PyTorch-UNet血管造影图像分割教程

时间: 2025-07-11 15:45:33 浏览: 6
### PyTorch UNet 血管造影 图像分割 教程 在医学图像处理领域,U-Net作为一种经典的卷积神经网络架构,已被广泛应用于多种任务,包括血管分割。以下是使用PyTorch实现基于U-Net的血管造影图像分割的一个完整教程。 #### 1. 数据准备 为了训练U-Net模型进行血管分割,需要准备好标注好的血管造影图像及其对应的掩码(mask)。这些数据应分为训练集和验证集[^1]。 ```python import torch from torchvision import transforms from torch.utils.data import DataLoader, Dataset class VesselDataset(Dataset): def __init__(self, image_paths, mask_paths, transform=None): self.image_paths = image_paths self.mask_paths = mask_paths self.transform = transform def __len__(self): return len(self.image_paths) def __getitem__(self, idx): image = Image.open(self.image_paths[idx]).convert('L') mask = Image.open(self.mask_paths[idx]).convert('L') if self.transform is not None: image = self.transform(image) mask = self.transform(mask) return image, mask # 定义数据预处理步骤 data_transforms = transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor() ]) train_dataset = VesselDataset(train_image_paths, train_mask_paths, data_transforms) val_dataset = VesselDataset(val_image_paths, val_mask_paths, data_transforms) train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False) ``` #### 2. U-Net 模型定义 U-Net由编码器(下采样路径)、解码器(上采样路径)以及跳跃连接组成。下面是一个简单的U-Net实现: ```python import torch.nn as nn import torch.nn.functional as F class DoubleConv(nn.Module): def __init__(self, in_channels, out_channels): super(DoubleConv, self).__init__() self.double_conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self.double_conv(x) class UNet(nn.Module): def __init__(self, n_channels=1, n_classes=1): super(UNet, self).__init__() self.inc = DoubleConv(n_channels, 64) self.down1 = Down(64, 128) self.down2 = Down(128, 256) self.down3 = Down(256, 512) self.up1 = Up(512, 256) self.up2 = Up(256, 128) self.up3 = Up(128, 64) self.outc = OutConv(64, n_classes) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x = self.up1(x4, x3) x = self.up2(x, x2) x = self.up3(x, x1) logits = self.outc(x) return logits class Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels) ) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) x = torch.cat([x2, x1], dim=1) return self.conv(x) class OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(OutConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): return self.conv(x) ``` #### 3. 训练过程 设置损失函数、优化器并执行训练循环。 ```python device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = UNet().to(device) criterion = nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) def train_model(model, criterion, optimizer, num_epochs=20): for epoch in range(num_epochs): model.train() running_loss = 0.0 for images, masks in train_loader: images, masks = images.to(device), masks.to(device).float() outputs = model(images) loss = criterion(outputs, masks.unsqueeze(1)) optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.item() print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}") train_model(model, criterion, optimizer, num_epochs=20) ``` #### 4. 验证与评估 完成训练后,可以在验证集上测试模型性能。 ```python def evaluate_model(model, dataloader): model.eval() total_dice = 0.0 with torch.no_grad(): for images, masks in dataloader: images, masks = images.to(device), masks.to(device).float() preds = torch.sigmoid(model(images)) dice_score = (2 * (preds * masks).sum()) / ((preds + masks).sum() + 1e-8) total_dice += dice_score.item() avg_dice = total_dice / len(dataloader) print(f"Avg Dice Score on Validation Set: {avg_dice:.4f}") return avg_dice evaluate_model(model, val_loader) ``` --- ###
阅读全文

