplay(void); //void setValue(DisplayStruct *dsp, u8 value[4], u8 dotBit); void setLightValue(DisplayStruct *dsp, u8 dotBit); void setTempValue(DisplayStruct *dsp, u8 dotBit); void setHumiValue(DisplayStruct *dsp, u8 dotBit); extern DisplayStruct dsp; #endif 在已有代码上完善该任务,STM32F103C8t6,用标准库

Main主程序 #include "sys.h" #include "delay.h" #include "adc.h" #include "gpio.h" #include "OLED_I2C.h" #include "stmflash.h" #include "ds18b20.h" #include "timer.h" #include "usart1.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdbool.h> #define FLASH_SAVE_ADDR ((u32)0x0800F000) //设置FLASH 保存地址(必须为偶数) #define STM32_RX1_BUF Usart1RecBuf #define STM32_Rx1Counter RxCounter #define STM32_RX1BUFF_SIZE USART1_RXBUFF_SIZE extern const unsigned char BMP1[]; extern const unsigned char BMP2[]; char display[16]; //显示缓存区 short temperature=0; //温度 u8 setTempValue = 40; //温度上限 u8 setSmokeValue = 60; //烟雾上限 u8 sendSmsFlag = 0; //发送短信标志 u8 alarmFlag = 0x00; //蜂鸣器报警标志 u16 smoke=0; //烟雾 u8 setn=0; //记录设置按键按下的次数 bool shanshuo=0; bool shuaxin=0; bool fangdao=0; char PhoneNumber[11];//手机号码 char uniPhoneNum[44];//手机号码转码后存放数组 void UsartRx1BufClear(void) { memset(STM32_RX1_BUF, 0, STM32_RX1BUFF_SIZE);//清除缓存 STM32_Rx1Counter = 0; } /***********************************************************************************************/ /****************************** 以下为SIM800相关部分 ****************************************/ /***********************************************************************************************/ void PhoneNumChangeUnicode(char *str1,char *str2) //手机号转码 { u8 i; char *buf = str1; for(i = 0;i < 11;i ++) //发送中文短信手机号必须转码,前面需要加上003 { str2[i*4+0] = '0'; str2[i*4+1] = '0'; str2[i*4+2] = '3'; str2[i*4+3] = buf[i]; } } void gsm_atcmd_send(char *at)//GSM AT指令发送函数 { unsigned short waittry;//延时变量 do { gsm_rev_start = 0;//接收开始标志清零 gsm_rev_okflag = 0;//接收完成标志清零 waittry = 0;//延时变量清零 uart1_send((unsigned char *)at,0xFF);//串口发送内容 while(waittry ++ < 3000)//进入while延时 { if (gsm_rev_okflag == 1)//等待GSM返回OK { return;//返回出去 } delay_ms(1); } } while(gsm_rev_okflag == 0); } void gsm_init(void)//gsm初始化 { gsm_atcmd_send("AT\r\n");//测试用的 delay_ms(1000); gsm_atcmd_send("AT+CSCS=\"UCS2\"\r\n");//设置为unicode编码 delay_ms(1000); gsm_atcmd_send("AT+CMGF=1\r\n");//设置为文本模式 delay_ms(1000); gsm_atcmd_send("AT+CNMI=2,1\r\n");//来短信时提示,并存储到模块内存 delay_ms(1000); gsm_atcmd_send("AT+CMGD=1,4\r\n");//清除短信 delay_ms(1000); gsm_atcmd_send("AT+CSMP=17,0,2,25\r\n");//设置短信保留为5分钟,发送中文 } /* *number 为对方手机号 */ void gsm_send_msg(const char*number,char * content) { u8 len; unsigned char gsm_at_txbuf[60];//GSM AT命令缓存区 memset(gsm_at_txbuf, 0, 60);//缓存清零 strncpy((char *)gsm_at_txbuf,"AT+CMGS=\"",9);//将AT+CMGS=\",复制到gsm_at_txbuf memcpy(gsm_at_txbuf + 9, number, 44);//将手机号码复制到AT+CMGS=\"之后 len = strlen((char *)gsm_at_txbuf);//获取gsm_at_txbuf字符串长度 gsm_at_txbuf[len] = '"'; // AT+CMGS=\"12345678901\" gsm_at_txbuf[len + 1] = '\r'; gsm_at_txbuf[len + 2] = '\n';//gsm_at_txbuf最终的格式"AT+CMGS=\"手机号码\"\r\n" uart1_send(gsm_at_txbuf,0xFF);//发送需要接受短信的手机号码 delay_ms(1000); uart1_send((unsigned char *)content,0xFF); //发短信内容 delay_ms(100); printf("%c",0x1a); //发送结束符号 delay_ms(10); } /* *content 为短信内容 */ void sim800_send_sms(char *content) { bool send_error = 0; u16 send_count = 0; gsm_rev_okflag = 0; OLED_ShowStr(32,2,"Send Sms... ",2,0); PhoneNumChangeUnicode(PhoneNumber,uniPhoneNum); //在发送短信前,先将手机号转码 gsm_send_msg(uniPhoneNum,content);//发送短信 delay_ms(1000);//延时1秒 while(gsm_rev_okflag == 0)//等待返回OK指令 { if(send_count++ > 8000) { send_count = 0; send_error = 1; break; } delay_ms(1); }; gsm_rev_okflag = 0; if(send_error == 1) OLED_ShowStr(32,2,"Send Fail! ",2,0);//显示发送超时 else OLED_ShowStr(32,2," Send OK! ",2,0); UsartRx1BufClear(); delay_ms(1000);//延时1秒 OLED_ShowStr(32,2," ",2,0); } /***********************************************************************************************/ /****************************** end ****************************************/ /***********************************************************************************************/ void STM32_FlashCheck(void) // 检查是否是新的单片机,是的话清空存储区,否则保留 { u8 comper_str[6],i; STMFLASH_Read(FLASH_SAVE_ADDR + 0x10,(u16*)comper_str,5); comper_str[5] = '\0'; if(strstr((char *)comper_str,"FDYDZ") == NULL) //新的单片机 { STMFLASH_Write(FLASH_SAVE_ADDR + 0x10,(u16*)"FDYDZ",5); //写入“FDYDZ”,方便下次校验 delay_ms(50); STMFLASH_Write(FLASH_SAVE_ADDR + 0x40,(u16*)"12345678910",11);//存入初始手机号 delay_ms(50); } STMFLASH_Read(FLASH_SAVE_ADDR + 0x40,(u16*)PhoneNumber,11); //读出手机号 for(i = 0; i < 11 ; i++) { if(PhoneNumber[i]<'0' || PhoneNumber[i]>'9') { break; } } if(i != 11) { memset(PhoneNumber, 0 , 11); //清除缓存 sprintf(PhoneNumber,"12345678910"); } delay_ms(100); } void display_mode(void) { u8 i; //显示中文: 防盗模式 if(fangdao==1){for(i = 0;i < 4;i ++)OLED_ShowCN(i*16+32,0,i+0,1);}else {for(i = 0;i < 4;i ++)OLED_ShowCN(i*16+32,0,i+24,1);} } void displayInitInterface(void) //显示初始页面 { u8 i; for(i = 0;i < 2;i ++)OLED_ShowCN(i*16,4,i+6,0); //显示中文: 温度 for(i = 0;i < 2;i ++)OLED_ShowCN(i*16,6,i+8,0); //显示中文: 烟雾 OLED_ShowChar(32,0,':',2,0); OLED_ShowChar(32,4,':',2,0); OLED_ShowChar(32,6,':',2,0); display_mode(); } void Get_Temperature(void) //获取温度 { temperature=ReadTemperature(); if(temperature>=setTempValue) { if(!(alarmFlag&0x01)) { alarmFlag|=0x01; shanshuo = 0; sendSmsFlag = 2; //发送短信标志 } } else { alarmFlag&=0xFE; } if(temperature>=setTempValue && shanshuo) { OLED_ShowStr(40, 4," ", 2,0); } else { sprintf(display," %d",temperature); OLED_ShowStr(40, 4, (u8*)display, 2,0);//显示温度 OLED_ShowCentigrade(68, 4); //显示摄氏度 } } void Get_Smoke(void) //获取烟雾浓度 { u16 test_adc=0; /* 获取烟雾浓度 */ test_adc = Get_Adc_Average(ADC_Channel_9,10);//读取通道9的10次AD平均值 smoke = test_adc*99/4096;//转换成0-99百分比 if(smoke>=setSmokeValue) { if(!