活动介绍

决策树 选瓜

时间: 2025-04-24 18:15:02 浏览: 12
### 决策树算法用于选瓜的具体应用 #### 构建决策树模型 构建决策树模型来挑选好西瓜主要依赖于一系列属性的选择标准。这些属性可能包括色泽、根蒂形态、敲击声音等。通过分析已有数据集中的不同特征及其对应的结果(即是否为好瓜),可以建立一棵能够有效区分好坏瓜的决策树。 对于具体的实现过程,通常会遵循如下原则: - **选择最优划分属性**:利用信息增益或其他衡量指标找到最有助于分离目标类别的那个特性作为分裂依据[^1]。 - **递归创建子节点**:针对每一个新产生的内部结点重复上述步骤直到满足停止条件为止;例如当某个区域内的样本全属于同一类别时便不再继续细分下去了。 ```python from sklearn import tree import numpy as np # 假设我们有一个简单的二维数组表示不同的西瓜特征 X = [[0, 0], [1, 1]] # 特征矩阵 (假设两个特征分别为颜色和纹理) Y = ['坏', '好'] # 对应标签向量 ('坏' 或者 '好') clf = tree.DecisionTreeClassifier() model = clf.fit(X, Y) ``` 这段代码展示了如何使用 `sklearn` 库里的 `DecisionTreeClassifier()` 函数快速搭建一个基于给定训练数据的学习器,并对其进行拟合操作以准备后续预测任务[^4]。 #### ID3算法的应用实例 ID3 算法是一种经典的用来生成决策树的方法,在这里可以通过计算各个候选属性的信息熵变化程度来决定最佳切分方式。比如在一个关于西瓜的数据集中,如果发现某种特定的颜色组合总是伴随着较高的优质率,那么这种颜色就会成为优先考虑的因素之一被加入到我们的判断逻辑当中去[^2]。 #### CART剪枝策略的重要性 为了防止过拟合并提高模型的实际表现力,还需要采取适当措施对已经形成的结构加以简化处理。CART 方法中提到的一种常见做法就是实施后剪枝技术—先允许系统尽可能充分地生长成形似满二叉的形式再逐步去除那些贡献较小甚至有害的部分[^5]。 #### 实际案例演示 考虑到实际应用场景下的复杂性和多样性,下面给出一段更为贴近现实生活的例子说明整个流程是如何运作起来的: 假设有这样一个表格记录了一些已知的好/坏两种状态下的西瓜各项参数值... | 编号 | 色泽 | 根蒂形状 | 敲声 | 类别 | |------|--------|------------|-----------|-------| | 1 | 青绿 | 卷缩 | 浊响 | 是 | | ... | ... | ... | ... | ... | 通过对这个表单里所列项目逐一评估并选取合适的阈值来进行分类判定,最终形成一套完整的规则体系指导未来遇到相似情况时作出合理推断。
阅读全文

