活动介绍

trans = transforms.Compose([ transforms.ToTensor(), ])

时间: 2024-04-05 12:29:39 浏览: 134
这是一个 PyTorch 中的数据预处理操作,它将输入的数据转换为张量形式。具体来说,它使用 `ToTensor()` 将图片转换为张量,并将像素值从 [0, 255] 归一化到 [0, 1] 之间。`Compose()` 则用于将多个数据预处理操作组合在一起。在这里,只有一项操作,即将图片转换为张量。
相关问题

trans_compose_2 = transforms.Compose([trans_random,trans_Totensor])

### 使用 PyTorch 的 `transforms.Compose` 构建图像变换管道 为了构建包含自定义转换 `trans_random` 和标准转换 `ToTensor` 的图像变换管道,可以按照以下方法进行: #### 创建自定义转换类 如果希望创建名为 `TransRandom` 的随机变换,则需继承 `torchvision.transforms` 中的基类并重写其 `_call_()` 方法。 ```python import random from torchvision import transforms class TransRandom(object): """Custom transformation class to apply a random operation.""" def __init__(self, probability=0.5): """ Initialize the custom transform with given parameters. Args: probability (float): Probability of applying this transform. """ self.probability = probability def __call__(self, sample): if random.random() < self.probability: # Apply some kind of augmentation here; e.g., flipping horizontally return transforms.functional.hflip(sample) return sample ``` 此部分实现了自定义变换逻辑,在这里假设该变换以一定概率水平翻转输入图片[^1]。 #### 组合多个变换操作 通过 `transforms.Compose` 可以轻松组合多种不同的预处理步骤。下面展示了如何将上述自定义变换与内置的 `ToTensor` 结合起来形成完整的流水线。 ```python transform_pipeline = transforms.Compose([ TransRandom(probability=0.7), transforms.ToTensor(), ]) ``` 这段代码首先应用了具有特定发生几率的自定义随机变换,之后再调用 `ToTensor` 将 PIL 图像或 NumPy 数组转化为张量形式以便后续模型训练使用[^2]。 #### 应用于实际场景 当加载数据集时,只需指定这个预先配置好的转换器作为参数传递给相应的 Dataset 类即可自动完成所有设定的操作序列。 ```python from torchvision.datasets import CIFAR10 dataset = CIFAR10(root='./data', train=True, download=True, transform=transform_pipeline) print(f'Dataset size: {len(dataset)}') image, label = dataset[0] print('First image tensor shape:', image.shape) ``` 以上过程说明了怎样利用 Python 编程语言以及 PyTorch 深度学习框架来设计灵活高效的图像前处理方案[^3]。

trans = transforms.Compose(trans)

这是一个 Python 代码,用于将多个图像变换组合在一起。transforms.Compose() 函数将多个变换函数作为参数传入,然后将它们组合成一个新的变换函数。在这个例子中,trans 是一个变换函数列表,通过 Compose() 函数组合在一起。
阅读全文

相关推荐

class DataGenerator(Dataset): def __init__(self, data, phase="train", test_scale="resize"): self.phase = phase self.crop_size = CONFIG.data.crop_size self.alpha = data.alpha if self.phase == "train": self.fg = data.fg self.bg = data.bg self.merged = [] self.trimap = [] else: self.fg = [] self.bg = [] self.merged = data.merged self.trimap = data.trimap if CONFIG.data.augmentation: train_trans = [ RandomAffine(degrees=30, scale=[0.8, 1.25], shear=10, flip=0.5), GenTrimap(), RandomCrop((self.crop_size, self.crop_size)), RandomJitter(), Composite(), ToTensor(phase="train") ] else: train_trans = [ GenTrimap(), RandomCrop((self.crop_size, self.crop_size)), Composite(), ToTensor(phase="train") ] if test_scale.lower() == "origin": test_trans = [ OriginScale(), ToTensor() ] elif test_scale.lower() == "resize": test_trans = [ Rescale((self.crop_size, self.crop_size)), ToTensor() ] elif test_scale.lower() == "crop": test_trans = [ RandomCrop((self.crop_size, self.crop_size)), ToTensor() ] else: raise NotImplementedError("test_scale {} not implemented".format(test_scale)) self.transform = { 'train': transforms.Compose(train_trans), 'val': transforms.Compose([ OriginScale(), ToTensor() ]), 'test': transforms.Compose(test_trans) }[phase] self.fg_num = len(self.fg) self.erosion_kernels = [None] + [cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size)) for size in range(1,20)] def __getitem__(self, idx): if self.phase == "train": fg = cv2.imread(self.fg[idx % self.fg_num]) alpha = cv2.imread(self.alpha[idx % self.fg_num], 0).astype(np.float32)/255 bg = cv2.imread(self.bg[idx], 1) if CONFIG.data.augmentation: fg, alpha = self._composite_fg(fg, alpha, idx) image_name = os.path.split(self.fg[idx % self.fg_num])[-1] sample = {'fg': fg, 'alpha': alpha, 'bg': bg, 'image_name': image_name} else: image = cv2.imread(self.merged[idx]) alpha = cv2.imread(self.alpha[idx], 0)/255. trimap = cv2.imread(self.trimap[idx], 0) image_name = os.path.split(self.merged[idx])[-1] sample = {'image': im