(alarmFlag&0x02)) { alarmFlag|=0x02; shanshuo = 0; sendSmsFlag = 3; //发送短信标志 } } else { alarmFlag&=0xFD; } if(smoke>=setSmokeValue && shanshuo) { OLED_ShowStr(40, 6," ", 2,0); } else { sprintf(display," %02d %%",smoke); OLED_ShowStr(40, 6, (u8*)display, 2,0);//显示温度 } } void displaySetValue(void) //显示设置值 { u8 add=2,i; if(setn==1) { OLED_ShowChar(56,4,setTempValue%100/10+'0',2,0);//显示 OLED_ShowChar(64,4,setTempValue%10+'0',2,0);//显示 } if(setn==2) { OLED_ShowChar(56,4,setSmokeValue%100/10+'0',2,0);//显示 OLED_ShowChar(64,4,setSmokeValue%10+'0',2,0);//显示 OLED_ShowChar(72,4,'%',2,0); } if(setn>=3) { for(i = 0;i < 11;i ++) { OLED_ShowChar((add++)*8,4,PhoneNumber[i],2,(setn+1)-(3+i));//显示手机号码 } } } void keyscan(void) //按键扫描 { u8 i; if(KEY1 == 0) //设置键 { delay_ms(20); if(KEY1 == 0) { while(KEY1 == 0); setn ++; if(setn == 1) { OLED_CLS();//清屏 for(i = 0;i < 4;i ++)OLED_ShowCN(i*16+32,0,i+10,0);//显示中文:设置温度 OLED_ShowCentigrade(75, 4); //显示摄氏度 } if(setn == 2) { for(i = 0;i < 4;i ++)OLED_ShowCN(i*16+32,0,i+14,0);//显示中文:设置烟雾 OLED_ShowChar(80,4,' ',2,0); } if(setn == 3) { for(i = 0;i < 6;i ++)OLED_ShowCN(i*16+16,0,i+18,0);//显示中文:设置手机号码 } if(setn >= 14) { setn = 0; OLED_CLS();//清屏 displayInitInterface(); STMFLASH_Write(FLASH_SAVE_ADDR + 0x40,(u16*)PhoneNumber,11); //退出设置,存入设置的手机号 } displaySetValue(); } } if(KEY2 == 0) //加键 { delay_ms(80); if(KEY2 == 0) { if(setTempValue < 99 && setn==1)setTempValue++; if(setSmokeValue < 99 && setn==2)setSmokeValue++; if(setn>=3) { PhoneNumber[setn-3]++; if(PhoneNumber[setn-3]>'9')PhoneNumber[setn-3]='0'; } displaySetValue(); } } if(KEY3 == 0) //减键 { delay_ms(80); if(KEY3 == 0) { if(setn==0) { fangdao=!fangdao; display_mode(); } if(setTempValue > 0 && setn==1)setTempValue--; if(setSmokeValue > 0 && setn==2)setSmokeValue--; if(setn>=3) { PhoneNumber[setn-3]--; if(PhoneNumber[setn-3]<'0')PhoneNumber[setn-3]='9'; } displaySetValue(); } } } int main(void) { bool flameFlag=0; bool SomebodyFlag=0; char SEND_BUF[400]; //发送短信缓存 delay_init(); //延时函数初始化 NVIC_Configuration(); //中断优先级配置 I2C_Configuration(); //IIC初始化 STM32_FlashCheck(); //FLASH初始化 delay_ms(200); OLED_Init(); //OLED液晶初始化 OLED_CLS(); //清屏 OLED_ShowStr(0,2," GSM Init... ",2,0); uart1_Init(9600); gsm_init();//gsm初始化 OLED_CLS();//清屏 Adc_Init(); //adc初始化 KEY_GPIO_Init(); //按键引脚初始化 SR501_GPIO_Init(); //人体红外初始化 DS18B20_GPIO_Init(); //温度初始化 DS18B20_Init(); //初始化显示 displayInitInterface(); //显示初始界面 TIM3_Init(99,719); //定时器初始化,定时1ms //Tout = ((arr+1)*(psc+1))/Tclk ; //Tclk:定时器输入频率(单位MHZ) //Tout:定时器溢出时间(单位us) while(1) { keyscan(); //按键扫描 if(setn == 0) { if(shuaxin == 1) //大概300ms刷新一次数据 { Get_Temperature(); //获取温度 Get_Smoke(); //获取烟雾 shuaxin = 0; } if(FLAME == 0) //检测到火焰 { delay_ms(10); if(FLAME == 0) { if(flameFlag == 0) { OLED_DrawBMP(88,4,120,8,(unsigned char *)BMP1); //显示火焰图片 sendSmsFlag = 1; //发送短信标志 } flameFlag = 1; } } else { if(flameFlag == 1) { OLED_ShowStr(88, 4, " ", 2,0); OLED_ShowStr(88, 6, " ", 2,0); } flameFlag = 0; } if(fangdao==1&&SR501==1) //在防盗模式下检测到有人 { if(SomebodyFlag==0) { OLED_DrawBMP(0,0,32,4,(unsigned char *)BMP2); //图显示 sendSmsFlag = 4; //发送短信标志 SomebodyFlag = 1; } } else { if(SomebodyFlag==1) { OLED_ShowStr(0, 0, " ", 2,0); OLED_ShowStr(0, 2, " ", 2,0); SomebodyFlag = 0; } } if(temperature>=setTempValue || smoke>=setSmokeValue || flameFlag || SomebodyFlag)BEEP=1;else BEEP=0; //检测到温度烟雾超标火焰蜂鸣器报警 if(temperature>=setTempValue)FAN=1;else FAN=0; //温度超标都开启风扇 if(smoke>=setSmokeValue || flameFlag)RELAY = 1; else RELAY = 0; //检测到有火或者烟雾超标,开启水泵 if(sendSmsFlag != 0) //发送短信 { char TEMP_BUF[100]; /*******************************************************************************************/ /*******************以下为短信内容处理部分,发送中文短信必须转换为Unicode码**************/ /******************************************************************************************/ memset(SEND_BUF,0,sizeof(SEND_BUF)); //清空缓冲区 switch(sendSmsFlag) { case(1): strcat(SEND_BUF,"8B66544AFF0168C06D4B5230706B7130FF01"); break; //警告!检测到火焰! case(2): strcat(SEND_BUF,"8B66544AFF016E295EA68FC79AD8FF01"); break; //警告!温度过高! case(3): strcat(SEND_BUF,"8B66544AFF0170DF96FE6D535EA68FC79AD8FF01"); break; //警告!烟雾浓度过高! case(4): strcat(SEND_BUF,"8B66544AFF0168C06D4B523067094EBAFF01"); break; //警告!检测到有人! default: break; } if(sendSmsFlag!=4) { memset(TEMP_BUF,0,sizeof(TEMP_BUF)); //清空缓冲区 sprintf(TEMP_BUF,"6E295EA6003A003%1d003%1d2103FF0C70DF96FE003A003%1d003%1d0025",temperature/10,temperature%10,smoke/10,smoke%10); strcat(SEND_BUF,TEMP_BUF); } sim800_send_sms((char *)SEND_BUF);//发送短信 sendSmsFlag = 0; /*******************************************************************************************/ /*************************** end *****************************/ /******************************************************************************************/ } } delay_ms(10); } } void TIM3_IRQHandler(void)//定时器3中断服务程序,用于记录时间 { static u16 timeCount1 = 0; if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) //检查指定的TIM中断发生与否:TIM 中断源 { TIM_ClearITPendingBit(TIM3, TIM_IT_Update); //清除中断标志位 timeCount1++; if(timeCount1 >= 300) //300ms { timeCount1 = 0; shanshuo = !shanshuo; shuaxin = 1; } } } ADC初始化程序 #include "adc.h" #include "delay.h" //初始化ADC //这里我们仅以规则通道为例 //我们默认将开启通道0~3 void Adc_Init(void) { ADC_InitTypeDef ADC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB |RCC_APB2Periph_ADC1 , ENABLE ); //使能ADC1通道时钟 RCC_ADCCLKConfig(RCC_PCLK2_Div8); //设置ADC分频因子6 72M/8=9,ADC最大时间不能超过14M GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1|GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚 GPIO_Init(GPIOB, &GPIO_InitStructure); ADC_DeInit(ADC1); //复位ADC1,将外设 ADC1 的全部寄存器重设为缺省值 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC工作模式:ADC1和ADC2工作在独立模式 ADC_InitStructure.ADC_ScanConvMode = DISABLE; //模数转换工作在单通道模式 ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //模数转换工作在单次转换模式 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //转换由软件而不是外部触发启动 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC数据右对齐 ADC_InitStructure.ADC_NbrOfChannel = 1; //顺序进行规则转换的ADC通道的数目 ADC_Init(ADC1, &ADC_InitStructure); //根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器 ADC_Cmd(ADC1, ENABLE); //使能指定的ADC1 ADC_ResetCalibration(ADC1); //使能复位校准 while(ADC_GetResetCalibrationStatus(ADC1)); //等待复位校准结束 ADC_StartCalibration(ADC1); //开启AD校准 while(ADC_GetCalibrationStatus(ADC1)); //等待校准结束 } //获得ADC值 //ch:通道值 9 u16 Get_Adc(u8 ch) { //设置指定ADC的规则组通道,一个序列,采样时间 ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_71Cycles5 ); //ADC1,ADC通道,采样时间为13.5周期 ADC_SoftwareStartConvCmd(ADC1, ENABLE); //使能指定的ADC1的软件转换启动功能 while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束 return ADC_GetConversionValue(ADC1); //返回最近一次ADC1规则组的转换结果 } u16 Get_Adc_Average(u8 ch,u8 times) { u32 temp_val=0; u8 t; for(t=0;t<times;t++) { temp_val+=Get_Adc(ch); delay_ms(5); } return temp_val/times; } #ifndef __ADC_H #define __ADC_H #include "sys.h" void Adc_Init(void); u16 Get_Adc(u8 ch); u16 Get_Adc_Average(u8 ch,u8 times); #endif GPIO引脚初始化程序 #include "gpio.h" ////////////////////////////////////////////////////////////////////////////////// //按键舵机的GPIO设置 ////////////////////////////////////////////////////////////////////////////////// void KEY_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOC|RCC_APB2Periph_AFIO, ENABLE); //使能PABC端口时钟 GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE); //关闭JTAG模式 使PB3,PB4变成普通IO口 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12|GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15; // 端口配置 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入 GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15; // 端口配置 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //IO口速度为50MHz GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_ResetBits(GPIOC,GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15); //输出0 } void SR501_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //使能PA端口时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; // 端口配置 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; //下拉输入 GPIO_Init(GPIOA, &GPIO_InitStructure); } #ifndef __GPIO_H #define __GPIO_H #include "sys.h" #define KEY1 PBin(12) #define KEY2 PBin(13) #define KEY3 PBin(14) #define FLAME PBin(15) #define BEEP PCout(13) #define FAN PCout(14) #define RELAY PCout(15) #define SR501 PAin(0) void KEY_GPIO_Init(void);//引脚初始化 void SR501_GPIO_Init(void); #endif OLED驱动程序 /************************************************************************************ * * Description:128*64点阵的OLED显示屏驱动文件SD1306驱动IIC通信方式显示屏 * * Others: none; * * Function List: * 1. void I2C_Configuration(void) -- 配置CPU的硬件I2C * 2. void I2C_WriteByte(uint8_t addr,uint8_t data) -- 向寄存器地址写一个byte的数据 * 3. void WriteCmd(unsigned char I2C_Command) -- 写命令 * 4. void WriteDat(unsigned char I2C_Data) -- 写数据 * 5. void OLED_Init(void) -- OLED屏初始化 * 6. void OLED_SetPos(unsigned char x, unsigned char y) -- 设置起始点坐标 * 7. void OLED_Fill(unsigned char fill_Data) -- 全屏填充 * 8. void OLED_CLS(void) -- 清屏 * 9. void OLED_ON(void) -- 唤醒 * 10. void OLED_OFF(void) -- 睡眠 * 11. void OLED_ShowStr(unsigned char x, unsigned char y, unsigned char ch[], unsigned char TextSize) -- 显示字符串(字体大小有6*8和8*16两种) * 12. void OLED_ShowCN(unsigned char x, unsigned char y, unsigned char N) -- 显示中文(中文需要先取模,然后放到codetab.h中) * 13. void OLED_DrawBMP(unsigned char x0,unsigned char y0,unsigned char x1,unsigned char y1,unsigned char BMP[]) -- BMP图片 * * History: none; * *************************************************************************************/ #include "OLED_I2C.h" #include "delay.h" #include "codetab.h" /* 定义I2C总线连接的GPIO端口, 用户只需要修改下面4行代码即可任意改变SCL和SDA的引脚 */ #define RCC_I2C_PORT RCC_APB2Periph_GPIOB /* GPIO端口时钟 */ #define PORT_I2C_SCL GPIOB /* GPIO端口 */ #define PIN_I2C_SCL GPIO_Pin_6 /* GPIO引脚 */ #define PORT_I2C_SDA GPIOB /* GPIO端口 */ #define PIN_I2C_SDA GPIO_Pin_7 /* GPIO引脚 */ #define I2C_SCL_PIN GPIO_Pin_6 /* 连接到SCL时钟线的GPIO */ #define I2C_SDA_PIN GPIO_Pin_7 /* 连接到SDA数据线的GPIO */ /* 定义读写SCL和SDA的宏 */ #define I2C_SCL_1() PORT_I2C_SCL->BSRR = I2C_SCL_PIN /* SCL = 1 */ #define I2C_SCL_0() PORT_I2C_SCL->BRR = I2C_SCL_PIN /* SCL = 0 */ #define I2C_SDA_1() PORT_I2C_SDA->BSRR = I2C_SDA_PIN /* SDA = 1 */ #define I2C_SDA_0() PORT_I2C_SDA->BRR = I2C_SDA_PIN /* SDA = 0 */ #define I2C_SDA_READ() ((PORT_I2C_SDA->IDR & I2C_SDA_PIN) != 0) /* 读SDA口线状态 */ #define I2C_SCL_READ() ((PORT_I2C_SCL->IDR & I2C_SCL_PIN) != 0) /* 读SCL口线状态 */ /* ********************************************************************************************************* * 函 数 名: bsp_InitI2C * 功能说明: 配置I2C总线的GPIO,采用模拟IO的方式实现 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void bsp_InitI2C_2(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_I2C_PORT, ENABLE); /* 打开GPIO时钟 */ GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; /* 开漏输出模式 */ GPIO_InitStructure.GPIO_Pin = PIN_I2C_SCL; GPIO_Init(PORT_I2C_SCL, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = PIN_I2C_SDA; GPIO_Init(PORT_I2C_SDA, &GPIO_InitStructure); /* 给一个停止信号, 复位I2C总线上的所有设备到待机模式 */ i2c_Stop_2(); } /* ********************************************************************************************************* * 函 数 名: i2c_Start * 功能说明: CPU发起I2C总线启动信号 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void i2c_Start_2(void) { /* 当SCL高电平时,SDA出现一个下跳沿表示I2C总线启动信号 */ I2C_SDA_1(); I2C_SCL_1(); delay_us(4); I2C_SDA_0(); delay_us(4); I2C_SCL_0(); } /* ********************************************************************************************************* * 函 数 名: i2c_Start * 功能说明: CPU发起I2C总线停止信号 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void i2c_Stop_2(void) { /* 当SCL高电平时,SDA出现一个上跳沿表示I2C总线停止信号 */ I2C_SDA_0(); I2C_SCL_1(); delay_us(4); I2C_SDA_1(); delay_us(4); } /* ********************************************************************************************************* * 函 数 名: i2c_SendByte * 功能说明: CPU向I2C总线设备发送8bit数据 * 形 参: _ucByte : 等待发送的字节 * 返 回 值: 无 ********************************************************************************************************* */ void i2c_SendByte_2(uint8_t _ucByte) { uint8_t i; /* 先发送字节的高位bit7 */ for (i = 0; i < 8; i++) { if (_ucByte & 0x80) { I2C_SDA_1(); } else { I2C_SDA_0(); } delay_us(2); I2C_SCL_1(); delay_us(2); I2C_SCL_0(); _ucByte <<= 1; /* 左移一个bit */ delay_us(2); } } /* ********************************************************************************************************* * 函 数 名: i2c_ReadByte * 功能说明: CPU从I2C总线设备读取8bit数据 * 形 参: 无 * 返 回 值: 读到的数据 ********************************************************************************************************* */ uint8_t i2c_ReadByte_2(void) { uint8_t i; uint8_t value; /* 读到第1个bit为数据的bit7 */ value = 0; for (i = 0; i < 8; i++) { value <<= 1; I2C_SCL_1();//SCL在高电平期间,数据必须保持稳定 delay_us(2); if (I2C_SDA_READ()) { value++; } I2C_SCL_0(); delay_us(1); } return value; } /* ********************************************************************************************************* * 函 数 名: i2c_WaitAck * 功能说明: CPU产生一个时钟,并读取器件的ACK应答信号 * 形 参: 无 * 返 回 值: 返回0表示正确应答,1表示无器件响应 ********************************************************************************************************* */ uint8_t i2c_WaitAck_2(void) { uint8_t tempTime; I2C_SDA_1(); /* CPU释放SDA总线 */ delay_us(1); I2C_SCL_1(); /* CPU驱动SCL = 1, 此时器件会返回ACK应答 */ delay_us(1); while(I2C_SDA_READ()) { tempTime++; if(tempTime>250) { i2c_Stop_2(); return 1; } } I2C_SCL_0(); return 0; } /* ********************************************************************************************************* * 函 数 名: i2c_Ack * 功能说明: CPU产生一个ACK信号 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void i2c_Ack_2(void) { I2C_SDA_0(); /* CPU驱动SDA = 0 */ delay_us(5); I2C_SCL_1(); /* CPU产生1个时钟 */ delay_us(5); I2C_SCL_0(); delay_us(5); I2C_SDA_1(); /* CPU释放SDA总线 */ } /* ********************************************************************************************************* * 函 数 名: i2c_NAck * 功能说明: CPU产生1个NACK信号 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void i2c_NAck_2(void) { I2C_SDA_1(); /* CPU驱动SDA = 1 */ delay_us(5); I2C_SCL_1(); /* CPU产生1个时钟 */ delay_us(5); I2C_SCL_0(); delay_us(5); } void I2C_Configuration(void) { bsp_InitI2C_2(); } void I2C_WriteByte(uint8_t addr,uint8_t data) { /* 第1步:发起I2C总线启动信号 */ i2c_Start_2(); /* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */ i2c_SendByte_2(OLED_ADDRESS | I2C_WR); /* 此处是写指令 */ /* 第3步:发送ACK */ i2c_WaitAck_2(); /* 第4步:发送字节地址 */ i2c_SendByte_2(addr); i2c_WaitAck_2(); /* 第5步:开始写入数据 */ i2c_SendByte_2(data); /* 第6步:发送ACK */ i2c_WaitAck_2(); /* 发送I2C总线停止信号 */ i2c_Stop_2(); } void WriteCmd(unsigned char I2C_Command)//写命令 { I2C_WriteByte(0x00, I2C_Command); } void WriteDat(unsigned char I2C_Data)//写数据 { I2C_WriteByte(0x40, I2C_Data); } void OLED_Init(void) { delay_ms(100); //这里的延时很重要 WriteCmd(0xAE); //display off WriteCmd(0x20); //Set Memory Addressing Mode WriteCmd(0x10); //00,Horizontal Addressing Mode;01,Vertical Addressing Mode;10,Page Addressing Mode (RESET);11,Invalid WriteCmd(0xb0); //Set Page Start Address for Page Addressing Mode,0-7 WriteCmd(0xc8); //Set COM Output Scan Direction WriteCmd(0x00); //---set low column address WriteCmd(0x10); //---set high column address WriteCmd(0x40); //--set start line address WriteCmd(0x81); //--set contrast control register WriteCmd(0xff); //亮度调节 0x00~0xff WriteCmd(0xa1); //--set segment re-map 0 to 127 WriteCmd(0xa6); //--set normal display WriteCmd(0xa8); //--set multiplex ratio(1 to 64) WriteCmd(0x3F); // WriteCmd(0xa4); //0xa4,Output follows RAM content;0xa5,Output ignores RAM content WriteCmd(0xd3); //-set display offset WriteCmd(0x00); //-not offset WriteCmd(0xd5); //--set display clock divide ratio/oscillator frequency WriteCmd(0xf0); //--set divide ratio WriteCmd(0xd9); //--set pre-charge period WriteCmd(0x22); // WriteCmd(0xda); //--set com pins hardware configuration WriteCmd(0x12); WriteCmd(0xdb); //--set vcomh WriteCmd(0x20); //0x20,0.77xVcc WriteCmd(0x8d); //--set DC-DC enable WriteCmd(0x14); // WriteCmd(0xaf); //--turn on oled panel } void OLED_SetPos(unsigned char x, unsigned char y) //设置起始点坐标 { WriteCmd(0xb0+y); WriteCmd(((x&0xf0)>>4)|0x10); WriteCmd((x&0x0f)|0x01); } void OLED_Fill(unsigned char fill_Data)//全屏填充 { unsigned char m,n; for(m=0;m<8;m++) { WriteCmd(0xb0+m); //page0-page1 WriteCmd(0x00); //low column start address WriteCmd(0x10); //high column start address for(n=0;n<128;n++) { WriteDat(fill_Data); } } } void OLED_CLS(void)//清屏 { OLED_Fill(0x00); } //-------------------------------------------------------------- // Prototype : void OLED_ON(void) // Calls : // Parameters : none // Description : 将OLED从休眠中唤醒 //-------------------------------------------------------------- void OLED_ON(void) { WriteCmd(0X8D); //设置电荷泵 WriteCmd(0X14); //开启电荷泵 WriteCmd(0XAF); //OLED唤醒 } //-------------------------------------------------------------- // Prototype : void OLED_OFF(void) // Calls : // Parameters : none // Description : 让OLED休眠 -- 休眠模式下,OLED功耗不到10uA //-------------------------------------------------------------- void OLED_OFF(void) { WriteCmd(0X8D); //设置电荷泵 WriteCmd(0X10); //关闭电荷泵 WriteCmd(0XAE); //OLED休眠 } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~7 //chr:显示的字符 //TextSize:字符大小(1:6*8 ; 2:8*16) //mode:1,反白显示;0,正常显示 void OLED_ShowChar(unsigned char x,unsigned char y,unsigned char chr,unsigned char TextSize,u8 mode) { unsigned char c=0,i=0; c=chr-' ';//得到偏移后的值 if(TextSize == 2) { if(x>120){x=0;y++;} OLED_SetPos(x,y); for(i=0;i<8;i++) if(mode==1)WriteDat(~(F8X16[c*16+i]));else WriteDat(F8X16[c*16+i]); OLED_SetPos(x,y+1); for(i=0;i<8;i++) if(mode==1)WriteDat(~(F8X16[c*16+i+8]));else WriteDat(F8X16[c*16+i+8]); } else { if(x>126){x=0;y++;} OLED_SetPos(x,y); for(i=0;i<6;i++) if(mode==1)WriteDat(~(F6x8[c][i])); else WriteDat(F6x8[c][i]); } } //-------------------------------------------------------------- // Prototype : void OLED_ShowChar(unsigned char x, unsigned char y, unsigned char ch[], unsigned char TextSize) // Calls : // Parameters : x,y -- 起始点坐标(x:0~127, y:0~7); ch[] -- 要显示的字符串; TextSize -- 字符大小(1:6*8 ; 2:8*16) // Description : 显示codetab.h中的ASCII字符,有6*8和8*16可选择 //-------------------------------------------------------------- void OLED_ShowStr(unsigned char x, unsigned char y, unsigned char ch[], unsigned char TextSize,u8 mode) { unsigned char c = 0,i = 0,j = 0; switch(TextSize) { case 1: { while(ch[j] != '\0') { c = ch[j] - 32; if(x > 126) { x = 0; y++; } OLED_SetPos(x,y); for(i=0;i<6;i++) if(mode==1)WriteDat(~(F6x8[c][i])); else WriteDat(F6x8[c][i]); x += 6; j++; } }break; case 2: { while(ch[j] != '\0') { c = ch[j] - 32; if(x > 120) { x = 0; y++; } OLED_SetPos(x,y); for(i=0;i<8;i++) if(mode==1)WriteDat(~(F8X16[c*16+i])); else WriteDat(F8X16[c*16+i]); OLED_SetPos(x,y+1); for(i=0;i<8;i++) if(mode==1)WriteDat(~(F8X16[c*16+i+8])); else WriteDat(F8X16[c*16+i+8]); x += 8; j++; } }break; } } //-------------------------------------------------------------- // Prototype : void OLED_ShowCN(unsigned char x, unsigned char y, unsigned char N) // Calls : // Parameters : x,y -- 起始点坐标(x:0~127, y:0~7); N:汉字在codetab.h中的索引 // Description : 显示codetab.h中的汉字,16*16点阵 //mode:1,反白显示;0,正常显示 //-------------------------------------------------------------- void OLED_ShowCN(unsigned char x, unsigned char y, unsigned char N,u8 mode) { unsigned char wm=0; unsigned int adder=32*N; OLED_SetPos(x , y); for(wm = 0;wm < 16;wm++) { if(mode==1)WriteDat(~(F16x16[adder]));else WriteDat(F16x16[adder]); adder += 1; } OLED_SetPos(x,y + 1); for(wm = 0;wm < 16;wm++) { if(mode==1)WriteDat(~(F16x16[adder]));else WriteDat(F16x16[adder]); adder += 1; } } //-------------------------------------------------------------- // Prototype : void OLED_DrawBMP(unsigned char x0,unsigned char y0,unsigned char x1,unsigned char y1,unsigned char BMP[]); // Calls : // Parameters : x0,y0 -- 起始点坐标(x0:0~127, y0:0~7); x1,y1 -- 起点对角线(结束点)的坐标(x1:1~128,y1:1~8) // Description : 显示BMP位图 //-------------------------------------------------------------- void OLED_DrawBMP(unsigned char x0,unsigned char y0,unsigned char x1,unsigned char y1,unsigned char BMP[]) { unsigned int j=0; unsigned char x,y; if(y1%8==0) y = y1/8; else y = y1/8 + 1; for(y=y0;y<y1;y++) { OLED_SetPos(x0,y); for(x=x0;x<x1;x++) { WriteDat(BMP[j++]); } } } void OLED_ShowCentigrade(unsigned