相关推荐

大家在看

recommend-type

ADC_AD7173.zip

ADC_AD7173之官方C语言驱动程序
recommend-type

vindr-cxr:VinDr-CXR

VinDr-CXR:带有放射科医生注释的胸部 X 射线开放数据集 VinDr-CXR 是一个大型公开可用的胸片数据集,带有用于常见胸肺疾病分类和关键发现定位的放射学注释。 它由 Vingroup 大数据研究所 (VinBigdata) 创建。 该数据集包含 2018 年至 2020 年从越南两家主要医院收集的超过 18,000 次 CXR 扫描。这些图像被标记为存在 28 种不同的放射学发现和诊断。 训练集中的每次扫描都由一组三名放射科医生进行注释。 对于测试集,五位经验丰富的放射科医生参与了标记过程,并根据他们的共识来建立测试标记的最佳参考标准。 要下载数据集,用户需要注册并接受我们网页上描述的数据使用协议 (DUA)。 通过接受 DUA,用户同意他们不会共享数据,并且数据集只能用于科学研究和教育目的。 代码 该存储库旨在支持使用 VinDr-CXR 数据。 我们提供了用于从 DICO
recommend-type

微信聊天记录导出- MemoTrace 留痕 2.0.6(WeChatMsg)

解锁Windows本地数据库 还原微信聊天界面: 文本 图片 拍一拍等系统消息 导出数据: 批量导出数据 导出联系人 sqlite数据库 HTML(文本、图片、视频、表情包、语音、文件、系统消息) CSV文档 TXT文档 Word文档 使用步骤: 登录要导出数据的微信(不支持微信多开,不支持部分老版本微信); 点击获取信息之后,正常情况下所有信息均会自动填充,这时候就直接点击开始启动就行了; 如果微信路径获取失败,就手动设置为微信中文件管理路径下的wxid_xxx文件夹,该wxid必须和前面获取的wxid一致,否则的话会显示密钥错误; 点击开始启动; 成功后新的数据库会存储在 WeChatMsg 软件目录下的 app/DataBase/Msg文件夹中; 最后重新启动WeChatMsg即可。
recommend-type

中科大版苏淳概率论答案

本资料是中科大版本 苏淳编著的概率论答案,此为本书前半部分答案,其中包含书中部分习题,系老师所布置的重点习题答案。包含初等概率论,随机变量,随机向量,数字特征与特征函数极限定理几章的内容
recommend-type

北邮计算机网络滑动窗口实验报告(附页包含源程序)

北邮计算机网络实验报告,是数据链路层的滑动窗口协议,采用选择重传协议,报告中内容完整,包含结构说明,代码说明,程序流程图,结果分析(表格),探究分析,源程序等。

最新推荐

recommend-type

基于pytorch的UNet_demo实现及训练自己的数据集.docx

- [官方GitHub主页](https://github.com/milesial/Pytorch-UNet)提供了另一个UNet实现,专注于车辆分割,拥有2.7k颗星。可以下载预训练模型并调整参数以适应自己的需求。 - **预训练模型**: 可以从[相关issue]...
recommend-type

PyTorch-GPU加速实例

同时,你的系统需要安装与GPU兼容的PyTorch版本,如`pytorch-gpu-0.4.1`。在代码中,将数据和模型推送到GPU的基本操作是使用`.cuda()`方法。例如,将张量转换为GPU上的数据类型: ```python tensor_gpu = tensor....
recommend-type

在Pytorch中使用Mask R-CNN进行实例分割操作

【PyTorch中使用Mask R-CNN进行实例分割】 实例分割是计算机视觉领域的一个关键任务,它旨在识别图像中每个像素所属的对象实例。不同于语义分割,实例分割不仅标识像素的类别,还能区分同一类的不同实例。Mask R-...
recommend-type

pytorch 语义分割-医学图像-脑肿瘤数据集的载入模块

在进行深度学习的语义分割任务时,尤其是针对医学图像如脑肿瘤的分析,自定义数据加载模块至关重要。PyTorch 提供了 `torch.utils.data.Dataset` 类,用于定义自己的数据集类,以便高效地处理大量数据。在这个场景中...
recommend-type

pytorch-RNN进行回归曲线预测方式

在PyTorch中,循环神经网络(RNN)是一种用于处理序列数据的深度学习模型,尤其适合于时间序列预测和自然语言处理等任务。本文主要介绍如何使用PyTorch实现RNN来进行回归曲线预测,以sin曲线为例,预测对应的cos曲线...
recommend-type