import matplotlib matplotlib.use('Agg') import argparse, time, logging import os import numpy as np import mxnet as mx from mxnet import gluon, nd from mxnet import autograd as ag from mxnet.gluon.data.vision import transforms import sys sys.path.append('/home/ubuntu/PycharmProjects/pythonProject/fscil-master/') import model from model.cifar_quick import quick_cnn from model.cifar_resnet_v1 import cifar_resnet20_v1 from gluoncv.utils import makedirs from gluoncv.data import transforms as gcv_transforms from dataloader.dataloader import NC_CIFAR100, merge_datasets from tools.utils import LinearWarmUp from tools.utils import DataLoader from tools.utils import parse_args from tools.plot import plot_pr, plot_all_sess from tools.loss import DistillationSoftmaxCrossEntropyLoss,NG_Min_Loss,NG_Max_Loss from tools.ng_anchor import prepare_anchor import json from tools.utils import select_best, select_best2, select_best3 opt = parse_args() batch_size = opt.batch_size num_gpus = len(opt.gpus.split(',')) batch_size *= max(1, num_gpus) context = [mx.gpu(int(i)) for i in opt.gpus.split(',')] num_workers = opt.num_workers model_name = opt.model # ========================================================================== if model_name=='quick_cnn': classes = 60 if opt.fix_conv: fix_layers = 3 fix_fc =False else: fix_layers = 0 fix_fc = False net = quick_cnn(classes, fix_layers, fix_fc=fix_fc, fw=opt.fw) feature_size = 64 elif model_name=='resnet18': classes = 60 feature_size = 64 net = cifar_resnet20_v1(classes=classes, wo_bn=opt.wo_bn, fw=opt.fw) else: raise KeyError('network key error') if opt.resume_from: net.load_parameters(opt.resume_from, ctx = context) DATASET = eval(opt.dataset) # ========================================================================== optimizer = 'nag' save_period = opt.save_period plot_path = opt.save_plot_dir save_dir = time.strftime('./experimental_result/{}/{}/%Y-%m-%d-%H-%M-%S'.format(opt.dataset, model_name), time.localtime()) save_dir = save_dir + opt.save_name makedirs(save_dir) logger = logging.getLogger() logger.setLevel(logging.INFO) log_save_dir = os.path.join(save_dir, 'log.txt') fh = logging.FileHandler(log_save_dir) fh.setLevel(logging.INFO) logger.addHandler(fh) logger.info(opt) def test(ctx, val_data, net, sess): metric = mx.metric.Accuracy() for i, batch in enumerate(val_data): data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0) label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0) outputs = [net(X, sess)[1] for X in data] metric.update(label, outputs) return metric.get() def train(net, ctx): if isinstance(ctx, mx.Context): ctx = [ctx] if not opt.resume_from: net.initialize(mx.init.Xavier(), ctx=ctx) if opt.dataset == 'NC_CIFAR100': n = mx.nd.zeros(shape=(1,3,32,32),ctx=ctx[0]) #####init CNN else: raise KeyError('dataset keyerror') for m in range(9): net(n,m) def makeSchedule(start_lr,base_lr,length,step,factor): schedule = mx.lr_scheduler.MultiFactorScheduler(step=step, factor=factor) schedule.base_lr = base_lr schedule = LinearWarmUp(schedule, start_lr=start_lr, length=length) return schedule # ========================================================================== sesses = list(np.arange(opt.sess_num)) epochs = [opt.epoch]*opt.sess_num lrs = [opt.base_lrs]+[opt.lrs]*(opt.sess_num-1) lr_decay = opt.lr_decay base_decay_epoch = [int(i) for i in opt.base_decay_epoch.split(',')] + [np.inf] lr_decay_epoch = [base_decay_epoch]+[[opt.inc_decay_epoch, np.inf]]*(opt.sess_num-1) AL_weight = opt.AL_weight min_weight = opt.min_weight oce_weight = opt.oce_weight pdl_weight = opt.pdl_weight max_weight = opt.max_weight temperature = opt.temperature use_AL = opt.use_AL # anchor loss use_ng_min = opt.use_ng_min # Neural Gas min loss use_ng_max = opt.use_ng_max # Neural Gas min loss ng_update = opt.ng_update # Neural Gas update node use_oce = opt.use_oce # old samples cross entropy loss use_pdl = opt.use_pdl # probability distillation loss use_nme = opt.use_nme # Similarity loss use_warmUp = opt.use_warmUp use_ng = opt.use_ng # Neural Gas fix_conv = opt.fix_conv # fix cnn to train novel classes fix_epoch = opt.fix_epoch c_way = opt.c_way k_shot = opt.k_shot base_acc = opt.base_acc # base model acc select_best_method = opt.select_best # select from _best, _best2, _best3 init_class = 60 anchor_num = 400 # ========================================================================== acc_dict = {} all_best_e = [] if model_name[-7:] != 'maxhead': net.fc3.initialize(mx.init.Normal(sigma=0.001), ctx=ctx, force_reinit=True) net.fc4.initialize(mx.init.Normal(sigma=0.001), ctx=ctx, force_reinit=True) net.fc5.initialize(mx.init.Normal(sigma=0.001), ctx=ctx, force_reinit=True) net.fc6.initialize(mx.init.Normal(sigma=0.001), ctx=ctx, force_reinit=True) net.fc7.initialize(mx.init.Normal(sigma=0.001), ctx=ctx, force_reinit=True) net.fc8.initialize(mx.init.Normal(sigma=0.001), ctx=ctx, force_reinit=True) net.fc9.initialize(mx.init.Normal(sigma=0.001), ctx=ctx, force_reinit=True) net.fc10.initialize(mx.init.Normal(sigma=0.001), ctx=ctx, force_reinit=True) for sess in sesses: logger.info('session : %d'%sess) schedule = makeSchedule(start_lr=0, base_lr=lrs[sess], length=5, step=lr_decay_epoch[sess], factor=lr_decay) # prepare the first anchor batch if sess==0 and opt.resume_from: acc_dict[str(sess)] = list() acc_dict[str(sess)].append([base_acc,0]) all_best_e.append(0) continue # quick cnn totally unfix, not use data augmentation if sess == 1 and model_name == 'quick_cnn'and use_AL: transform_train = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]) ]) anchor_trans = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]) ]) else: transform_train = transforms.Compose([ gcv_transforms.RandomCrop(32, pad=4), transforms.RandomFlipLeftRight(), transforms.ToTensor(), transforms.Normalize([0.5071, 0.4866, 0.4409], [0.2009, 0.1984, 0.2023]) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.5071, 0.4866, 0.4409], [0.2009, 0.1984, 0.2023]) ]) anchor_trans = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.5071, 0.4866, 0.4409], [0.2009, 0.1984, 0.2023]) ]) # ng_init and ng_update if use_AL or use_nme or use_pdl or use_oce: if sess != 0: if ng_update == True: if sess==1: update_anchor1, bmu, variances= \ prepare_anchor(DATASET,logger,anchor_trans,num_workers,feature_size,net,ctx,use_ng,init_class) update_anchor_data = DataLoader(update_anchor1, anchor_trans, update_anchor1.__len__(), num_workers, shuffle=False) if opt.ng_var: idx_1 = np.where(variances.asnumpy() > 0.5) idx_2 = np.where(variances.asnumpy() < 0.5) variances[idx_1] = 0.9 variances[idx_2] = 1 else: base_class = init_class + (sess - 1) * 5 new_class = list(init_class + (sess - 1) * 5 + (np.arange(5))) new_set = DATASET(train=True, fine_label=True, fix_class=new_class, base_class=base_class, logger=logger) update_anchor2 = merge_datasets(update_anchor1, new_set) update_anchor_data = DataLoader(update_anchor2, anchor_trans, update_anchor2.__len__(), num_workers, shuffle=False) elif(sess==1): update_anchor, bmu, variances = \ prepare_anchor(DATASET,logger,anchor_trans,num_workers,feature_size,net,ctx,use_ng,init_class) update_anchor_data = DataLoader(update_anchor, anchor_trans, update_anchor.__len__(), num_workers, shuffle=False) if opt.ng_var: idx_1 = np.where(variances.asnumpy() > 0.5) idx_2 = np.where(variances.asnumpy() < 0.5) variances[idx_1] = 0.9 variances[idx_2] = 1 for batch in update_anchor_data: anc_data = gluon.utils.split_and_load(batch[0], ctx_list=[ctx[0]], batch_axis=0) anc_label = gluon.utils.split_and_load(batch[1], ctx_list=[ctx[0]], batch_axis=0) with ag.pause(): anchor_feat, anchor_logit = net(anc_data[0], sess-1) anchor_feat = [anchor_feat] anchor_logit = [anchor_logit] trainer = gluon.Trainer(net.collect_params(), optimizer, {'learning_rate': lrs[sess], 'wd': opt.wd, 'momentum': opt.momentum}) metric = mx.metric.Accuracy() train_metric = mx.metric.Accuracy() loss_fn = gluon.loss.SoftmaxCrossEntropyLoss() # ========================================================================== # all loss init if use_nme: def loss_fn_disG(f1, f2, weight): f1 = f1.reshape(anchor_num,-1) f2 = f2.reshape(anchor_num,-1) similar = mx.nd.sum(f1*f2, 1) return (1-similar)*weight digG_weight = opt.nme_weight if use_AL: if model_name == 'quick_cnn': AL_w = [120, 75, 120, 100, 50, 60, 90, 90] AL_weight = AL_w[sess-1] else: AL_weight=opt.AL_weight if opt.ng_var: def l2lossVar(feat, anc, weight, var): dim = feat.shape[1] feat = feat.reshape(-1, dim) anc = anc.reshape(-1, dim) loss = mx.nd.square(feat - anc) loss = loss * weight * var return mx.nd.mean(loss, axis=0, exclude=True) loss_fn_AL = l2lossVar else: loss_fn_AL = gluon.loss.L2Loss(weight=AL_weight) if use_pdl: loss_fn_pdl = DistillationSoftmaxCrossEntropyLoss(temperature=temperature, hard_weight=0, weight=pdl_weight) if use_oce: loss_fn_oce = gluon.loss.SoftmaxCrossEntropyLoss(weight=oce_weight) if use_ng_min: loss_fn_max = NG_Max_Loss(lmbd=max_weight, margin=0.5) if use_ng_min: min_loss = NG_Min_Loss(num_classes=opt.c_way, feature_size=feature_size, lmbd=min_weight, # center weight = 0.01 in the paper ctx=ctx[0]) min_loss.initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx, force_reinit=True) # init matrix. center_trainer = gluon.Trainer(min_loss.collect_params(), optimizer="sgd", optimizer_params={"learning_rate": opt.ng_min_lr}) # alpha=0.1 in the paper. # ========================================================================== lr_decay_count = 0 # dataloader if opt.cum and sess==1 : base_class = list(np.arange(init_class)) joint_data = DATASET(train=True, fine_label=True, c_way=init_class, k_shot=500, fix_class=base_class, logger=logger) if sess == 0 : base_class = list(np.arange(init_class)) new_class = list(init_class + (np.arange(5))) base_data = DATASET(train=True, fine_label=True, c_way=init_class, k_shot=500, fix_class=base_class, logger=logger) bc_val_data = DataLoader(DATASET(train=False, fine_label=True, fix_class=base_class, logger=logger) , transform_test, 100, num_workers, shuffle=False) nc_val_data = DataLoader( DATASET(train=False, fine_label=True, fix_class=new_class, base_class=len(base_class), logger=logger) , transform_test, 100, num_workers, shuffle=False) else: base_class = list(np.arange(init_class + (sess-1)*5)) new_class = list(init_class + (sess-1)*5 + (np.arange(5))) train_data_nc = DATASET(train=True, fine_label=True, c_way=c_way, k_shot=k_shot, fix_class=new_class, base_class=len(base_class), logger=logger) bc_val_data = DataLoader(DATASET(train=False, fine_label=True, fix_class=base_class, logger=logger) , transform_test, 100, num_workers, shuffle=False) nc_val_data = DataLoader( DATASET(train=False, fine_label=True, fix_class=new_class, base_class=len(base_class), logger=logger) , transform_test, 100, num_workers, shuffle=False) if sess == 0: train_data = DataLoader(base_data, transform_train, min(batch_size, base_data.__len__()), num_workers, shuffle=True) else: if opt.cum: # cumulative : merge base and novel dataset. joint_data = merge_datasets(joint_data, train_data_nc) train_data = DataLoader(joint_data, transform_train, min(batch_size, joint_data.__len__()), num_workers, shuffle=True) elif opt.use_all_novel: # use all novel data if sess==1: novel_data = train_data_nc else: novel_data = merge_datasets(novel_data, train_data_nc) train_data = DataLoader(novel_data, transform_train, min(batch_size, novel_data.__len__()), num_workers, shuffle=True) else: # basic method train_data = DataLoader(train_data_nc, transform_train, min(batch_size, train_data_nc.__len__()), num_workers, shuffle=True) for epoch in range(epochs[sess]): tic = time.time() train_metric.reset() metric.reset() train_loss, train_anchor_loss, train_oce_loss = 0, 0, 0 train_disg_loss, train_pdl_loss, train_min_loss= 0, 0, 0 train_max_loss=0 num_batch = len(train_data) if use_warmUp: lr = schedule(epoch) trainer.set_learning_rate(lr) else: lr = trainer.learning_rate if epoch == lr_decay_epoch[sess][lr_decay_count]: trainer.set_learning_rate(trainer.learning_rate*lr_decay) lr_decay_count += 1 if sess!=0 and epoch<fix_epoch: fix_cnn = fix_conv else: fix_cnn = False for i, batch in enumerate(train_data): data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0) label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0) all_loss = list() with ag.record(): output_feat, output = net(data[0],sess,fix_cnn) output_feat = [output_feat] output = [output] loss = [loss_fn(yhat, y) for yhat, y in zip(output, label)] all_loss.extend(loss) if use_nme: anchor_h = [net(X, sess, fix_cnn)[0] for X in anc_data] disg_loss = [loss_fn_disG(a_h, a, weight=digG_weight) for a_h, a in zip(anchor_h, anchor_feat)] all_loss.extend(disg_loss) if sess > 0 and use_ng_max: max_loss = [loss_fn_max(feat, label, feature_size, epoch, sess,init_class) for feat, label in zip(output_feat, label)] all_loss.extend(max_loss[0]) if sess > 0 and use_AL: # For anchor loss anchor_h = [net(X, sess, fix_cnn)[0] for X in anc_data] if opt.ng_var: anchor_loss = [loss_fn_AL(anchor_h[0], anchor_feat[0], AL_weight, variances)] all_loss.extend(anchor_loss) else: anchor_loss = [loss_fn_AL(a_h, a) for a_h, a in zip(anchor_h, anchor_feat)] all_loss.extend(anchor_loss) if sess > 0 and use_ng_min: loss_min = min_loss(output_feat[0], label[0]) all_loss.extend(loss_min) if sess > 0 and use_pdl: anchor_l = [net(X, sess, fix_cnn)[1] for X in anc_data] anchor_l = [anchor_l[0][:,:60+(sess-1)*5]] soft_label = [mx.nd.softmax(anchor_logit[0][:,:60+(sess-1)*5] / temperature)] pdl_loss = [loss_fn_pdl(a_h, a, soft_a) for a_h, a, soft_a in zip(anchor_l, anc_label, soft_label)] all_loss.extend(pdl_loss) if sess > 0 and use_oce: anchorp = [net(X, sess, fix_cnn)[1] for X in anc_data] oce_Loss = [loss_fn_oce(ap, a) for ap, a in zip(anchorp, anc_label)] all_loss.extend(oce_Loss) all_loss = [nd.mean(l) for l in all_loss] ag.backward(all_loss) trainer.step(1,ignore_stale_grad=True) if use_ng_min: center_trainer.step(opt.c_way*opt.k_shot) train_loss += sum([l.sum().asscalar() for l in loss]) if sess > 0 and use_AL: train_anchor_loss += sum([al.mean().asscalar() for al in anchor_loss]) if sess > 0 and use_oce: train_oce_loss += sum([al.mean().asscalar() for al in oce_Loss]) if sess > 0 and use_nme: train_disg_loss += sum([al.mean().asscalar() for al in disg_loss]) if sess > 0 and use_pdl: train_pdl_loss += sum([al.mean().asscalar() for al in pdl_loss]) if sess > 0 and use_ng_min: train_min_loss += sum([al.mean().asscalar() for al in loss_min]) if sess > 0 and use_ng_max: train_max_loss += sum([al.mean().asscalar() for al in max_loss[0]]) train_metric.update(label, output) train_loss /= batch_size * num_batch name, acc = train_metric.get() name, bc_val_acc = test(ctx, bc_val_data, net, sess) name, nc_val_acc = test(ctx, nc_val_data, net, sess) if epoch==0: acc_dict[str(sess)]=list() acc_dict[str(sess)].append([bc_val_acc,nc_val_acc]) if sess == 0: overall = bc_val_acc else: overall = (bc_val_acc*(init_class+(sess-1)*5)+nc_val_acc*5)/(init_class+sess*5) logger.info('[Epoch %d] lr=%.4f train=%.4f | val(base)=%.4f val(novel)=%.4f overall=%.4f | loss=%.8f anc loss=%.8f ' 'pdl loss:%.8f oce loss: %.8f time: %.8f' % (epoch, lr, acc, bc_val_acc, nc_val_acc, overall, train_loss, train_anchor_loss/AL_weight, train_pdl_loss/pdl_weight, train_oce_loss/oce_weight,time.time()-tic)) if use_nme: logger.info('digG loss:%.8f'%(train_disg_loss/digG_weight)) if use_ng_min: logger.info('min_loss:%.8f'%(train_min_loss/min_weight)) if use_ng_max: logger.info('max_loss:%.8f'% (train_max_loss /max_weight)) if save_period and save_dir and (epoch + 1) % save_period == 0: net.save_parameters('%s/sess-%s-%d.params'%(save_dir, model_name, epoch)) select = eval(select_best_method) best_e = select(acc_dict, sess) logger.info('best select : base: %f novel: %f '%(acc_dict[str(sess)][best_e][0],acc_dict[str(sess)][best_e][1])) if use_AL and model_name =='quick_cnn': reload_path = '%s/sess-%s-%d.params' % (save_dir, model_name, best_e) net.load_parameters(reload_path, ctx=context) all_best_e.append(best_e) reload_path = '%s/sess-%s-%d.params'%(save_dir, model_name, best_e) net.load_parameters(reload_path, ctx=context) with open('%s/acc_dict.json'%save_dir, 'w') as json_file: json.dump(acc_dict, json_file) plot_pr(acc_dict,sess,save_dir) plot_all_sess(acc_dict,save_dir,all_best_e) def main(): if opt.mode == 'hybrid': net.hybridize() train(net, context) if __name__ == '__main__': main() 解读上述代码,并标注每行代码都是要干什么的,本代码整体要干什么,原理是什么