相关推荐

import math import operator import matplotlib.pyplot as plt import TreePlotter def createDataset(): dataSet = [ # 17个样本,6个属性 ['青绿', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'], ['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', '好瓜'], ['乌黑', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'], ['青绿', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', '好瓜'], ['浅白', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'], ['青绿', '稍蜷', '浊响', '清晰', '稍凹', '软粘', '好瓜'], ['乌黑', '稍蜷', '浊响', '稍糊', '稍凹', '软粘', '好瓜'], ['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '硬滑', '好瓜'], ['乌黑', '稍蜷', '沉闷', '稍糊', '稍凹', '硬滑', '坏瓜'], ['青绿', '硬挺', '清脆', '清晰', '平坦', '软粘', '坏瓜'], ['浅白', '硬挺', '清脆', '模糊', '平坦', '硬滑', '坏瓜'], ['浅白', '蜷缩', '浊响', '模糊', '平坦', '软粘', '坏瓜'], ['青绿', '稍蜷', '浊响', '稍糊', '凹陷', '硬滑', '坏瓜'], ['浅白', '稍蜷', '沉闷', '稍糊', '凹陷', '硬滑', '坏瓜'], ['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '软粘', '坏瓜'], ['浅白', '蜷缩', '浊响', '模糊', '平坦', '硬滑', '坏瓜'], ['青绿', '蜷缩', '沉闷', '稍糊', '稍凹', '硬滑', '坏瓜'] ] # 特征值列表 labels = ['色泽', '根蒂', '敲击', '纹理', '脐部', '触感'] return dataSet,labels def calcShannonEnt(dataSet): numEntries=len(dataSet) labelCounts={} for featVec in dataSet: currentLable=featVec[-1] if currentLable not in labelCounts.keys(): labelCounts[currentLable]=0 labelCounts[currentLable]+=1 #print(labelCounts) shannonEnt=0 for key in labelCounts: prob=float(labelCounts[key])/numEntries shannonEnt-=prob*math.log(prob,2) return shannonEnt def splitDataSet(dataSet,axis,value): retDataSet=[] for featVec in dataSet: if featVec[axis]==value: reducedFeatVec=featVec[:axis] reducedFeatVec.extend(featVec[axis+1:]) retDataSet.append(reducedFeatVec) return retDataSet def chooseBestFeatureToSplit(dataSet): numFeatures=len(dataSet[0])-1 baseEntropy=calcShannonEnt(dataSet) bestInfoGain=0.0 bestFeature=-1 for i in range(numFeatures): featList=[example[i] for example in dataSet] uniqueVals=set(featList) newEntropy=0 for value in uniqueVals: subDataSet=splitDataSet(dataSet,i,value) prob=len(subDataSet)/float(len(dataSet)) newEntropy+=prob*calcShannonEnt(subDataSet) infoGain=baseEntropy-newEntropy if infoGain>bestInfoGain: bestInfoGain=infoGain bestFeature=i return bestFeature def majorityCnt(classList): classCount={} for vote in classList: if vote not in classCount.keys(): classCount[vote]=0 classCount[vote]+=1 sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) #print(sortedClassCount) print(type(sortedClassCount)) print(sortedClassCount) return sortedClassCount[0][0] def createTree(dataSet,labels): classList=[example[-1] for example in dataSet] if classList.count(classList[0])==len(dataSet): return classList[0] if len(dataSet[0])==1: return majorityCnt(classList) bestFeat=chooseBestFeatureToSplit(dataSet) bestFeatLabel=labels[bestFeat] myTree={bestFeatLabel:{}} del(labels[bestFeat]) featValues=[example[bestFeat] for example in dataSet] uniqueVals=set(featValues) for value in uniqueVals: subLabels=labels[:] myTree[bestFeatLabel][value]=createTree(splitDataSet(dataSet,bestFeat,value),subLabels) return myTree dataSet,labels=createDataset() myTree=createTree(dataSet,labels) TreePlotter.createPlot(myTree) print(myTree) 逐行详细解释上述 Python 决策树代码(ID3 算法),然后给出等价的MATLAB代码(同样实现 ID3,可视化一棵完整树),要求MATLAB代码越详细越好,代码生成时要仔细注意“向量长度不匹配”、“索引超出数组元素的数目”、“函数或变量无法识别”、生成的代码里定义的变量未使用、定义的变量名混乱等等这些问题;

最新推荐

recommend-type

基于MapReduce实现决策树算法

基于MapReduce实现决策树算法的知识点 基于MapReduce实现决策树算法是一种使用MapReduce框架来实现决策树算法的方法。在这个方法中,主要使用Mapper和Reducer来实现决策树算法的计算。下面是基于MapReduce实现决策...
recommend-type

决策树剪枝算法的python实现方法详解

决策树剪枝算法是机器学习中用于优化决策树模型的一种技术,目的是防止过拟合,提高模型泛化能力。在Python中实现决策树剪枝,通常会涉及到几个关键概念和算法,包括ID3、C4.5、CART等。 ID3算法是决策树构建的基础...
recommend-type

Java实现的决策树算法完整实例

第二步,决策树的剪枝:决策树的剪枝是对上一阶段生成的决策树进行检验、校正和修下的过程,主要是用新的样本数据集(称为测试数据集)中的数据校验决策树生成过程中产生的初步规则,将那些影响预衡准确性的分枝剪除...
recommend-type

Python机器学习之决策树算法实例详解

决策树算法是机器学习中的一种基础且广泛应用的分类方法,尤其在Python的机器学习领域中。它通过构建一棵树状模型来表示一个决定过程或预测模型。决策树以易于理解和解释著称,即使对于非技术背景的人来说,也能相对...
recommend-type

决策树(数据挖掘作业)