Wamp5: 一键配置ASP/PHP/HTML服务器工具

根据提供的文件信息,以下是关于标题、描述和文件列表中所涉及知识点的详细阐述。 ### 标题知识点 标题中提到的是"PHP集成版工具wamp5.rar",这里面包含了以下几个重要知识点: 1. **PHP**: PHP是一种广泛使用的开源服务器端脚本语言,主要用于网站开发。它可以嵌入到HTML中,从而让网页具有动态内容。PHP因其开源、跨平台、面向对象、安全性高等特点,成为最流行的网站开发语言之一。 2. **集成版工具**: 集成版工具通常指的是将多个功能组合在一起的软件包,目的是为了简化安装和配置流程。在PHP开发环境中,这样的集成工具通常包括了PHP解释器、Web服务器以及数据库管理系统等关键组件。 3. **Wamp5**: Wamp5是这类集成版工具的一种,它基于Windows操作系统。Wamp5的名称来源于它包含的主要组件的首字母缩写,即Windows、Apache、MySQL和PHP。这种工具允许开发者快速搭建本地Web开发环境,无需分别安装和配置各个组件。 4. **RAR压缩文件**: RAR是一种常见的文件压缩格式,它以较小的体积存储数据,便于传输和存储。RAR文件通常需要特定的解压缩软件进行解压缩操作。 ### 描述知识点 描述中提到了工具的一个重要功能:“可以自动配置asp/php/html等的服务器, 不用辛辛苦苦的为怎么配置服务器而烦恼”。这里面涵盖了以下知识点: 1. **自动配置**: 自动配置功能意味着该工具能够简化服务器的搭建过程,用户不需要手动进行繁琐的配置步骤,如修改配置文件、启动服务等。这是集成版工具的一项重要功能,极大地降低了初学者的技术门槛。 2. **ASP/PHP/HTML**: 这三种技术是Web开发中常用的组件。ASP (Active Server Pages) 是微软开发的服务器端脚本环境;HTML (HyperText Markup Language) 是用于创建网页的标准标记语言;PHP是服务器端脚本语言。在Wamp5这类集成环境中,可以很容易地对这些技术进行测试和开发,因为它们已经预配置在一起。 3. **服务器**: 在Web开发中,服务器是一个运行Web应用程序并响应客户端请求的软件或硬件系统。常见的服务器软件包括Apache、Nginx等。集成版工具提供了一个本地服务器环境,使得开发者可以在本地测试他们的应用程序。 ### 标签知识点 标签中仅出现了“PHP”一个关键词,这意味着该工具专注于与PHP相关的开发环境配置。 ### 压缩包子文件的文件名称列表知识点 1. **wamp.exe**: 这是Wamp5集成版工具的可执行文件,用户通过运行这个文件,即可启动Wamp5环境,开始进行PHP等相关开发。 2. **使用说明文档.txt**: 通常这样的文本文件包含了软件的安装指南、功能介绍、常见问题解答以及操作教程等内容。它是用户了解和使用软件的重要辅助资料,可以帮助用户快速上手。 ### 总结 Wamp5作为一个PHP集成版工具,为PHP开发者提供了一个便捷的本地开发环境。它通过自动化配置减少了开发者在搭建环境时的麻烦,整合了Web开发的关键组件,从而使得开发者能够专注于代码的编写,而不是环境配置。此外,它还提供了详尽的使用文档,帮助用户理解和运用这一工具,有效地提高了开发效率。对于希望快速入门PHP或需要一个简单易用的本地开发环境的开发者来说,Wamp5是一个非常好的选择。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

sht20温湿度传感器使用什么将上拉电阻和滤波电容引出

<think>好的,我需要解决用户关于SHT20温湿度传感器的上拉电阻和滤波电容的引出方法问题。首先,我得回忆一下SHT20的基本特性和常见电路设计。SHT20是数字传感器,通常使用I2C接口,所以上拉电阻是必须的,用于确保数据线和时钟线的稳定。根据引用[2],SHT10是通过SCK和DATA线与单片机通信,而SHT30在引用[3]中使用I2C协议,需要上拉电阻。虽然用户问的是SHT20,但SHT系列通常设计类似,所以可以推断SHT20也需要类似的上拉电阻配置。通常I2C总线的上拉电阻值在4.7kΩ到10kΩ之间,但具体值可能取决于总线速度和电源电压。需要确认数据手册中的推荐值,但用户可能没有
recommend-type