PermissionError Traceback (most recent call last) Cell In[75], line 6 3 from d2l import torch as d2l 5 batch_size = 256 ----> 6 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) File E:\Anaconda\envs\d2l\lib\site-packages\d2l\torch.py:3018, in load_data_fashion_mnist(batch_size, resize) 3016 trans.insert(0, transforms.Resize(resize)) 3017 trans = transforms.Compose(trans) -> 3018 mnist_train = torchvision.datasets.FashionMNIST( 3019 root="../data", train=True, transform=trans, download=True) 3020 mnist_test = torchvision.datasets.FashionMNIST( 3021 root="../data", train=False, transform=trans, download=True) 3022 return (torch.utils.data.DataLoader(mnist_train, batch_size, shuffle=True, 3023 num_workers=get_dataloader_workers()), 3024 torch.utils.data.DataLoader(mnist_test, batch_size, shuffle=False, 3025 num_workers=get_dataloader_workers())) File E:\Anaconda\envs\d2l\lib\site-packages\torchvision\datasets\mnist.py:100, in MNIST.__init__(self, root, train, transform, target_transform, download) 97 return 99 if download: --> 100 self.download() 102 if not self._check_exists(): 103 raise RuntimeError("Dataset not found. You can use download=True to download it") File E:\Anaconda\envs\d2l\lib\site-packages\torchvision\datasets\mnist.py:180, in MNIST.download(self) 177 if self._check_exists(): 178 return --> 180 os.makedirs(self.raw_folder, exist_ok=True) 182 # download files 183 for filename, md5 in self.resources: File E:\Anaconda\envs\d2l\lib\os.py:215, in makedirs(name, mode, exist_ok) 213 if head and tail and not path.exists(head): 214 try: --> 215 makedirs(head, exist_ok=exist_ok) 216 except FileExistsError: 217 # Defeats race condition when another thread created the path 218 pass File E:\Anaconda\envs\d2l\lib\os.py:215, in makedirs(name, mode, exist_ok) 213 if head and tail and not path.exists(head): 214 try: --> 215 makedirs(head, exist_ok=exist_ok) 216 except FileExistsError: 217 # Defeats race condition when another thread created the path 218 pass File E:\Anaconda\envs\d2l\lib\os.py:225, in makedirs(name, mode, exist_ok) 223 return 224 try: --> 225 mkdir(name, mode) 226 except OSError: 227 # Cannot rely on checking for EEXIST, since the operating system 228 # could give priority to other errors like EACCES or EROFS 229 if not exist_ok or not path.isdir(name): PermissionError: [WinError 5] 拒绝访问。: '../data'什么意思

--------------------------------------------------------------------------- PermissionError Traceback (most recent call last) Cell In[70], line 1 ----> 1 train_iter, test_iter = load_data_fashion_mnist(32, resize=64) 2 for X, y in train_iter: 3 print(X.shape, X.dtype, y.shape, y.dtype) Cell In[69], line 7, in load_data_fashion_mnist(batch_size, resize) 5 trans.insert(0, transforms.Resize(resize)) 6 trans = transforms.Compose(trans) ----> 7 mnist_train = torchvision.datasets.FashionMNIST( 8 root="../data", train=True, transform=trans, download=True) 9 mnist_test = torchvision.datasets.FashionMNIST( 10 root="../data", train=False, transform=trans, download=True) 11 return (data.DataLoader(mnist_train, batch_size, shuffle=True, 12 num_workers=get_dataloader_workers()), 13 data.DataLoader(mnist_test, batch_size, shuffle=False, 14 num_workers=get_dataloader_workers())) File E:\Anaconda\envs\d2l\lib\site-packages\torchvision\datasets\mnist.py:100, in MNIST.__init__(self, root, train, transform, target_transform, download) 97 return 99 if download: --> 100 self.download() 102 if not self._check_exists(): 103 raise RuntimeError("Dataset not found. You can use download=True to download it") File E:\Anaconda\envs\d2l\lib\site-packages\torchvision\datasets\mnist.py:180, in MNIST.download(self) 177 if self._check_exists(): 178 return --> 180 os.makedirs(self.raw_folder, exist_ok=True) 182 # download files 183 for filename, md5 in self.resources: File E:\Anaconda\envs\d2l\lib\os.py:215, in makedirs(name, mode, exist_ok) 213 if head and tail and not path.exists(head): 214 try: --> 215 makedirs(head, exist_ok=exist_ok) 216 except FileExistsError: 217 # Defeats race condition when another thread created the path 218 pass File E:\Anaconda\envs\d2l\lib\os.py:215, in makedirs(name, mode, exist_ok) 213 if head and tail and not path.exists(head): 214 try: --> 215 makedirs(head, exist_ok=exist_ok) 216 except FileExistsError: 217 # Defeats race condition when another thread created the path 218 pass File E:\Anaconda\envs\d2l\lib\os.py:225, in makedirs(name, mode, exist_ok) 223 return 224 try: --> 225 mkdir(name, mode) 226 except OSError: 227 # Cannot rely on checking for EEXIST, since the operating system 228 # could give priority to other errors like EACCES or EROFS 229 if not exist_ok or not path.isdir(name): PermissionError: [WinError 5] 拒绝访问。: '../data'shenmeyisi