char x, unsigned char y)//显示℃ { unsigned char wm=0; unsigned char BUF[]={ 0x10,0x28,0x10,0xC0,0x20,0x10,0x10,0x10,0x20,0x70,0x00,0x00,0x00,0x00,0x00,0x07, 0x08,0x10,0x10,0x10,0x10,0x08,0x04,0x00,/*"℃"*/ }; OLED_SetPos(x , y); for(wm = 0;wm < 12;wm++) { WriteDat(BUF[wm]); } OLED_SetPos(x,y + 1); for(wm = 0;wm < 12;wm++) { WriteDat(BUF[wm+12]); } } #ifndef __OLED_I2C_H #define __OLED_I2C_H #include "stm32f10x.h" #define OLED_ADDRESS 0x78 //通过调整0R电阻,屏可以0x78和0x7A两个地址 -- 默认0x78 #define I2C_WR 0 /* 写控制bit */ #define I2C_RD 1 /* 读控制bit */ void bsp_InitI2C_2(void); void i2c_Start_2(void); void i2c_Stop_2(void); void i2c_SendByte_2(uint8_t _ucByte); uint8_t i2c_ReadByte_2(void); uint8_t i2c_WaitAck_2(void); void i2c_Ack_2(void); void i2c_NAck_2(void); void I2C_Configuration(void); void I2C_WriteByte(uint8_t addr,uint8_t data); void WriteCmd(unsigned char I2C_Command); void WriteDat(unsigned char I2C_Data); void OLED_Init(void); void OLED_SetPos(unsigned char x, unsigned char y); void OLED_Fill(unsigned char fill_Data); void OLED_CLS(void); void OLED_ON(void); void OLED_OFF(void); void OLED_ShowChar(unsigned char x,unsigned char y,unsigned char chr,unsigned char TextSize,u8 mode); void OLED_ShowStr(unsigned char x, unsigned char y, unsigned char ch[], unsigned char TextSize,u8 mode); void OLED_ShowCN(unsigned char x, unsigned char y, unsigned char N,u8 mode); void OLED_DrawBMP(unsigned char x0,unsigned char y0,unsigned char x1,unsigned char y1,unsigned char BMP[]); void OLED_ShowCentigrade(unsigned char x, unsigned char y); #endif TIME定时器程序 #include "timer.h" //通用定时器中断初始化 //这里时钟选择为APB1的2倍,而APB1为36M //arr:自动重装值。 //psc:时钟预分频数 //这里使用的是定时器3! void TIM3_Init(u16 arr,u16 psc) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //时钟使能 TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值 计数到5000为500ms TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值 10Khz的计数频率 TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位 TIM_ITConfig( //使能或者失能指定的TIM中断 TIM3, //TIM3 TIM_IT_Update , ENABLE //使能 ); NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; //TIM3中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //先占优先级0级 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //从优先级2级 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能 NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器 TIM_Cmd(TIM3, ENABLE); //使能定时器3 } #ifndef __TIMER_H #define __TIMER_H #include "sys.h" void TIM3_Init(u16 arr,u16 psc); #endif DS18B20温度程序 #include "ds18b20.h" #include "delay.h" /******************************************************************************* 函数名:DS18B20_GPIO_Init 功能:初始化DS18B20引脚 输入: 输出: 返回值: 备注: *******************************************************************************/ void DS18B20_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_DS18B20_PORT, ENABLE); //使能PORTA口时钟 GPIO_InitStructure.GPIO_Pin = DS18B20_GPIO_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(DS18B20_GPIO_PORT, &GPIO_InitStructure); GPIO_SetBits(DS18B20_GPIO_PORT,DS18B20_GPIO_PIN); //输出1 } /******************************************************************************* 函数名:DS18B20_Init 功能:初始化DS18B20 输入: 输出: 返回值:初始化成功为0,不成功为1 备注: *******************************************************************************/ u8 DS18B20_Init(void) { unsigned char wait=0; DS18B20_IO_OUT(); //输出模式 DS18B20_OUT_0; //拉低 delay_us(750); //至少延时480us DS18B20_OUT_1; //拉高 delay_us(15); //15us DS18B20_IO_IN(); //输入模式 while(READ_DS18B20_IO && wait++<200)delay_us(1);//等待高电平结束 if(wait>=200)return 1; else wait=0; while(!READ_DS18B20_IO && wait++<240)delay_us(1);//等待低电平结束 if(wait>=240)return 1; else return 0; } /******************************************************************************* 函数名:DS18B20_ReadByte 功能:从DS18B20读一个字节 输入: 输出: 返回值:读取到的字节 备注: *******************************************************************************/ unsigned char DS18B20_ReadByte(void) { unsigned char i; unsigned char dat = 0; for (i=0; i<8; i++) //8位计数器 { dat >>= 1; DS18B20_IO_OUT(); //输出模式 DS18B20_OUT_0; //开始时间片 delay_us(2); //延时等待 DS18B20_OUT_1; //准备接收 DS18B20_IO_IN(); //输入模式 delay_us(12); //接收延时 if(READ_DS18B20_IO) dat |= 0x80; //读取数据 delay_us(60); //等待时间片结束 } return dat; } /******************************************************************************* 函数名:DS18B20_WriteByte 功能:写一个字节 输入:unsigned char dat 输出: 返回值: 备注: *******************************************************************************/ void DS18B20_WriteByte(unsigned char dat) { unsigned char i; unsigned char temp; DS18B20_IO_OUT();//输出模式 for (i=1; i<=8; i++) { temp = dat & 0x01; dat = dat >> 1; if (temp) { DS18B20_OUT_0; delay_us(2); DS18B20_OUT_1; //写1 delay_us(60); } else { DS18B20_OUT_0;//写0 delay_us(60); DS18B20_OUT_1; delay_us(2); } } } /************************************** 从DS18B20中获取温度值得浮点值 参数: 空 返回值: 读取到的温度值(有效范围-55.0~125.0) **************************************/ float ReadTemperature(void) { unsigned char TPH; //存放温度值的高字节 unsigned char TPL; //存放温度值的低字节 short i16=0; float f32=0; DS18B20_Init(); DS18B20_WriteByte(0xCC); //跳过ROM命令 DS18B20_WriteByte(0x44); //开始转换命令 DS18B20_Init(); DS18B20_WriteByte(0xCC); //跳过ROM命令 DS18B20_WriteByte(0xBE); //读暂存存储器命令 TPL = DS18B20_ReadByte(); //读温度低字节 TPH = DS18B20_ReadByte(); //读温度高字节 i16 = 0; i16 = (TPH<<8) |TPL; // 将高位(MSB)与低位(LSB)合并 f32 = i16 * 0.0625; // 12bit精度时温度值计算 return(f32); // 返回读取到的温度数值(float型) } #ifndef __DS18B20_H #define __DS18B20_H #include "sys.h" //如果想要修改引脚,只需修改下面的宏 #define RCC_DS18B20_PORT RCC_APB2Periph_GPIOA /* GPIO端口时钟 */ #define DS18B20_GPIO_PIN GPIO_Pin_11 #define DS18B20_GPIO_PORT GPIOA //IO方向设置(CRL寄存器对应引脚0~7,CRH寄存器对应引脚8~15) //DS18B20_GPIO_PORT->CRH&=0xFFFFFFF0为PA8引脚输出模式对应的寄存器清空 //DS18B20_GPIO_PORT->CRH|=0x00000008将(CNF8[1:0]设置为10:上拉/下拉输入模式,MODE8[1;0]设置为00:输入模式) //DS18B20_GPIO_PORT->CRH|=0x00000003将(CNF8[1:0]设置为00:通用推挽输出模式 ,MODE8[1;0]设置为11:最大50MHZ) #define DS18B20_IO_IN() {DS18B20_GPIO_PORT->CRH&=0xFFFF0FFF;DS18B20_GPIO_PORT->CRH|=0x00008000;} #define DS18B20_IO_OUT() {DS18B20_GPIO_PORT->CRH&=0xFFFF0FFF;DS18B20_GPIO_PORT->CRH|=0x00003000;} #define DS18B20_OUT_0 GPIO_ResetBits(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN)//IO为低电平 #define DS18B20_OUT_1 GPIO_SetBits(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN)//IO为高电平 #define READ_DS18B20_IO GPIO_ReadInputDataBit(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN)//读取IO电平 void DS18B20_GPIO_Init(void); u8 DS18B20_Init(void); //初始化DS18B20 float ReadTemperature(void); //获取温度值 #endif 修改代码中使用OLED的部分,改为使用LCD1602实现