决策树(数据挖掘作业) 在数据挖掘和机器学习领域中,决策树是一种常用的分类算法,通过学习样本数据,生成一个规则树来预测类别。以下是根据给定文件信息,生成的相关知识点: 1. 决策树算法的基本概念 决策树...
recommend-type

年轻时代音乐吧二站:四万音乐与图片资料库

根据提供的信息,我们可以梳理出以下知识点: ### 知识点一:年轻时代音乐吧二站修正版 从标题“年轻时代音乐吧二站修正版”可以推断,这是一个与音乐相关的网站或平台。因为提到了“二站”,这可能意味着该平台是某个项目或服务的第二代版本,表明在此之前的版本已经存在,并在此次发布中进行了改进或修正。 #### 描述与知识点关联 描述中提到的“近四万音乐数据库”,透露了该音乐平台拥有一个庞大的音乐库,覆盖了大约四万首歌曲。对于音乐爱好者而言,这表明用户可以访问和欣赏到广泛和多样的音乐资源。该数据库的规模对于音乐流媒体平台来说是一个关键的竞争力指标。 同时,还提到了“图片数据库(另附带近500张专辑图片)”,这暗示该平台不仅提供音乐播放,还包括了视觉元素,如专辑封面、艺人照片等。这不仅增强了用户体验,还可能是为了推广音乐或艺人而提供相关视觉资料。 ### 知识点二:下载 影音娱乐 源代码 源码 资料 #### 下载 “下载”是指从互联网或其他网络连接的计算机中获取文件的过程。在这个背景下,可能意味着用户可以通过某种方式从“年轻时代音乐吧二站修正版”平台下载音乐、图片等资源。提供下载服务需要具备相应的服务器存储空间和带宽资源,以及相应的版权许可。 #### 影音娱乐 “影音娱乐”是指以音频和视频为主要形式的娱乐内容。在这里,显然指的是音乐吧平台提供的音乐播放服务,结合上述的图片数据库,该平台可能还支持视频内容或直播功能,为用户提供丰富的视听享受。 #### 源代码 提到“源代码”和“源码”,很可能意味着“年轻时代音乐吧二站修正版”可能是开源的,或者是该平台允许用户下载其应用程序的源代码。在开源的情况下,开发者社区可以查看、修改和分发源代码,促进更多人参与到平台的建设和改进中。 #### 资料 “资料”则指的是与音乐相关的各种信息资料,如歌词、艺人介绍、音乐评论等。该音乐平台可能提供了丰富的背景信息资料,帮助用户更深入地了解音乐及其背后的故事。 ### 知识点三:压缩包子文件的文件名称列表 文件名称列表中仅提到了“年轻时代音乐吧二站修正版”,这可能暗示着整个平台或其下载包是通过压缩技术进行打包和分发的。压缩文件通常用于减少文件大小,以便于网络传输,同时也为用户提供一个集成化的软件包,方便用户一次性下载安装或更新。 ### 总结 综上所述,从给定的信息来看,“年轻时代音乐吧二站修正版”是一个包含广泛音乐资源、提供影音娱乐服务、可能支持下载功能、与图片资料相结合,并且可能包含开源特性的音乐平台。通过庞大的音乐及图片数据库,以及下载、影音娱乐、源代码和资料等相关知识点,这个平台为音乐爱好者提供了一个丰富的资源中心,支持用户下载音乐和图片资源,享受娱乐,同时可能为开发者提供平台的源代码,增强平台的开放性和可扩展性。
recommend-type

macOS PHP环境管理的艺术:掌握配置多个PHP版本的必备技巧与实践

# 1. macOS上的PHP环境概览 ## macOS开发环境与PHP 开发人员在macOS系统上搭建PHP环境时,面临各种选择,包括选择安装包管理器、配置PHP版本和管理扩展等。macOS作为开发者广泛使用的操作系统之一,提供了对PHP良好的原生支持。Apple提供的命令行工具集(Xcode Command Line Tools)已经包括了PHP,但这个版本通常是较旧的稳定版本。 ## PHP在macOS上的安装途径
recommend-type

can通信的位时间

<think>首先,用户的问题是:“我想理解CAN通信中的位时间设置 请问CAN通信 位时间配置 原理 参数设置”。我需要基于系统级指令来回答这个问题。 系统级指令: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识。 - 回答结构清晰,帮助用户逐步解决问题,尽量保证回答真实可靠。 用户的问题是关于CAN通信的位时间配置,包括原理和参数设置。参考引用中提到了CAN的波特率设置,涉及原子时间(TQ)和比特传输的阶段。引用是:[^1],
recommend-type