这是main.py文件的代码:from datetime import datetime from functools import partial from PIL import Image import cv2 import numpy as np from torch.utils.data import DataLoader from torch.version import cuda from torchvision import transforms from torchvision.datasets import CIFAR10 from torchvision.models import resnet from tqdm import tqdm import argparse import json import math import os import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F #数据增强(核心增强部分) import torch from torchvision import transforms from torch.utils.data import Dataset, DataLoader # 设置参数 parser = argparse.ArgumentParser(description='Train MoCo on CIFAR-10') parser.add_argument('-a', '--arch', default='resnet18') # lr: 0.06 for batch 512 (or 0.03 for batch 256) parser.add_argument('--lr', '--learning-rate', default=0.06, type=float, metavar='LR', help='initial learning rate', dest='lr') parser.add_argument('--epochs', default=300, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--schedule', default=[120, 160], nargs='*', type=int, help='learning rate schedule (when to drop lr by 10x); does not take effect if --cos is on') parser.add_argument('--cos', action='store_true', help='use cosine lr schedule') parser.add_argument('--batch-size', default=64, type=int, metavar='N', help='mini-batch size') parser.add_argument('--wd', default=5e-4, type=float, metavar='W', help='weight decay') # moco specific configs: parser.add_argument('--moco-dim', default=128, type=int, help='feature dimension') parser.add_argument('--moco-k', default=4096, type=int, help='queue size; number of negative keys') parser.add_argument('--moco-m', default=0.99, type=float, help='moco momentum of updating key encoder') parser.add_argument('--moco-t', default=0.1, type=float, help='softmax temperature') parser.add_argument('--bn-splits', default=8, type=int, help='simulate multi-gpu behavior of BatchNorm in one gpu; 1 is SyncBatchNorm in multi-gpu') parser.add_argument('--symmetric', action='store_true', help='use a symmetric loss function that backprops to both crops') # knn monitor parser.add_argument('--knn-k', default=20, type=int, help='k in kNN monitor') parser.add_argument('--knn-t', default=0.1, type=float, help='softmax temperature in kNN monitor; could be different with moco-t') # utils parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--results-dir', default='', type=str, metavar='PATH', help='path to cache (default: none)') ''' args = parser.parse_args() # running in command line ''' args = parser.parse_args('') # running in ipynb # set command line arguments here when running in ipynb args.epochs = 300 # 修改处 args.cos = True args.schedule = [] # cos in use args.symmetric = False if args.results_dir == '': args.results_dir = "E:\\contrast\\yolov8\\MoCo\\run\\cache-" + datetime.now().strftime("%Y-%m-%d-%H-%M-%S-moco") moco_args = args class CIFAR10Pair(CIFAR10): def __getitem__(self, index): img = self.data[index] img = Image.fromarray(img) # 原始图像增强 im_1 = self.transform(img) im_2 = self.transform(img) # 退化增强生成额外视图 degraded_results = image_degradation_and_augmentation(img) im_3 = self.transform(Image.fromarray(degraded_results['augmented_images'][0])) # 选择第一组退化增强 im_4 = self.transform(Image.fromarray(degraded_results['cutmix_image'])) return im_1, im_2, im_3, im_4 # 返回原始增强+退化增强 # 定义数据加载器 # class CIFAR10Pair(CIFAR10): # """CIFAR10 Dataset. # """ # def __getitem__(self, index): # img = self.data[index] # img = Image.fromarray(img) # if self.transform is not None: # im_1 = self.transform(img) # im_2 = self.transform(img) # return im_1, im_2 import cv2 import numpy as np import random def apply_interpolation_degradation(img, method): """ 应用插值退化 参数: img: 输入图像(numpy数组) method: 插值方法('nearest', 'bilinear', 'bicubic') 返回: 退化后的图像 """ # 获取图像尺寸 h, w = img.shape[:2] # 应用插值方法 if method == 'nearest': # 最近邻退化: 下采样+上采样 downsampled = cv2.resize(img, (w//2, h//2), interpolation=cv2.INTER_NEAREST) degraded = cv2.resize(downsampled, (w, h), interpolation=cv2.INTER_NEAREST) elif method == 'bilinear': # 双线性退化: 下采样+上采样 downsampled = cv2.resize(img, (w//2, h//2), interpolation=cv2.INTER_LINEAR) degraded = cv2.resize(downsampled, (w, h), interpolation=cv2.INTER_LINEAR) elif method == 'bicubic': # 双三次退化: 下采样+上采样 downsampled = cv2.resize(img, (w//2, h//2), interpolation=cv2.INTER_CUBIC) degraded = cv2.resize(downsampled, (w, h), interpolation=cv2.INTER_CUBIC) else: degraded = img return degraded def darken_image(img, intensity=0.3): """ 应用黑暗处理 - 降低图像亮度并增加暗区对比度 参数: img: 输入图像(numpy数组) intensity: 黑暗强度 (0.1-0.9) 返回: 黑暗处理后的图像 """ # 限制强度范围 intensity = max(0.1, min(0.9, intensity)) # 将图像转换为HSV颜色空间 hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV).astype(np.float32) # 降低亮度(V通道) hsv[:, :, 2] = hsv[:, :, 2] * intensity # 增加暗区的对比度 - 使用gamma校正 gamma = 1.0 + (1.0 - intensity) # 黑暗强度越大,gamma值越大 hsv[:, :, 2] = np.power(hsv[:, :, 2]/255.0, gamma) * 255.0 # 限制值在0-255范围内 hsv[:, :, 2] = np.clip(hsv[:, :, 2], 0, 255) # 转换回RGB return cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2RGB) def random_affine(image): """ 随机仿射变换(缩放和平移) 参数: image: 输入图像(numpy数组) 返回: 变换后的图像 """ height, width = image.shape[:2] # 随机缩放因子 (0.8 to 1.2) scale = random.uniform(0.8, 1.2) # 随机平移 (10% of image size) max_trans = 0.1 * min(width, height) tx = random.randint(-int(max_trans), int(max_trans)) ty = random.randint(-int(max_trans), int(max_trans)) # 变换矩阵 M = np.array([[scale, 0, tx], [0, scale, ty]], dtype=np.float32) # 应用仿射变换 transformed = cv2.warpAffine(image, M, (width, height)) return transformed def augment_hsv(image, h_gain=0.1, s_gain=0.5, v_gain=0.5): """ HSV色彩空间增强 参数: image: 输入图像(numpy数组) h_gain, s_gain, v_gain: 各通道的增益范围 返回: 增强后的图像 """ # 限制增益范围 h_gain = max(-0.1, min(0.1, random.uniform(-h_gain, h_gain))) s_gain = max(0.5, min(1.5, random.uniform(1-s_gain, 1+s_gain))) v_gain = max(0.5, min(1.5, random.uniform(1-v_gain, 1+v_gain))) # 转换为HSV hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype(np.float32) # 应用增益 hsv[:, :, 0] = (hsv[:, :, 0] * (1 + h_gain)) % 180 hsv[:, :, 1] = np.clip(hsv[:, :, 1] * s_gain, 0, 255) hsv[:, :, 2] = np.clip(hsv[:, :, 2] * v_gain, 0, 255) # 转换回RGB return cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2RGB) # def mixup(img1, img2, alpha=0.6): # """ # 将两幅图像混合在一起 # 参数: # img1, img2: 输入图像(numpy数组) # alpha: Beta分布的参数,控制混合比例 # 返回: # 混合后的图像 # """ # # 生成混合比例 # lam = random.betavariate(alpha, alpha) # # 确保图像尺寸相同 # if img1.shape != img2.shape: # img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0])) # # 混合图像 # mixed = (lam * img1.astype(np.float32) + (1 - lam) * img2.astype(np.float32)).astype(np.uint8) # return mixed # def image_degradation_and_augmentation(image,dark_intensity=0.3): # """ # 完整的图像退化和增强流程 # 参数: # image: 输入图像(PIL.Image或numpy数组) # 返回: # dict: 包含所有退化组和最终增强结果的字典 # """ # # 确保输入是numpy数组 # if not isinstance(image, np.ndarray): # image = np.array(image) # # 确保图像为RGB格式 # if len(image.shape) == 2: # image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) # elif image.shape[2] == 4: # image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB) # # 原始图像 # original = image.copy() # # 插值方法列表 # interpolation_methods = ['nearest', 'bilinear', 'bicubic'] # # 第一组退化: 三种插值方法 # group1 = [] # for method in interpolation_methods: # degraded = apply_interpolation_degradation(original, method) # group1.append(degraded) # # 第二组退化: 随机额外退化 # group2 = [] # for img in group1: # # 随机选择一种退化方法 # method = random.choice(interpolation_methods) # extra_degraded = apply_interpolation_degradation(img, method) # group2.append(extra_degraded) # # 所有退化图像组合 # all_degraded_images = [original] + group1 + group2 # # 应用黑暗处理 (在增强之前) # darkened_images = [darken_image(img, intensity=dark_intensity) for img in all_degraded_images] # # 应用数据增强 # # 1. 