PyTorch-UNet血管造影图像分割教程
时间: 2025-07-11 15:45:33 浏览: 6
### PyTorch UNet 血管造影 图像分割 教程
在医学图像处理领域,U-Net作为一种经典的卷积神经网络架构,已被广泛应用于多种任务,包括血管分割。以下是使用PyTorch实现基于U-Net的血管造影图像分割的一个完整教程。
#### 1. 数据准备
为了训练U-Net模型进行血管分割,需要准备好标注好的血管造影图像及其对应的掩码(mask)。这些数据应分为训练集和验证集[^1]。
```python
import torch
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
class VesselDataset(Dataset):
def __init__(self, image_paths, mask_paths, transform=None):
self.image_paths = image_paths
self.mask_paths = mask_paths
self.transform = transform
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
image = Image.open(self.image_paths[idx]).convert('L')
mask = Image.open(self.mask_paths[idx]).convert('L')
if self.transform is not None:
image = self.transform(image)
mask = self.transform(mask)
return image, mask
# 定义数据预处理步骤
data_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
train_dataset = VesselDataset(train_image_paths, train_mask_paths, data_transforms)
val_dataset = VesselDataset(val_image_paths, val_mask_paths, data_transforms)
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)
```
#### 2. U-Net 模型定义
U-Net由编码器(下采样路径)、解码器(上采样路径)以及跳跃连接组成。下面是一个简单的U-Net实现:
```python
import torch.nn as nn
import torch.nn.functional as F
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class UNet(nn.Module):
def __init__(self, n_channels=1, n_classes=1):
super(UNet, self).__init__()
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
self.up1 = Up(512, 256)
self.up2 = Up(256, 128)
self.up3 = Up(128, 64)
self.outc = OutConv(64, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x = self.up1(x4, x3)
x = self.up2(x, x2)
x = self.up3(x, x1)
logits = self.outc(x)
return logits
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
```
#### 3. 训练过程
设置损失函数、优化器并执行训练循环。
```python
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = UNet().to(device)
criterion = nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
def train_model(model, criterion, optimizer, num_epochs=20):
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for images, masks in train_loader:
images, masks = images.to(device), masks.to(device).float()
outputs = model(images)
loss = criterion(outputs, masks.unsqueeze(1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}")
train_model(model, criterion, optimizer, num_epochs=20)
```
#### 4. 验证与评估
完成训练后,可以在验证集上测试模型性能。
```python
def evaluate_model(model, dataloader):
model.eval()
total_dice = 0.0
with torch.no_grad():
for images, masks in dataloader:
images, masks = images.to(device), masks.to(device).float()
preds = torch.sigmoid(model(images))
dice_score = (2 * (preds * masks).sum()) / ((preds + masks).sum() + 1e-8)
total_dice += dice_score.item()
avg_dice = total_dice / len(dataloader)
print(f"Avg Dice Score on Validation Set: {avg_dice:.4f}")
return avg_dice
evaluate_model(model, val_loader)
```
---
###
阅读全文
相关推荐

















