运用栅格法,通过粒子群算法实现三维空间路径规划,请给我一段示范性代码
时间: 2025-01-29 07:12:09 浏览: 44
好的,下面是一个使用栅格法和粒子群算法(PSO)实现三维空间路径规划的示范性代码。这个代码示例展示了如何将三维空间划分为栅格,并使用粒子群算法来寻找最优路径。
```python
import numpy as np
# 定义栅格地图
class GridMap:
def __init__(self, size):
self.size = size
self.obstacles = set()
def set_obstacle(self, x, y, z):
self.obstacles.add((x, y, z))
def is_obstacle(self, x, y, z):
return (x, y, z) in self.obstacles
# 定义粒子
class Particle:
def __init__(self, size):
self.position = np.random.uniform(0, size, 3)
self.velocity = np.random.uniform(-1, 1, 3)
self.best_position = np.copy(self.position)
def update_velocity(self, global_best_position, inertia, cognitive, social):
r1, r2 = np.random.rand(2)
cognitive_velocity = cognitive * r1 * (self.best_position - self.position)
social_velocity = social * r2 * (global_best_position - self.position)
self.velocity = inertia * self.velocity + cognitive_velocity + social_velocity
def update_position(self, size):
self.position += self.velocity
self.position = np.clip(self.position, 0, size)
# 粒子群算法
def pso(grid_map, num_particles, num_iterations, inertia, cognitive, social):
size = grid_map.size
particles = [Particle(size) for _ in range(num_particles)]
global_best_position = None
global_best_value = float('inf')
for _ in range(num_iterations):
for particle in particles:
if grid_map.is_obstacle(*particle.position):
continue
value = np.linalg.norm(particle.position - np.array([size, size, size]))
if value < global_best_value:
global_best_value = value
global_best_position = particle.position
if value < np.linalg.norm(particle.best_position - np.array([size, size, size])):
particle.best_position = particle.position
for particle in particles:
particle.update_velocity(global_best_position, inertia, cognitive, social)
particle.update_position(size)
return global_best_position
# 示例使用
grid_map = GridMap(10)
grid_map.set_obstacle(2, 3, 4)
grid_map.set_obstacle(5, 6, 7)
grid_map.set_obstacle(8, 2, 3)
best_path = pso(grid_map, num_particles=30, num_iterations=100, inertia=0.5, cognitive=1.5, social=1.5)
print("最优路径:", best_path)
```
这个代码示例中,我们定义了一个`GridMap`类来表示三维栅格地图,并使用`Particle`类来表示粒子。`pso`函数实现了粒子群算法,通过迭代更新粒子的速度和位置来寻找最优路径。
阅读全文
相关推荐


















