算术编码python自适应
时间: 2025-02-07 15:12:03 浏览: 32
### 自适应算术编码简介
自适应算术编码是一种无损数据压缩方法,在编码过程中动态调整概率模型,从而提高压缩效率。这种方法不需要预先知道输入的概率分布,而是随着编码过程不断更新统计信息[^1]。
### 实现原理概述
在Python中实现自适应算术编码主要涉及以下几个方面:
- **初始化频率表**:创建并维护一个字符到其对应频率映射的数据结构。
- **累积频数计算**:基于当前已知的字符频率来决定区间划分。
- **动态更新模型**:每次处理新字符时都会相应地调整各个符号的发生概率。
- **数值范围管理**:通过缩放操作保持精度的同时防止溢出等问题发生。
下面是一个简单的例子展示如何构建这样的算法框架。
```python
class AdaptiveArithmeticCoding:
def __init__(self):
self.frequencies = {} # 字符频率字典
self.total_frequency = 0
def update_model(self, symbol):
""" 更新模型 """
if symbol not in self.frequencies:
self.frequencies[symbol] = 1
self.total_frequency += 1
else:
self.frequencies[symbol] += 1
self.total_frequency += 1
def encode(self, data):
low = 0.0
high = 1.0
for char in data:
range_width = high - low
cumulative_freq = sum([v for k, v in sorted(self.frequencies.items()) if ord(k) < ord(char)])
proportion = (cumulative_freq + self.frequencies[char]) / self.total_frequency
new_high = low + proportion * range_width
proportion_without_current_symbol = cumulative_freq / self.total_frequency
new_low = low + proportion_without_current_symbol * range_width
low = new_low
high = new_high
self.update_model(char)
return (low + high) / 2
def decode(self, encoded_value, length):
result = []
current_interval_start = 0.0
current_interval_end = 1.0
while len(result) < length:
position_within_range = (encoded_value - current_interval_start) / (current_interval_end - current_interval_start)
accumulated_probability_sum = 0.0
for possible_char, freq in sorted(self.frequencies.items()):
accumulated_probability_sum += freq / self.total_frequency
if position_within_range <= accumulated_probability_sum:
selected_character = possible_char
break
interval_size_before_selection = current_interval_end - current_interval_start
next_position_in_new_subinterval = ((position_within_range - accumulated_probability_sum + freq/self.total_frequency) *
interval_size_before_selection +
current_interval_start)
current_interval_start += accumulated_probability_sum * interval_size_before_selection
current_interval_end = current_interval_start + (freq / self.total_frequency) * interval_size_before_selection
result.append(selected_character)
self.update_model(selected_character)
return ''.join(result)
if __name__ == "__main__":
coder = AdaptiveArithmeticCoding()
message_to_encode = "hello world"
print(f"Original Message: {message_to_encode}")
compressed_data = coder.encode(message_to_encode)
print(f"Encoded Data: {compressed_data:.5f}")
decompressed_message = coder.decode(compressed_data, len(message_to_encode))
print(f"Decoded Message: {decompressed_message}")
```
这段代码展示了基本概念的应用方式以及具体的操作流程。需要注意的是这只是一个非常基础版本的例子,并未考虑实际应用中的许多优化措施和技术细节。
阅读全文
相关推荐


















