cnn图像识别代码pyCharm
时间: 2025-07-05 18:09:46 浏览: 7
### PyCharm 中实现 CNN 图像识别的 Python 示例代码
为了帮助理解如何在 PyCharm 中构建并训练卷积神经网络 (CNN),下面提供了一个基于 CIFAR-10 数据集的简单实例。此示例展示了如何加载数据、定义模型架构以及执行训练过程。
#### 安装依赖库
确保已安装必要的包,可以通过 Anaconda 的命令行工具完成:
```bash
pip install torch torchvision matplotlib numpy
```
#### 创建项目文件夹结构
建议创建一个新的 PyCharm 项目,并建立如下目录结构来保持良好的组织性:
```
project/
│── data/ # 存储下载的数据集
└── src/
└── cnn_train.py # 主程序脚本
```
#### 编写 `cnn_train.py` 文件内容
以下是完整的 Python 实现代码用于图像分类任务[^2]:
```python
import torch
from torch import nn, optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv_layer = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=32, kernel_size=(3, 3), padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=(2, 2))
)
self.fc_layer = nn.Sequential(
nn.Linear(32 * 16 * 16, 512),
nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(512, 10)
)
def forward(self, x):
batch_size = x.size(0)
x = self.conv_layer(x).view(batch_size, -1)
x = self.fc_layer(x)
return x
def load_data():
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
testset = datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)
testloader = DataLoader(testset, batch_size=64, shuffle=False)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
return trainloader, testloader, classes
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = SimpleCNN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
epochs = 5
train_loader, _, _ = load_data()
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print(f'[Epoch {epoch + 1}, Batch {i + 1}] Loss: %.3f' %
(running_loss / 100))
running_loss = 0.0
print('Finished Training.')
```
上述代码实现了简单的 CNN 架构,并通过 PyTorch 提供的功能完成了对 CIFAR-10 数据集的学习过程。注意这里只进行了少量迭代以便快速展示效果,在实际应用中可能需要调整超参数以获得更好的性能表现。
阅读全文
相关推荐


