现在单片机找不到体温传感器,我预测是通信发生了问题,请你根据我的代码,分析我遇到的问题并且提出解决方案,代码如下#include "AS6221.h" #include "main.h" extern I2C_HandleTypeDef hi2c1; /*************************************************************************************************************** AS6221 Read Command ****************************************************************************************************************/ void AS6221_ReadCommand(uint8_t reg_addr, uint8_t *rev_data, uint8_t length) { HAL_I2C_Mem_Read(&hi2c1, AS6221_I2CADDR << 0x01, reg_addr, 1, rev_data, length, 100); } /*************************************************************************************************************** AS6221 Write Command ****************************************************************************************************************/ void AS6221_WriteCommand(uint8_t reg_addr, uint8_t *send_data, uint16_t len) { HAL_I2C_Mem_Write(&hi2c1, AS6221_I2CADDR << 0x01, reg_addr, 1, send_data, len, 100); } /*************************************************************************************************************** Get Temperature ****************************************************************************************************************/ float AS6221_GetTemperature(void) { uint8_t char_temp[2]; int16_t int_temp = 0; float float_temp = 0.0; AS6221_ReadCommand(0x00, char_temp, 2); int_temp = char_temp[0] << 8 | char_temp[1]; if (int_temp < 0) float_temp = (float)int_temp * 0.0078125; if (int_temp >= 0) float_temp = (float)((int_temp - 1) * 0.0078125) * -1; return float_temp; } /*************************************************************************************************************** Get Low temperature threshold value ****************************************************************************************************************/ float AS6221_GetTLOW(void) { uint8_t char_temp[2]; int16_t int_temp = 0; float float_temp = 0.0; AS6221_ReadCommand(0x02, char_temp, 2); int_temp = char_temp[0] << 8 | char_temp[1]; if (int_temp < 32767) float_temp = (float)int_temp * 0.0078125; if (int_temp >= 32767) float_temp = (float)((int_temp - 1) * 0.0078125) * -1; return float_temp; } /*************************************************************************************************************** Set Low temperature threshold value ****************************************************************************************************************/ void AS6221_SetTLOW(int16_t TLow) { uint8_t char_temp[2] = {0}; char_temp[0] = ((int16_t)(TLow / 0.0078125) >> 8); char_temp[1] = (int16_t)(TLow / 0.0078125) & 0xff; AS6221_WriteCommand(0x02, char_temp, 2); } /*************************************************************************************************************** Get High temperature threshold value ****************************************************************************************************************/ float AS6221_GetTHIGH(void) { uint8_t char_temp[2]; int16_t int_temp = 0; float float_temp = 0.0; AS6221_ReadCommand(0x03, char_temp, 2); int_temp = char_temp[0] << 8 | char_temp[1]; if (int_temp < 32767) float_temp = (float)int_temp * 0.0078125; if (int_temp >= 32767) float_temp = (float)((int_temp - 1) * 0.0078125) * -1; return float_temp; } /*************************************************************************************************************** Set High temperature threshold value ****************************************************************************************************************/ void AS6221_SetTHIGH(int16_t THigh) { uint8_t char_temp[2] = {0}; char_temp[0] = ((int16_t)(THigh / 0.0078125) >> 8); char_temp[1] = (uint16_t)(THigh / 0.0078125) & 0xff; AS6221_WriteCommand(0x03, char_temp, 2); } /*************************************************************************************************************** Get AS6221 Config ****************************************************************************************************************/ uint16_t AS6221_GetConfig(void) { uint8_t char_config[2]; AS6221_ReadCommand(0x01, char_config, 2); return (uint16_t)char_config[0] << 8 | char_config[1]; } /*************************************************************************************************************** Set AS6221 Config ****************************************************************************************************************/ void AS6221_SetConfig(uint16_t config) { uint8_t char_config[2]; char_config[0] = config >> 8; char_config[1] = config & 0xff; AS6221_WriteCommand(0x01, char_config, 2); } /*************************************************************************************************************** AS6221 Init ****************************************************************************************************************/ bool AS6221_Init(void) { if (HAL_OK == HAL_I2C_IsDeviceReady(&hi2c1, AS6221_I2CADDR << 1, 3u, 10u)) return true; else return false; } #ifndef _AS6221_H_ #define _AS6221_H_ #include <stdint.h> #include <stdbool.h> #define AS6221_I2CADDR (0x48) bool AS6221_Init(void); float AS6221_GetTemperature(void); float AS6221_GetTLOW(void); void AS6221_SetTLOW(int16_t TLow); float AS6221_GetTHIGH(void); void AS6221_SetTHIGH(int16_t THigh); uint16_t AS6221_GetConfig(void); void AS6221_SetConfig(uint16_t config); #endif /* _AS6221_H_ */ #include "sys.h" #include "delay.h" #include "led.h" #include "uart1.h" #include "oled.h" #include "dht11.h" #include "adc.h" #include "beep.h" #include "AS6221.h" #include "stm32f1xx_hal.h" //extern const unsigned char shuai_data[]; void SystemClock_Config(void); I2C_HandleTypeDef hi2c1; int main(void) { float smoke_value = 0; float limit_value = 1.7; uint8_t dht11_data[5] = {0}; char temp_str[20] = {0}; char humi_str[20] = {0}; char smoke_str[16] = {0}; char as6221_temp_str[20] = {0}; // AS6221温度字符串 float as6221_temp = 0.0f; // AS6221温度值 HAL_Init(); /* ԵʼۯHALࠢ */ stm32_clock_init(RCC_PLL_MUL9); /* ʨ׃ʱד, 72Mhz */ led_init(); /* ԵʼۯLEDֆ */ uart1_init(115200); oled_init(); adc_dma_init(); beep_init(); if (!AS6221_Init()) { printf("AS6221!\r\n"); oled_show_string(0, 6, "AS6221 Init Fail", 12); HAL_Delay(2000); } else { printf("AS6221!\r\n"); } printf("hello world!\r\n"); //oled_fill(0x00); //oled_write_cmd(0xB0); //oled_write_cmd(0x00); // oled_write_cmd(0x10); //oled_write_data(0x80); // oled_write_data(0x80); // oled_write_data(0x80); // oled_write_data(0x80); // oled_write_data(0x80); // oled_write_data(0x80); // oled_write_data(0x80); // oled_write_data(0x80); // oled_write_data(0x80); // oled_set_cursor(0, 0); // oled_write_data(0x00); // oled_write_data(0x00); // oled_write_data(0xC0); // oled_write_data(0x38); // oled_write_data(0xE0); // oled_write_data(0x00); // oled_write_data(0x00); // oled_write_data(0x00); // // oled_set_cursor(0, 1); // oled_write_data(0x20); // oled_write_data(0x3C); // oled_write_data(0x23); // oled_write_data(0x02); // oled_write_data(0x02); // oled_write_data(0x27); // oled_write_data(0x38); // oled_write_data(0x20); // oled_show_char(0, 0, 'L', 24); // oled_show_char(12, 0, 'X', 24); // oled_show_char(16, 0, '?', 16); // oled_show_char(24, 0, '6', 16); //oled_show_string(0, 0, "humi", 16); //oled_show_string(0,2,"temp",16); oled_show_string(0, 1, "Temp:--.-",12); oled_show_string(60, 1, "Humi:--.-",12); oled_show_string(0, 4, "rTemp: --.- C",12); oled_show_string(0, 6, "Smoke: 0.0 V",12); // uint8_t i; // for(i = 0; i < 5; i++) // oled_show_chinese(i*24, 0, i, 24); // oled_show_image(0, 0, 128, 8, (unsigned char *)shuai_data); while(1) { smoke_value = adc_get_smoke(); sprintf(smoke_str, "Smoke: %.2f V", smoke_value); oled_show_string(0, 6, smoke_str, 12); if(smoke_value > limit_value) { beep_on(); } else { beep_off(); } dht11_read(dht11_data); /* 解析温度和湿度数据 */ uint8_t humidity = dht11_data[0]; /* 湿度整数部分 */ uint8_t temperature = dht11_data[2]; /* 温度整数部分 */ /* 格式化显示字符串 */ sprintf(temp_str, "Temp:%d C", temperature); sprintf(humi_str, "Humi:%d %%", humidity); /* 在OLED上显示 */ oled_show_string(0, 1, temp_str, 12); /* 显示温度 */ oled_show_string(60, 1, humi_str, 12); /* 显示湿度 */ as6221_temp = AS6221_GetTemperature(); sprintf(as6221_temp_str, "rTemp: %.1f C", as6221_temp); oled_show_string(0, 4, as6221_temp_str, 12); HAL_Delay(2000); /* 延时2秒,DHT11采样周期至少1秒 */ } // 读取DHT11数据 //dht11_read(dht11_result); // 格式化温湿度数据为字符串 //sprintf(temp_str, "Temp: %.1f C", ((float)((dht11_result[2] & 0x7F) << 8 | dht11_result[3])) / 10); //sprintf(humi_str, "Humi: %.1f %%", ((float)(dht11_result[0] << 8 | dht11_result[1])) / 10); // 显示温湿度数据 // oled_show_string(0, 2, temp_str, 16); // oled_show_string(0, 4, humi_str, 16); // 显示更新时间提示 // oled_show_string(0, 6, "Update: 2s interval", 12); // HAL_Delay(2000); // 2秒更新一次 }