邮件通知系统:提升网易文章推荐体验

邮件通知程序是一种常见的网络应用程序,主要功能是通过电子邮件为用户提供信息通知服务。这种程序能够根据设定的条件,自动向用户发送邮件,通知他们新的内容或信息,这在信息更新频繁的场景中尤其有用。从描述中可知,这个特定的邮件通知程序可能被用来推荐网易上的好文章,表明它是针对内容推送而设计的。这种类型的程序通常被用作网站或博客的内容管理系统(CMS)的一部分,用来增强用户体验和用户粘性。 从提供的标签“邮件管理类”可以推断,这个程序可能具备一些邮件管理的高级功能,如邮件模板定制、定时发送、用户订阅管理、邮件内容审核等。这些功能对于提升邮件营销的效果、保护用户隐私、遵守反垃圾邮件法规都至关重要。 至于压缩包子文件的文件名称列表,我们可以从中推测出一些程序的组件和功能: - info.asp 和 recommend.asp 可能是用于提供信息服务的ASP(Active Server Pages)页面,其中 recommend.asp 可能专门用于推荐内容的展示。 - J.asp 的具体功能不明确,但ASP扩展名暗示它可能是一个用于处理数据或业务逻辑的脚本文件。 - w3jmail.exe 是一个可执行文件,很可能是一个邮件发送的组件或模块,用于实际执行邮件发送操作。这个文件可能是一个第三方的邮件发送库或插件,例如w3mail,这通常用于ASP环境中发送邮件。 - swirl640.gif 和 dimac.gif 是两个图像文件,可能是邮件模板中的图形元素。 - default.htm 和 try.htm 可能是邮件通知程序的默认和测试页面。 - webcrea.jpg 和 email.jpg 是两个图片文件,可能是邮件模板设计时使用的素材或示例。 邮件通知程序的核心知识点包括: 1. 邮件系统架构:邮件通知程序通常需要后端服务器和数据库来支持。服务器用于处理邮件发送逻辑,数据库用于存储用户信息、订阅信息以及邮件模板等内容。 2. SMTP 协议:邮件通知程序需要支持简单邮件传输协议(SMTP)以与邮件服务器通信,发送邮件到用户指定的邮箱。 3. ASP 编程:由于提及了ASP页面,这表明开发邮件通知程序可能用到 ASP 技术。ASP 允许在服务器端执行脚本以生成动态网页内容。 4. 邮件内容设计:设计吸引人的邮件内容对于提高用户互动和兴趣至关重要。邮件模板通常包括文本、图片、链接,以及可能的个性化元素。 5. 用户订阅管理:邮件通知程序需要提供用户订阅和退订的功能,以便用户可以控制他们接收到的信息类型和数量。 6. 邮件发送策略:为了遵守反垃圾邮件法律并提高邮件送达率,邮件通知程序需要实现合理的发送策略,例如定时发送、避免过度发送、邮件列表管理等。 7. 安全性和隐私保护:发送邮件时需要确保邮件内容的安全性和用户隐私,避免敏感信息泄露,并且遵守相关的数据保护法律和规范。 8. 性能优化:邮件通知程序需要有效地处理大量用户的邮件发送请求,保证邮件发送的高效性,并且优化系统性能以应对高峰时段。 9. 用户体验:良好的用户体验设计能够增加用户的互动和满意度,包括清晰的订阅界面、灵活的邮件设置选项、易于理解的通知内容等。 10. 反馈机制:用户对邮件的反馈,如打开率、点击率和退订率,是衡量邮件通知程序效果的重要指标。有效的反馈机制可以帮助改进邮件内容和发送策略。 通过了解这些知识点,我们可以对邮件通知程序的设计、开发和运作有更全面的认识。
recommend-type

【macOS PHP开发环境搭建新手必备】:使用brew一步到位安装nginx、mysql和多版本php的终极指南

# 1. macOS PHP开发环境概述 ## macOS下PHP开发的重要性 在macOS上设置PHP开发环境是开发高效Web应用程序的关键。macOS为开发者提供了一个稳定且用户友好的操作系统环境,结合了Unix的强大功能和苹果的直观界面设计。由于其Linux类似的核心,macOS常被视为Web开发的理想平台,特别是在搭