随机仿射变换 # affine_images = [random_affine(img) for img in darkened_images] # # 2. HSV增强 # hsv_images = [augment_hsv(img) for img in affine_images] # # 3. MixUp增强 # # 随机选择两个增强后的图像进行混合 # mixed_image = mixup( # random.choice(hsv_images), # random.choice(hsv_images) # ) # # 返回结果 # results = { # 'original': original, # 'degraded_group1': group1, # 第一组退化图像 # 'degraded_group2': group2, # 第二组退化图像 # 'augmented_images': hsv_images, # 所有增强后的图像(原始+六组退化) # 'mixup_image': mixed_image # MixUp混合图像 # } # return results # # def add_gaussian_noise(image, mean=0, sigma=25): # # """添加高斯噪声""" # # noise = np.random.normal(mean, sigma, image.shape) # # noisy = np.clip(image + noise, 0, 255).astype(np.uint8) # # return noisy # # def random_cutout(image, max_holes=3, max_height=16, max_width=16): # # """随机CutOut增强""" # # h, w = image.shape[:2] # # for _ in range(random.randint(1, max_holes)): # # hole_h = random.randint(1, max_height) # # hole_w = random.randint(1, max_width) # # y = random.randint(0, h - hole_h) # # x = random.randint(0, w - hole_w) # # image[y:y+hole_h, x:x+hole_w] = 0 # # return image import cv2 import numpy as np import random from matplotlib import pyplot as plt import pywt def wavelet_degradation(image, level=0.5): """小波系数衰减退化""" # 小波分解 coeffs = pywt.dwt2(image, 'haar') cA, (cH, cV, cD) = coeffs # 衰减高频系数 cH = cH * level cV = cV * level cD = cD * level # 重建图像 return pywt.idwt2((cA, (cH, cV, cD)), 'haar')[:image.shape[0], :image.shape[1]] def adaptive_interpolation_degradation(image): """自适应插值退化(随机选择最近邻或双三次插值)""" if random.choice([True, False]): method = cv2.INTER_NEAREST # 最近邻插值 else: method = cv2.INTER_CUBIC # 双三次插值 # 先缩小再放大 scale_factor = random.uniform(0.3, 0.8) small = cv2.resize(image, None, fx=scale_factor, fy=scale_factor, interpolation=method) return cv2.resize(small, (image.shape[1], image.shape[0]), interpolation=method) def bilinear_degradation(image): """双线性插值退化""" # 先缩小再放大 scale_factor = random.uniform(0.3, 0.8) small = cv2.resize(image, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_LINEAR) return cv2.resize(small, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR) def cutmix(img1, img2, bboxes1=None, bboxes2=None, beta=1.0): """ 参数: img1: 第一张输入图像(numpy数组) img2: 第二张输入图像(numpy数组) bboxes1: 第一张图像的边界框(可选) bboxes2: 第二张图像的边界框(可选) beta: Beta分布的参数,控制裁剪区域的大小 返回: 混合后的图像和边界框(如果有) """ # 确保图像尺寸相同 if img1.shape != img2.shape: img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0])) h, w = img1.shape[:2] # 生成裁剪区域的lambda值(混合比例) lam = np.random.beta(beta, beta) # 计算裁剪区域的宽高 cut_ratio = np.sqrt(1. - lam) cut_w = int(w * cut_ratio) cut_h = int(h * cut_ratio) # 随机确定裁剪区域的中心点 cx = np.random.randint(w) cy = np.random.randint(h) # 计算裁剪区域的边界 x1 = np.clip(cx - cut_w // 2, 0, w) y1 = np.clip(cy - cut_h // 2, 0, h) x2 = np.clip(cx + cut_w // 2, 0, w) y2 = np.clip(cy + cut_h // 2, 0, h) # 执行CutMix操作 mixed_img = img1.copy() mixed_img[y1:y2, x1:x2] = img2[y1:y2, x1:x2] # 计算实际的混合比例 lam = 1 - ((x2 - x1) * (y2 - y1) / (w * h)) # 处理边界框(如果有) mixed_bboxes = None if bboxes1 is not None and bboxes2 is not None: mixed_bboxes = [] # 添加第一张图像的边界框 for bbox in bboxes1: mixed_bboxes.append(bbox + [lam]) # 添加混合权重 # 添加第二张图像的边界框(只添加在裁剪区域内的) for bbox in bboxes2: # 检查边界框是否在裁剪区域内 bbox_x_center = (bbox[0] + bbox[2]) / 2 bbox_y_center = (bbox[1] + bbox[3]) / 2 if (x1 <= bbox_x_center <= x2) and (y1 <= bbox_y_center <= y2): mixed_bboxes.append(bbox + [1 - lam]) return mixed_img, mixed_bboxes def image_degradation_and_augmentation(image, bboxes=None): """ 完整的图像退化和增强流程(修改为使用CutMix) 参数: image: 输入图像(PIL.Image或numpy数组) bboxes: 边界框(可选) 返回: dict: 包含所有退化组和最终增强结果的字典 """ # 确保输入是numpy数组 if not isinstance(image, np.ndarray): image = np.array(image) # 确保图像为RGB格式 if len(image.shape) == 2: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) elif image.shape[2] == 4: image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB) degraded_sets = [] original = image.copy() # 第一组退化:三种基础退化 degraded_sets.append(wavelet_degradation(original.copy())) degraded_sets.append(degraded_sets) degraded_sets.append(adaptive_interpolation_degradation(original.copy())) degraded_sets.append(degraded_sets) degraded_sets.append(bilinear_degradation(original.copy())) degraded_sets.append(degraded_sets) # # 原始图像 # original = image.copy() # # 插值方法列表 # interpolation_methods = ['nearest', 'bilinear', 'bicubic'] # # 第一组退化: 三种插值方法 # group1 = [] # for method in interpolation_methods: # degraded = apply_interpolation_degradation(original, method) # group1.append(degraded) # 第二组退化: 随机额外退化 # group2 = [] # for img in group1: # # 随机选择一种退化方法 # method = random.choice(interpolation_methods) # extra_degraded = apply_interpolation_degradation(img, method) # group2.append(extra_degraded) # 第二组退化:随机选择再退化 methods = [wavelet_degradation, adaptive_interpolation_degradation, bilinear_degradation] group2=[] for img in degraded_sets: selected_method = random.choice(methods) group2.append(selected_method(img)) group2.append(group2) # 原始图像 original = image.copy() all_degraded_images = [original] + degraded_sets + group2 # 应用黑暗处理 dark_original = darken_image(original) dark_degraded = [darken_image(img) for img in all_degraded_images] # 合并原始和退化图像 all_images = [dark_original] + dark_degraded # 应用数据增强 # 1. 随机仿射变换 affine_images = [random_affine(img) for img in all_images] # 2. HSV增强 hsv_images = [augment_hsv(img) for img in affine_images] # 3. CutMix增强 # 随机选择两个增强后的图像进行混合 mixed_image, mixed_bboxes = cutmix( random.choice(hsv_images), random.choice(hsv_images), bboxes1=bboxes if bboxes is not None else None, bboxes2=bboxes if bboxes is not None else None ) # 返回结果 results = { 'original': original, 'degraded': dark_degraded, 'augmented_images': hsv_images, # 所有增强后的图像(原始+六组退化) 'cutmix_image': mixed_image, # CutMix混合图像 'cutmix_bboxes': mixed_bboxes if bboxes is not None else None # 混合后的边界框 } return results train_transform = transforms.Compose([ transforms.RandomResizedCrop(32), transforms.RandomHorizontalFlip(p=0.5), transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8), transforms.RandomGrayscale(p=0.2), transforms.ToTensor(), transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])]) test_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])]) # data_processing prepare train_data = CIFAR10Pair(root="E:/contrast/yolov8/MoCo/data_visdrone2019", train=True, transform=train_transform, download=False) moco_train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=0, pin_memory=True, drop_last=True) memory_data = CIFAR10(root="E:/contrast/yolov8/MoCo/data_visdrone2019", train=True, transform=test_transform, download=False) memory_loader = DataLoader(memory_data, batch_size=args.batch_size, shuffle=False, num_workers=0, pin_memory=True) test_data = CIFAR10(root="E:/contrast/yolov8/MoCo/data_visdrone2019", train=False, transform=test_transform, download=False) test_loader = DataLoader(test_data, batch_size=args.batch_size, shuffle=False, num_workers=0, pin_memory=True) # 定义基本编码器 # SplitBatchNorm: simulate multi-gpu behavior of BatchNorm in one gpu by splitting alone the batch dimension # implementation adapted from https://github.com/davidcpage/cifar10-fast/blob/master/torch_backend.py class SplitBatchNorm(nn.BatchNorm2d): def __init__(self, num_features, num_splits, **kw): super().__init__(num_features, **kw) self.num_splits = num_splits def forward(self, input): N, C, H, W = input.shape if self.training or not self.track_running_stats: running_mean_split = self.running_mean.repeat(self.num_splits) running_var_split = self.running_var.repeat(self.num_splits) outcome = nn.functional.batch_norm( input.view(-1, C * self.num_splits, H, W), running_mean_split, running_var_split, self.weight.repeat(self.num_splits), self.bias.repeat(self.num_splits), True, self.momentum, self.eps).view(N, C, H, W) self.running_mean.data.copy_(running_mean_split.view(self.num_splits, C).mean(dim=0)) self.running_var.data.copy_(running_var_split.view(self.num_splits, C).mean(dim=0)) return outcome else: return nn.functional.batch_norm( input, self.running_mean, self.running_var, self.weight, self.bias, False, self.momentum, self.eps) class ModelBase(nn.Module): """ Common CIFAR ResNet recipe. Comparing with ImageNet ResNet recipe, it: (i) replaces conv1 with kernel=3, str=1 (ii) removes pool1 """ def __init__(self, feature_dim=128, arch=None, bn_splits=16): super(ModelBase, self).__init__() # use split batchnorm norm_layer = partial(SplitBatchNorm, num_splits=bn_splits) if bn_splits > 1 else nn.BatchNorm2d resnet_arch = getattr(resnet, arch) net = resnet_arch(num_classes=feature_dim, norm_layer=norm_layer) self.net = [] for name, module in net.named_children(): if name == 'conv1': module = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) if isinstance(module, nn.MaxPool2d): continue if isinstance(module, nn.Linear): self.net.append(nn.Flatten(1)) self.net.append(module) self.net = nn.Sequential(*self.net) def forward(self, x): x = self.net(x) # note: not normalized here return x # 定义MOCO class ModelMoCo(nn.Module): def __init__(self, dim=128, K=4096, m=0.99, T=0.1, arch='resnet18', bn_splits=8, symmetric=True): super(ModelMoCo, self).