最新推荐

recommend-type

软件论文设计方案(1).docx

软件论文设计方案(1).docx
recommend-type

信息化环境下蓝墨云软件在数学教学中的运用.docx

信息化环境下蓝墨云软件在数学教学中的运用.docx
recommend-type

飞思OA数据库文件下载指南

根据给定的文件信息,我们可以推断出以下知识点: 首先,从标题“飞思OA源代码[数据库文件]”可以看出,这里涉及的是一个名为“飞思OA”的办公自动化(Office Automation,简称OA)系统的源代码,并且特别提到了数据库文件。OA系统是用于企事业单位内部办公流程自动化的软件系统,它旨在提高工作效率、减少不必要的工作重复,以及增强信息交流与共享。 对于“飞思OA源代码”,这部分信息指出我们正在讨论的是OA系统的源代码部分,这通常意味着软件开发者或维护者拥有访问和修改软件底层代码的权限。源代码对于开发人员来说非常重要,因为它是软件功能实现的直接体现,而数据库文件则是其中的一个关键组成部分,用来存储和管理用户数据、业务数据等信息。 从描述“飞思OA源代码[数据库文件],以上代码没有数据库文件,请从这里下”可以分析出以下信息:虽然文件列表中提到了“DB”,但实际在当前上下文中,并没有提供包含完整数据库文件的下载链接或直接说明,这意味着如果用户需要获取完整的飞思OA系统的数据库文件,可能需要通过其他途径或者联系提供者获取。 文件的标签为“飞思OA源代码[数据库文件]”,这与标题保持一致,表明这是一个与飞思OA系统源代码相关的标签,而附加的“[数据库文件]”特别强调了数据库内容的重要性。在软件开发中,标签常用于帮助分类和检索信息,所以这个标签在这里是为了解释文件内容的属性和类型。 文件名称列表中的“DB”很可能指向的是数据库文件。在一般情况下,数据库文件的扩展名可能包括“.db”、“.sql”、“.mdb”、“.dbf”等,具体要看数据库的类型和使用的数据库管理系统(如MySQL、SQLite、Access等)。如果“DB”是指数据库文件,那么它很可能是以某种形式的压缩文件或包存在,这从“压缩包子文件的文件名称列表”可以推测。 针对这些知识点,以下是一些详细的解释和补充: 1. 办公自动化(OA)系统的构成: - OA系统由多个模块组成,比如工作流管理、文档管理、会议管理、邮件系统、报表系统等。 - 系统内部的流程自动化能够实现任务的自动分配、状态跟踪、结果反馈等。 - 通常,OA系统会提供用户界面来与用户交互,如网页形式的管理界面。 2. 数据库文件的作用: - 数据库文件用于存储数据,是实现业务逻辑和数据管理的基础设施。 - 数据库通常具有数据的CRUD(创建、读取、更新、删除)功能,是信息检索和管理的核心组件。 - 数据库文件的结构和设计直接关系到系统的性能和可扩展性。 3. 数据库文件类型: - 根据数据库管理系统不同,数据库文件可以有不同格式。 - 例如,MySQL数据库的文件通常是“.frm”文件存储表结构,“.MYD”存储数据,“.MYI”存储索引。 - 对于SQLite,数据库就是一个单独的“.sqlite”文件。 4. 数据库设计和管理: - 数据库设计需要遵循一定的规范和最佳实践,如范式化以减少数据冗余。 - 管理数据库包括数据备份、恢复、性能调优、安全性管理等。 5. OA系统开发及源代码维护: - 开发一个OA系统涉及需求分析、系统设计、编码实现、测试、部署和维护等多个阶段。 - OA系统源代码的维护工作包括代码审查、重构、版本控制和更新等。 综上所述,我们可以知道“飞思OA源代码[数据库文件]”所提供的信息包括了对飞思OA系统及其数据库文件的基础介绍和可能的获取途径。对于开发者而言,需要了解如何管理和操作这些数据库文件以确保系统的正常运行和数据的完整性。此外,对于那些希望进行系统定制或二次开发的用户,源代码的可访问性是非常重要的,这可以允许用户根据自己的需求来修改和增强系统功能。
recommend-type

Qt信号与槽优化:提升系统性能与响应速度的实战技巧

# 摘要 本文系统地探讨了Qt框架中信号与槽机制的原理、高级特性、性能优化以及在大型项目中的应用。首先,概述了信号与槽的基本概念和工作原理,包括信号的发射、槽函数的绑定与调用过程。随后,本文深入分析了信号与槽的内部机制,如数据类型兼容性和连接类型,并探讨了优化信
recommend-type

D8流向算法

<think>我们被要求解释或实现D8流向算法。D8流向算法是一种用于水文分析的数字高程模型(DEM)处理方法,用于确定地表水流的方向。每个像元的水流方向被指定为指向周围8个相邻像元中坡度最陡的那个方向。 ### 算法原理 在D8算法中,每个像元的水流方向被定义为指向其8个相邻像元(包括对角线方向)中坡度最大的方向。坡度由高程差除以距离计算,其中相邻像元的距离为1(水平和垂直方向)或√2(对角线方向)。具体步骤如下: 1. 对于中心像元,计算其与8个相邻像元的高程差(中心像元高程减去相邻像元高程,得到正值表示下坡)。 2. 计算每个相邻方向的坡度:坡度 = 高程差 / 距离(水平/垂直方向
recommend-type