Delphi仿速达财务软件导航条组件开发教程

Delphi作为一款历史悠久的集成开发环境(IDE),由Embarcadero Technologies公司开发,它使用Object Pascal语言,被广泛应用于Windows平台下的桌面应用程序开发。在Delphi中开发组件是一项核心技术,它允许开发者创建可复用的代码单元,提高开发效率和软件模块化水平。本文将详细介绍如何在Delphi环境下仿制速达财务软件中的导航条组件,这不仅涉及到组件的创建和使用,还会涉及界面设计和事件处理等技术点。 首先,需要了解Delphi组件的基本概念。在Delphi中,组件是一种特殊的对象,它们被放置在窗体(Form)上,可以响应用户操作并进行交互。组件可以是可视的,也可以是不可视的,可视组件在设计时就能在窗体上看到,如按钮、编辑框等;不可视组件则主要用于后台服务,如定时器、数据库连接等。组件的源码可以分为接口部分和实现部分,接口部分描述组件的属性和方法,实现部分包含方法的具体代码。 在开发仿速达财务软件的导航条组件时,我们需要关注以下几个方面的知识点: 1. 组件的继承体系 仿制组件首先需要确定继承体系。在Delphi中,大多数可视组件都继承自TControl或其子类,如TPanel、TButton等。导航条组件通常会继承自TPanel或者TWinControl,这取决于导航条是否需要支持子组件的放置。如果导航条只是单纯的一个显示区域,TPanel即可满足需求;如果导航条上有多个按钮或其他控件,可能需要继承自TWinControl以提供对子组件的支持。 2. 界面设计与绘制 组件的外观和交互是用户的第一印象。在Delphi中,可视组件的界面主要通过重写OnPaint事件来完成。Delphi提供了丰富的绘图工具,如Canvas对象,使用它可以绘制各种图形,如直线、矩形、椭圆等,并且可以对字体、颜色进行设置。对于导航条,可能需要绘制背景图案、分隔线条、选中状态的高亮等。 3. 事件处理 导航条组件需要响应用户的交互操作,例如鼠标点击事件。在Delphi中,可以通过重写组件的OnClick事件来响应用户的点击操作,进而实现导航条的导航功能。如果导航条上的项目较多,还可能需要考虑使用滚动条,让更多的导航项能够显示在窗体上。 4. 用户自定义属性和方法 为了使组件更加灵活和强大,开发者通常会为组件添加自定义的属性和方法。在导航条组件中,开发者可能会添加属性来定义按钮个数、按钮文本、按钮位置等;同时可能会添加方法来处理特定的事件,如自动调整按钮位置以适应不同的显示尺寸等。 5. 数据绑定和状态同步 在财务软件中,导航条往往需要与软件其他部分的状态进行同步。例如,用户当前所处的功能模块会影响导航条上相应项目的选中状态。这通常涉及到数据绑定技术,Delphi支持组件间的属性绑定,通过数据绑定可以轻松实现组件状态的同步。 6. 导航条组件的封装和发布 开发完毕后,组件需要被封装成独立的单元供其他项目使用。封装通常涉及将组件源码保存为pas文件,并在设计时能够在组件面板中找到。发布组件可能还需要编写相应的安装包和使用文档,方便其他开发者安装和使用。 7. Delphi IDE的支持 Delphi IDE提供了组件面板编辑器(Component Palette),允许开发者将开发好的组件添加到组件面板中。在组件面板编辑器中,可以自定义组件的图标和分类,使得组件在Delphi中的使用更为便捷。 通过以上的知识点梳理,可以看出Delphi仿速达导航条组件的开发涉及到的不仅仅是简单的代码编写,还涉及到用户界面设计、事件驱动编程、组件封装等多个方面。掌握这些知识点,对于一名Delphi开发者而言,是十分重要的。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为