__init__() self.K = K self.m = m self.T = T self.symmetric = symmetric # create the encoders self.encoder_q = ModelBase(feature_dim=dim, arch=arch, bn_splits=bn_splits) self.encoder_k = ModelBase(feature_dim=dim, arch=arch, bn_splits=bn_splits) for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data.copy_(param_q.data) # initialize param_k.requires_grad = False # not update by gradient 不参与训练 # create the queue self.register_buffer("queue", torch.randn(dim, K)) self.queue = nn.functional.normalize(self.queue, dim=0) self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long)) @torch.no_grad() def _momentum_update_key_encoder(self): # 动量更新encoder_k """ Momentum update of the key encoder """ for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data = param_k.data * self.m + param_q.data * (1. - self.m) @torch.no_grad() def _dequeue_and_enqueue(self, keys): # 出队与入队 batch_size = keys.shape[0] ptr = int(self.queue_ptr) assert self.K % batch_size == 0 # for simplicity # replace the keys at ptr (dequeue and enqueue) self.queue[:, ptr:ptr + batch_size] = keys.t() # transpose ptr = (ptr + batch_size) % self.K # move pointer self.queue_ptr[0] = ptr @torch.no_grad() def _batch_shuffle_single_gpu(self, x): """ Batch shuffle, for making use of BatchNorm. """ # random shuffle index idx_shuffle = torch.randperm(x.shape[0]).cuda() # index for restoring idx_unshuffle = torch.argsort(idx_shuffle) return x[idx_shuffle], idx_unshuffle @torch.no_grad() def _batch_unshuffle_single_gpu(self, x, idx_unshuffle): """ Undo batch shuffle. """ return x[idx_unshuffle] def contrastive_loss(self, im_q, im_k): # compute query features q = self.encoder_q(im_q) # queries: NxC q = nn.functional.normalize(q, dim=1) # already normalized # compute key features with torch.no_grad(): # no gradient to keys # shuffle for making use of BN im_k_, idx_unshuffle = self._batch_shuffle_single_gpu(im_k) k = self.encoder_k(im_k_) # keys: NxC k = nn.functional.normalize(k, dim=1) # already normalized # undo shuffle k = self._batch_unshuffle_single_gpu(k, idx_unshuffle) # compute logits # Einstein sum is more intuitive # positive logits: Nx1 l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1) # negative logits: NxK l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()]) # logits: Nx(1+K) logits = torch.cat([l_pos, l_neg], dim=1) # apply temperature logits /= self.T # labels: positive key indicators labels = torch.zeros(logits.shape[0], dtype=torch.long).cuda() loss = nn.CrossEntropyLoss().cuda()(logits, labels) # 交叉熵损失 return loss, q, k def forward(self, im1, im2): """ Input: im_q: a batch of query images im_k: a batch of key images Output: loss """ # update the key encoder with torch.no_grad(): # no gradient to keys self._momentum_update_key_encoder() # compute loss if self.symmetric: # asymmetric loss loss_12, q1, k2 = self.contrastive_loss(im1, im2) loss_21, q2, k1 = self.contrastive_loss(im2, im1) loss = loss_12 + loss_21 k = torch.cat([k1, k2], dim=0) else: # asymmetric loss loss, q, k = self.contrastive_loss(im1, im2) self._dequeue_and_enqueue(k) return loss # create model moco_model = ModelMoCo( dim=args.moco_dim, K=args.moco_k, m=args.moco_m, T=args.moco_t, arch=args.arch, bn_splits=args.bn_splits, symmetric=args.symmetric, ).cuda() # print(moco_model.encoder_q) moco_model_1 = ModelMoCo( dim=args.moco_dim, K=args.moco_k, m=args.moco_m, T=args.moco_t, arch=args.arch, bn_splits=args.bn_splits, symmetric=args.symmetric, ).cuda() # print(moco_model_1.encoder_q) """ CIFAR10 Dataset. """ from torch.cuda import amp scaler = amp.GradScaler(enabled=cuda) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # train for one epoch # def moco_train(net, net_1, data_loader, train_optimizer, epoch, args): # net.train() # adjust_learning_rate(moco_optimizer, epoch, args) # total_loss, total_num, train_bar = 0.0, 0, tqdm(data_loader) # loss_add = 0.0 # for im_1, im_2 in train_bar: # im_1, im_2 = im_1.cuda(non_blocking=True), im_2.cuda(non_blocking=True) # loss = net(im_1, im_2) # 原始图像对比损失 梯度清零—>梯度回传—>梯度跟新 # # lossT = loss # 只使用原始对比损失 # # train_optimizer.zero_grad() # # lossT.backward() # # train_optimizer.step() # # loss_add += lossT.item() # # total_num += data_loader.batch_size # # total_loss += loss.item() * data_loader.batch_size # # train_bar.set_description( # # 'Train Epoch: [{}/{}], lr: {:.6f}, Loss: {:.4f}'.format( # # epoch, args.epochs, # # train_optimizer.param_groups[0]['lr'], # # loss_add / total_num # # ) # # ) # #傅里叶变换处理流程 # #im_3 = torch.rfft(im_1, 3, onesided=False, normalized=True)[:, :, :, :, 0] # fft_output = torch.fft.fftn(im_1, dim=(-3, -2, -1), norm="ortho")#转换为频域 # real_imag = torch.view_as_real(fft_output)#分解实部虚部 # im_3 = real_imag[..., 0]#提取频域实部作为新视图 # #该处理实现了频域空间的增强,与空间域增强形成了互补 # #im_4 = torch.rfft(im_2, 3, onesided=False, normalized=True)[:, :, :, :, 0] # fft_output = torch.fft.fftn(im_2, dim=(-3, -2, -1), norm="ortho") # real_imag = torch.view_as_real(fft_output) # im_4 = real_imag[..., 0] # loss_1 = net_1(im_3, im_4)#频域特征对比损失 # lossT = 0.8*loss + 0.2*loss_1#多模态损失对比融合 # train_optimizer.zero_grad() # lossT.backward() # train_optimizer.step() # loss_add += lossT # total_num += data_loader.batch_size # total_loss += loss.item() * data_loader.batch_size # # train_bar.set_description( # # 'Train Epoch: [{}/{}], lr: {:.6f}, Loss: {:.4f}'.format(epoch, args.epochs, moco_optimizer.param_groups[0]['lr'], # # loss_add / total_num)) # return (loss_add / total_num).cpu().item() # yolov5需要的损失 def moco_train(net, net_1, data_loader, train_optimizer, epoch, args): net.train() adjust_learning_rate(train_optimizer, epoch, args) total_loss, total_num = 0.0, 0 train_bar = tqdm(data_loader) for im_1, im_2, im_3, im_4 in train_bar: # 接收4组视图 im_1, im_2 = im_1.cuda(), im_2.cuda() im_3, im_4 = im_3.cuda(), im_4.cuda() # 原始空间域对比损失 loss_orig = net(im_1, im_2) # 退化增强图像的空间域对比损失 loss_degraded = net(im_3, im_4) # 频域处理(对退化增强后的图像) fft_3 = torch.fft.fftn(im_3, dim=(-3, -2, -1), norm="ortho") fft_3 = torch.view_as_real(fft_3)[..., 0] # 取实部 fft_4 = torch.fft.fftn(im_4, dim=(-3, -2, -1), norm="ortho") fft_4 = torch.view_as_real(fft_4)[..., 0] # 频域对比损失 loss_freq = net_1(fft_3, fft_4) # 多模态损失融合 loss = 0.6 * loss_orig + 0.3 * loss_degraded + 0.1 * loss_freq # 反向传播 train_optimizer.zero_grad() loss.backward() train_optimizer.step() # 记录损失 total_num += data_loader.batch_size total_loss += loss.item() # train_bar.set_description(f'Epoch: [{epoch}/{args.epochs}] Loss: {total_loss/total_num:.4f}') return total_loss / total_num # lr scheduler for training def adjust_learning_rate(optimizer, epoch, args): # 学习率衰减 """Decay the learning rate based on schedule""" lr = args.lr if args.cos: # cosine lr schedule lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epochs)) else: # stepwise lr schedule for milestone in args.schedule: lr *= 0.1 if epoch >= milestone else 1. for param_group in optimizer.param_groups: param_group['lr'] = lr # test using a knn monitor def test(net, memory_data_loader, test_data_loader, epoch, args): net.eval() classes = len(memory_data_loader.dataset.classes) total_top1, total_top5, total_num, feature_bank = 0.0, 0.0, 0, [] with torch.no_grad(): # generate feature bank for data, target in tqdm(memory_data_loader, desc='Feature extracting'): feature = net(data.cuda(non_blocking=True)) feature = F.normalize(feature, dim=1) feature_bank.append(feature) # [D, N] feature_bank = torch.cat(feature_bank, dim=0).t().contiguous() # [N] feature_labels = torch.tensor(memory_data_loader.dataset.targets, device=feature_bank.device) # loop test data_processing to predict the label by weighted knn search test_bar = tqdm(test_data_loader) for data, target in test_bar: data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True) feature = net(data) feature = F.normalize(feature, dim=1) pred_labels = knn_predict(feature, feature_bank, feature_labels, classes, args.knn_k, args.knn_t) total_num += data.size(0) total_top1 += (pred_labels[:, 0] == target).float().sum().item() test_bar.set_description( 'Test Epoch: [{}/{}] Acc@1:{:.2f}%'.format(epoch, args.epochs, total_top1 / total_num * 100)) return total_top1 / total_num * 100 # knn monitor as in InstDisc https://arxiv.org/abs/1805.01978 # implementation follows http://github.com/zhirongw/lemniscate.pytorch and https://github.com/leftthomas/SimCLR def knn_predict(feature, feature_bank, feature_labels, classes, knn_k, knn_t): # compute cos similarity between each feature vector and feature bank ---> [B, N] sim_matrix = torch.mm(feature, feature_bank) # [B, K] sim_weight, sim_indices = sim_matrix.topk(k=knn_k, dim=-1) # [B, K] sim_labels = torch.gather(feature_labels.expand(feature.size(0), -1), dim=-1, index=sim_indices) sim_weight = (sim_weight / knn_t).exp() # counts for each class one_hot_label = torch.zeros(feature.size(0) * knn_k, classes, device=sim_labels.device) # [B*K, C] one_hot_label = one_hot_label.scatter(dim=-1, index=sim_labels.view(-1, 1), value=1.0) # weighted score ---> [B, C] pred_scores = torch.sum(one_hot_label.view(feature.size(0), -1, classes) * sim_weight.unsqueeze(dim=-1), dim=1) pred_labels = pred_scores.argsort(dim=-1, descending=True) return pred_labels # 开始训练 # define optimizer moco_optimizer = torch.optim.SGD(moco_model.parameters(), lr=args.lr, weight_decay=args.wd, momentum=0.9) 上述问题怎么修改?