精选36个精美ICO图标免费打包下载

在当今的软件开发和应用程序设计中,图标作为图形用户界面(GUI)的一个重要组成部分,承担着向用户传达信息、增加美观性和提高用户体验的重要角色。图标不仅仅是一个应用程序或文件的象征,它还是品牌形象在数字世界中的延伸。因此,开发人员和设计师往往会对默认生成的图标感到不满意,从而寻找更加精美和个性化的图标资源。 【标题】中提到的“精美ICO图标打包下载”,指向用户提供的是一组精选的图标文件,这些文件格式为ICO。ICO文件是一种图标文件格式,主要被用于Windows操作系统中的各种文件和应用程序的图标。由于Windows系统的普及,ICO格式的图标在软件开发中有着广泛的应用。 【描述】中提到的“VB、VC编写应用的自带图标很难看,换这些试试”,提示我们这个ICO图标包是专门为使用Visual Basic(VB)和Visual C++(VC)编写的应用程序准备的。VB和VC是Microsoft公司推出的两款编程语言,其中VB是一种主要面向初学者的面向对象编程语言,而VC则是更加专业化的C++开发环境。在这些开发环境中,用户可以选择自定义应用程序的图标,以提升应用的视觉效果和用户体验。 【标签】中的“.ico 图标”直接告诉我们,这些打包的图标是ICO格式的。在设计ICO图标时,需要注意其独特的尺寸要求,因为ICO格式支持多种尺寸的图标,例如16x16、32x32、48x48、64x64、128x128等像素尺寸,甚至可以包含高DPI版本以适应不同显示需求。此外,ICO文件通常包含多种颜色深度的图标,以便在不同的背景下提供最佳的显示效果。 【压缩包子文件的文件名称列表】显示了这些精美ICO图标的数量,即“精美ICO图标36个打包”。这意味着该压缩包内包含36个不同的ICO图标资源。对于软件开发者和设计师来说,这意味着他们可以从这36个图标中挑选适合其应用程序或项目的图标,以替代默认的、可能看起来不太吸引人的图标。 在实际应用中,将这些图标应用到VB或VC编写的程序中,通常需要编辑程序的资源文件或使用相应的开发环境提供的工具进行图标更换。例如,在VB中,可以通过资源编辑器选择并替换程序的图标;而在VC中,则可能需要通过设置项目属性来更改图标。由于Windows系统支持在编译应用程序时将图标嵌入到可执行文件(EXE)中,因此一旦图标更换完成并重新编译程序,新图标就会在程序运行时显示出来。 此外,当谈及图标资源时,还应当了解图标制作的基本原则和技巧,例如:图标设计应简洁明了,以传达清晰的信息;色彩运用需考虑色彩搭配的美观性和辨识度;图标风格要与应用程序的整体设计风格保持一致,等等。这些原则和技巧在选择和设计图标时都非常重要。 总结来说,【标题】、【描述】、【标签】和【压缩包子文件的文件名称列表】共同勾勒出了一个为VB和VC编程语言用户准备的ICO图标资源包。开发者通过下载和使用这些图标,能够有效地提升应用程序的外观和用户体验。在这一过程中,了解和应用图标设计与应用的基本知识至关重要。
recommend-type

【Qt数据库融合指南】:MySQL与Qt无缝集成的技巧

# 摘要 本文全面探讨了Qt数据库集成的基础知识与进阶应用,从Qt与MySQL的基础操作讲起,深入到Qt数据库编程接口的配置与使用,并详细介绍了数据模型和视图的实现。随着章节的深入,内容逐渐从基础的数据操作界面构建过渡到高级数据库操作实践,涵盖了性能优化、安全性策略和事务管理。本文还特别针对移动设备上的数据库集成进行了讨
recommend-type

Looking in links: https://shi-labs.com/natten/wheels/ WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='shi-labs.com', port=443): Read timed out. (read timeout=15)")': /natten/wheels/ WARNING: Retrying (Retry(total=3, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='shi-labs.com', port=443): Read timed out. (read timeout=15)")': /natten/wheels/ WARNING: Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='shi-labs.com', port=443): Read timed out. (read timeout=15)")': /natten/wheels/ WARNING: Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='shi-labs.com', port=443): Read timed out. (read timeout=15)")': /natten/wheels/ WARNING: Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='shi-labs.com', port=443): Read timed out. (read timeout=15)")': /natten/wheels/ ERROR: Ignored the following yanked versions: 0.14.1 ERROR: Could not find a version that satisfies the requirement natten==0.17.4+torch250cu121 (from versions: 0.14.2.post4, 0.14.4, 0.14.5, 0.14.6, 0.15.0, 0.15.1, 0.17.0, 0.17.1, 0.17.3, 0.17.4, 0.17.5, 0.20.0, 0.20.1) ERROR: No matching distribution found for natten==0.17.4+torch250cu121

<think>我们正在解决用户安装特定版本的natten包(0.17.4+torch250cu121)时遇到的ReadTimeoutError和版本未找到错误。 根据经验,这两个错误通常与网络问题和版本匹配问题有关。 步骤1: 分析问题 - ReadTimeoutError: 通常是由于网络连接不稳定或PyPI服务器响应慢导致下载超时。 - Version not found: 可能的原因包括: a) 指定的版本号在PyPI上不存在。 b) 指定的版本号与当前环境的Python版本或CUDA版本不兼容。 步骤2: 验证版本是否存在 我们可以通过访问PyP
recommend-type

精选教程分享:数据库系统基础学习资料

《世界著名计算机教材精选 数据库系统基础教程》这一标题揭示了该教材主要讨论的是数据库系统的基础知识。教材作为教学的重要工具,其内容往往涵盖某一领域的基本概念、原理、设计方法以及实现技术等。而该书被冠以“世界著名计算机教材精选”的标签,表明其可能源自世界范围内公认的、具有权威性的数据库系统教材,经过筛选汇编而成。 首先,从数据库系统的基础知识讲起,数据库系统的概念是在20世纪60年代随着计算机技术的发展而诞生的。数据库系统是一个集成化的数据集合,这些数据是由用户共享,且被组织成特定的数据模型以便进行高效的数据检索和管理。在数据库系统中,核心的概念包括数据模型、数据库设计、数据库查询语言、事务管理、并发控制和数据库系统的安全性等。 1. 数据模型:这是描述数据、数据关系、数据语义以及数据约束的概念工具,主要分为层次模型、网状模型、关系模型和面向对象模型等。其中,关系模型因其实现简单、易于理解和使用,已成为当前主流的数据模型。 2. 数据库设计:这是构建高效且能够满足用户需求的数据库系统的关键步骤,它包含需求分析、概念设计、逻辑设计和物理设计等阶段。设计过程中需考虑数据的完整性、一致性、冗余控制等问题,常用的工具有ER模型(实体-关系模型)和UML(统一建模语言)。 3. 数据库查询语言:SQL(Structured Query Language)作为标准的关系型数据库查询语言,在数据库系统中扮演着至关重要的角色。它允许用户对数据库进行查询、更新、插入和删除操作。SQL语言的熟练掌握是数据库系统学习者必须具备的能力。 4. 事务管理:在数据库系统中,事务是一系列的操作序列,必须作为一个整体执行,要么全部完成,要么全部不执行。事务管理涉及到数据库的可靠性、并发控制和恢复等关键功能,保证了数据的原子性、一致性、隔离性和持久性(ACID属性)。 5. 并发控制:由于多个用户可能同时对数据库进行操作,因此必须采取一定的并发控制机制以防止数据的不一致性,常用的技术包括封锁、时间戳、乐观控制等。 6. 数据库系统的安全性:安全性是保护数据库免受未授权访问和恶意攻击的措施,它包括身份验证、授权和审计等。 “数据库”这一标签说明了该教材专注于数据库领域,这个领域不仅限于理论知识,还包括了数据库的实际应用和解决方案的实现。教材内容可能涵盖数据库管理系统的使用和配置、数据库应用开发、数据库的维护和优化等。 教材的中文版形式表明它是为了方便中文读者而翻译或编写的,这使得中文世界的读者能够更加方便地学习和研究数据库系统的基础知识。同时,分享这一教材的行为,体现了知识传播的重要性以及人们对于知识共享的积极态度。 从给出的压缩包子文件的文件名称列表来看,“_世界著名计算机教材精选 数据库系统基础教程”显示了该压缩包中包含的文件内容。对于学习者来说,能够通过这样的压缩包文件获取到权威的数据库系统学习材料,无疑是一种宝贵的学习资源。
recommend-type

Qt架构揭秘:模块化设计与系统扩展性的最佳实践

# 摘要 本文全面探讨了Qt框架的应用开发,涵盖了其架构基础、模块化设计理论与实践、系统扩展性理论与实践、以及高级应用开发技巧。通过对Qt模块化设计和系统扩展机制的深入解析,本文展示了如何构建模块化和高扩展性的Qt应用,并通过案例分析的方式,呈现了这些理论在实际项目中的应用。此外,还讨论了Qt在跨平台开发中的应用、性能优化和高级GUI设计。最后,文章展望了Qt架构优化的未来趋势和新技术的融入,为Qt框架的开发者提供了理论支持和实践经验。 # 关键字