最新推荐

recommend-type

langchain4j-anthropic-spring-boot-starter-0.31.0.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

TMS320F28335电机控制程序详解:BLDC、PMSM无感有感及异步VF源代码与开发资料

TMS320F28335这款高性能数字信号处理器(DSP)在电机控制领域的应用,涵盖了BLDC(无刷直流电机)、PMSM(永磁同步电机)的无感有感控制以及异步VF(变频调速)程序。文章不仅解释了各类型的电机控制原理,还提供了完整的开发资料,包括源代码、原理图和说明文档,帮助读者深入了解其工作原理和编程技巧。 适合人群:从事电机控制系统开发的技术人员,尤其是对TMS320F28335感兴趣的工程师。 使用场景及目标:适用于需要掌握TMS320F28335在不同电机控制应用场景下具体实现方法的专业人士,旨在提高他们对该微控制器的理解和实际操作能力。 其他说明:文中提供的开发资料为读者提供了从硬件到软件的全面支持,有助于加速项目开发进程并提升系统性能。
recommend-type

基于爬山搜索法的风力发电MPPT控制Simulink仿真:定步长与变步长算法性能对比 - 爬山搜索法 最新版

基于爬山搜索法的风力发电最大功率点追踪(MPPT)控制的Simulink仿真模型,重点比较了定步长和变步长算法在不同风速条件下的表现。文中展示了两种算法的具体实现方法及其优缺点。定步长算法虽然结构简单、计算量小,但在风速突变时响应较慢,存在明显的稳态振荡。相比之下,变步长算法能够根据功率变化动态调整步长,表现出更快的响应速度和更高的精度,尤其在风速突变时优势明显。实验数据显示,变步长算法在风速从8m/s突增至10m/s的情况下,仅用0.3秒即可稳定,功率波动范围仅为±15W,而定步长算法则需要0.8秒,功率波动达到±35W。 适合人群:从事风力发电研究的技术人员、对MPPT控制感兴趣的工程技术人员以及相关专业的高校师生。 使用场景及目标:适用于风力发电系统的设计与优化,特别是需要提高系统响应速度和精度的场合。目标是在不同风速条件下,选择合适的MPPT算法以最大化风能利用率。 其他说明:文章还讨论了定步长算法在风速平稳情况下的优势,提出了根据不同应用场景灵活选择或组合使用这两种算法的建议。
recommend-type

Visual C++.NET编程技术实战指南

根据提供的文件信息,可以生成以下知识点: ### Visual C++.NET编程技术体验 #### 第2章 定制窗口 - **设置窗口风格**:介绍了如何通过编程自定义窗口的外观和行为。包括改变窗口的标题栏、边框样式、大小和位置等。这通常涉及到Windows API中的`SetWindowLong`和`SetClassLong`函数。 - **创建六边形窗口**:展示了如何创建一个具有特殊形状边界的窗口,这类窗口不遵循标准的矩形形状。它需要使用`SetWindowRgn`函数设置窗口的区域。 - **创建异形窗口**:扩展了定制窗口的内容,提供了创建非标准形状窗口的方法。这可能需要创建一个不规则的窗口区域,并将其应用到窗口上。 #### 第3章 菜单和控制条高级应用 - **菜单编程**:讲解了如何创建和修改菜单项,处理用户与菜单的交互事件,以及动态地添加或删除菜单项。 - **工具栏编程**:阐述了如何使用工具栏,包括如何创建工具栏按钮、分配事件处理函数,并实现工具栏按钮的响应逻辑。 - **状态栏编程**:介绍了状态栏的创建、添加不同类型的指示器(如文本、进度条等)以及状态信息的显示更新。 - **为工具栏添加皮肤**:展示了如何为工具栏提供更加丰富的视觉效果,通常涉及到第三方的控件库或是自定义的绘图代码。 #### 第5章 系统编程 - **操作注册表**:解释了Windows注册表的结构和如何通过程序对其进行读写操作,这对于配置软件和管理软件设置非常关键。 - **系统托盘编程**:讲解了如何在系统托盘区域创建图标,并实现最小化到托盘、从托盘恢复窗口的功能。 - **鼠标钩子程序**:介绍了钩子(Hook)技术,特别是鼠标钩子,如何拦截和处理系统中的鼠标事件。 - **文件分割器**:提供了如何将文件分割成多个部分,并且能够重新组合文件的技术示例。 #### 第6章 多文档/多视图编程 - **单文档多视**:展示了如何在同一个文档中创建多个视图,这在文档编辑软件中非常常见。 #### 第7章 对话框高级应用 - **实现无模式对话框**:介绍了无模式对话框的概念及其应用场景,以及如何实现和管理无模式对话框。 - **使用模式属性表及向导属性表**:讲解了属性表的创建和使用方法,以及如何通过向导性质的对话框引导用户完成多步骤的任务。 - **鼠标敏感文字**:提供了如何实现点击文字触发特定事件的功能,这在阅读器和编辑器应用中很有用。 #### 第8章 GDI+图形编程 - **图像浏览器**:通过图像浏览器示例,展示了GDI+在图像处理和展示中的应用,包括图像的加载、显示以及基本的图像操作。 #### 第9章 多线程编程 - **使用全局变量通信**:介绍了在多线程环境下使用全局变量进行线程间通信的方法和注意事项。 - **使用Windows消息通信**:讲解了通过消息队列在不同线程间传递信息的技术,包括发送消息和处理消息。 - **使用CriticalSection对象**:阐述了如何使用临界区(CriticalSection)对象防止多个线程同时访问同一资源。 - **使用Mutex对象**:介绍了互斥锁(Mutex)的使用,用以同步线程对共享资源的访问,保证资源的安全。 - **使用Semaphore对象**:解释了信号量(Semaphore)对象的使用,它允许一个资源由指定数量的线程同时访问。 #### 第10章 DLL编程 - **创建和使用Win32 DLL**:介绍了如何创建和链接Win32动态链接库(DLL),以及如何在其他程序中使用这些DLL。 - **创建和使用MFC DLL**:详细说明了如何创建和使用基于MFC的动态链接库,适用于需要使用MFC类库的场景。 #### 第11章 ATL编程 - **简单的非属性化ATL项目**:讲解了ATL(Active Template Library)的基础使用方法,创建一个不使用属性化组件的简单项目。 - **使用ATL开发COM组件**:详细阐述了使用ATL开发COM组件的步骤,包括创建接口、实现类以及注册组件。 #### 第12章 STL编程 - **list编程**:介绍了STL(标准模板库)中的list容器的使用,讲解了如何使用list实现复杂数据结构的管理。 #### 第13章 网络编程 - **网上聊天应用程序**:提供了实现基本聊天功能的示例代码,包括客户端和服务器的通信逻辑。 - **简单的网页浏览器**:演示了如何创建一个简单的Web浏览器程序,涉及到网络通信和HTML解析。 - **ISAPI服务器扩展编程**:介绍了如何开发ISAPI(Internet Server API)服务器扩展来扩展IIS(Internet Information Services)的功能。 #### 第14章 数据库编程 - **ODBC数据库编程**:解释了ODBC(开放数据库互联)的概念,并提供了使用ODBC API进行数据库访问的示例。 - **ADO编程**:介绍了ADO(ActiveX Data Objects)技术,讲解了如何使用ADO进行数据库的增删改查等操作。 #### 第15章 HTML帮助系统编程 - **创建HTML帮助文件**:讲解了如何创建HTML帮助文件(.chm),这是微软帮助系统的一种形式。 - **区分上下文帮助**:提供了在应用程序中实现上下文敏感帮助的技术示例。 #### 第16章 安装和部署项目 - **用安装程序向导创建安装项目**:介绍了如何使用Visual Studio中的安装和部署项目向导,快速创建安装程序。 - **部署应用程序**:阐述了部署应用程序到目标系统的过程,以及如何确保应用程序的正确安装和运行。 以上内容涵盖了Visual C++.NET编程技术体验一书中涉及的各个技术点,并对每个章节中的示例做了详细的说明。这些知识点对于理解和掌握Visual C++.NET编程非常重要,并能够帮助读者在实际项目开发中应用这些技术。
recommend-type

HarmonyOS内核深度探秘:优化自由行旅游系统的策略

# 1. HarmonyOS内核概述与旅游系统需求分析 ## 1.1 HarmonyOS内核概述 HarmonyOS(鸿蒙操作系统)是由华为开发的一个分布式操作系统,旨在提供跨多种设备的无缝体验。其内核设计理念强调高效、安全和模块化,以微内核架构和分布式能力
recommend-type

tkinter模块所有控件

<think>好的,我现在需要回答用户关于Tkinter模块中所有控件列表的问题。首先,我需要回忆Tkinter的基础知识,确保自己了解各个控件的名称和用途。用户希望得到所有支持的控件列表,所以必须全面覆盖,不能遗漏。 首先,我应该从Tkinter的标准控件开始。常见的控件包括Label、Button、Entry这些基础部件。然后是Frame,用于布局,还有Canvas用于绘图。接下来是Checkbutton、Radiobutton,这些属于选择类控件。Listbox和Scrollbar通常一起使用,处理滚动内容。还有Scale(滑块)、Spinbox、Menu、Menubutton这些可能
recommend-type

局域网五子棋游戏:娱乐与聊天的完美结合

标题“网络五子棋”和描述“适合于局域网之间娱乐和聊天!”以及标签“五子棋 网络”所涉及的知识点主要围绕着五子棋游戏的网络版本及其在局域网中的应用。以下是详细的知识点: 1. 五子棋游戏概述: 五子棋是一种两人对弈的纯策略型棋类游戏,又称为连珠、五子连线等。游戏的目标是在一个15x15的棋盘上,通过先后放置黑白棋子,使得任意一方先形成连续五个同色棋子的一方获胜。五子棋的规则简单,但策略丰富,适合各年龄段的玩家。 2. 网络五子棋的意义: 网络五子棋是指可以在互联网或局域网中连接进行对弈的五子棋游戏版本。通过网络版本,玩家不必在同一地点即可进行游戏,突破了空间限制,满足了现代人们快节奏生活的需求,同时也为玩家们提供了与不同对手切磋交流的机会。 3. 局域网通信原理: 局域网(Local Area Network,LAN)是一种覆盖较小范围如家庭、学校、实验室或单一建筑内的计算机网络。它通过有线或无线的方式连接网络内的设备,允许用户共享资源如打印机和文件,以及进行游戏和通信。局域网内的计算机之间可以通过网络协议进行通信。 4. 网络五子棋的工作方式: 在局域网中玩五子棋,通常需要一个客户端程序(如五子棋.exe)和一个服务器程序。客户端负责显示游戏界面、接受用户输入、发送落子请求给服务器,而服务器负责维护游戏状态、处理玩家的游戏逻辑和落子请求。当一方玩家落子时,客户端将该信息发送到服务器,服务器确认无误后将更新后的棋盘状态传回给所有客户端,更新显示。 5. 五子棋.exe程序: 五子棋.exe是一个可执行程序,它使得用户可以在个人计算机上安装并运行五子棋游戏。该程序可能包含了游戏的图形界面、人工智能算法(如果支持单机对战AI的话)、网络通信模块以及游戏规则的实现。 6. put.wav文件: put.wav是一个声音文件,很可能用于在游戏进行时提供声音反馈,比如落子声。在网络环境中,声音文件可能被用于提升玩家的游戏体验,尤其是在局域网多人游戏场景中。当玩家落子时,系统会播放.wav文件中的声音,为游戏增添互动性和趣味性。 7. 网络五子棋的技术要求: 为了确保多人在线游戏的顺利进行,网络五子棋需要具备一些基本的技术要求,包括但不限于稳定的网络连接、高效的数据传输协议(如TCP/IP)、以及安全的数据加密措施(如果需要的话)。此外,还需要有一个良好的用户界面设计来提供直观和舒适的用户体验。 8. 社交与娱乐: 网络五子棋除了是一个娱乐游戏外,它还具有社交功能。玩家可以通过游戏内的聊天系统进行交流,分享经验和策略,甚至通过网络寻找新的朋友。这使得网络五子棋不仅是一个个人娱乐工具,同时也是一种社交活动。 总结来说,网络五子棋结合了五子棋游戏的传统魅力和现代网络技术,使得不同地区的玩家能够在局域网内进行娱乐和聊天,既丰富了人们的娱乐生活,又加强了人际交流。而实现这一切的基础在于客户端程序的设计、服务器端的稳定运行、局域网的高效通信,以及音效文件增强的游戏体验。
recommend-type

自由行旅游新篇章:HarmonyOS技术融合与系统架构深度解析

# 1. HarmonyOS技术概述 ## 1.1 HarmonyOS的起源与发展 HarmonyOS(鸿蒙操作系统)由华为公司开发,旨在构建全场景分布式OS,以应对不同设备间的互联问题。自从2019年首次发布以来,HarmonyOS迅速成长,并迅速应用于智能手机、平板、智能穿戴、车载设备等多种平台。该系
recommend-type

足底支撑相到达73%是什么问题

<think>好的,我现在要处理用户的问题:“足底支撑相达到73%可能的原因及影响”。首先,需要理解用户提到的“足底支撑相73%”具体指什么。足底支撑相通常指步态周期中脚与地面接触的时间占比,正常范围大约在60%-62%左右。如果达到73%,明显超出正常范围,可能意味着步态异常。 接下来,需要确定可能的原因。可能的原因包括生物力学异常,比如足弓异常(扁平足或高弓足)、踝关节活动度受限,或者肌肉力量不足,特别是小腿和足部肌肉。另外,神经系统疾病如脑卒中或帕金森病可能影响步态控制。骨骼关节问题如关节炎、髋膝关节病变也可能导致支撑时间延长。还有代偿性步态,比如因疼痛或受伤而改变步态模式。 然后是
recommend-type

宾馆预约系统开发与优化建议

宾馆预约系统是一个典型的在线服务应用,它允许用户通过互联网平台预定宾馆房间。这种系统通常包含多个模块,比如用户界面、房态管理、预订处理、支付处理和客户评价等。从技术层面来看,构建一个宾馆预约系统涉及到众多的IT知识和技术细节,下面将详细说明。 ### 标题知识点 - 宾馆预约系统 #### 1. 系统架构设计 宾馆预约系统作为一个完整的应用,首先需要进行系统架构设计,决定其采用的软件架构模式,如B/S架构或C/S架构。此外,系统设计还需要考虑扩展性、可用性、安全性和维护性。一般会采用三层架构,包括表示层、业务逻辑层和数据访问层。 #### 2. 前端开发 前端开发主要负责用户界面的设计与实现,包括用户注册、登录、房间搜索、预订流程、支付确认、用户反馈等功能的页面展示和交互设计。常用的前端技术栈有HTML, CSS, JavaScript, 以及各种前端框架如React, Vue.js或Angular。 #### 3. 后端开发 后端开发主要负责处理业务逻辑,包括用户管理、房间状态管理、订单处理等。后端技术包括但不限于Java (使用Spring Boot框架), Python (使用Django或Flask框架), PHP (使用Laravel框架)等。 #### 4. 数据库设计 数据库设计对系统的性能和可扩展性至关重要。宾馆预约系统可能需要设计的数据库表包括用户信息表、房间信息表、预订记录表、支付信息表等。常用的数据库系统有MySQL, PostgreSQL, MongoDB等。 #### 5. 网络安全 网络安全是宾馆预约系统的重要考虑因素,包括数据加密、用户认证授权、防止SQL注入、XSS攻击、CSRF攻击等。系统需要实现安全的认证机制,比如OAuth或JWT。 #### 6. 云服务和服务器部署 现代的宾馆预约系统可能部署在云平台上,如AWS, Azure, 腾讯云或阿里云。在云平台上,系统可以按需分配资源,提高系统的稳定性和弹性。 #### 7. 付款接口集成 支付模块需要集成第三方支付接口,如支付宝、微信支付、PayPal等,需要处理支付请求、支付状态确认、退款等业务。 #### 8. 接口设计与微服务 系统可能采用RESTful API或GraphQL等接口设计方式,提供服务的微服务化,以支持不同设备和服务的接入。 ### 描述知识点 - 这是我个人自己做的 请大家帮忙修改哦 #### 个人项目经验与团队合作 描述中的这句话暗示了该宾馆预约系统可能是由一个个人开发者创建的。个人开发和团队合作在软件开发流程中有着显著的不同。个人开发者需要关注的方面包括项目管理、需求分析、代码质量保证、测试和部署等。而在团队合作中,每个成员会承担不同的职责,需要有效的沟通和协作。 #### 用户反馈与迭代 描述还暗示了该系统目前处于需要外部反馈和修改的阶段。这表明系统可能还处于开发或测试阶段,需要通过用户的实际使用反馈来不断迭代改进。 ### 标签知识点 - 200 #### 未提供信息 “200”这个标签可能指的是HTTP状态码中表示请求成功(OK)的200状态码。但是,由于没有提供更多的上下文信息,无法进一步分析其在本例中的具体含义。 ### 压缩包子文件的文件名称列表知识点 - 1111 #### 文件命名与管理 “1111”这个文件名称可能是一个版本号、日期标记或者是一个简单的标识符。文件命名应当遵循一定的规则,以确保文件的可追溯性和管理的便利性。在软件开发过程中,合理组织文件和版本控制(如使用Git)是必不可少的。 综上所述,宾馆预约系统的开发是一项复杂的工程,它涉及前后端的开发、数据库设计、系统安全、接口设计等多个方面。开发者在开发过程中需要不断学习和应用各类IT知识,以确保系统能够安全、高效、稳定地运行。而对于个人开发项目,如何合理利用有限资源、高效地管理和优化项目过程也是至关重要的。