pytorch CNN-LSTM-Attention
时间: 2025-05-10 20:20:52 浏览: 26
### 如何在PyTorch中实现CNN-LSTM-Attention模型
#### CNN-LSTM-Attention架构概述
组合卷积神经网络(CNN),长短时记忆(LSTM)以及注意力(Attention)机制可以有效提升时间序列分析和其他连续数据处理任务的效果。通过利用CNN提取局部特征,LSTM捕捉长期依赖关系,而Attention则帮助聚焦于重要的输入部分。
#### 构建CNN层
首先定义用于特征抽取的二维卷积层。这一步骤对于图像或其他具有空间结构的数据尤为重要,在一维情况下同样适用以捕获局部模式:
```python
import torch.nn as nn
class CNNEncoder(nn.Module):
def __init__(self, input_channels=1, out_channels=64, kernel_size=3):
super(CNNEncoder, self).__init__()
self.conv_layer = nn.Sequential(
nn.Conv1d(in_channels=input_channels,
out_channels=out_channels,
kernel_size=kernel_size),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2))
def forward(self, x):
output = self.conv_layer(x)
return output
```
#### 设计LSTM模块
接着创建一个标准的单向或多层LSTM来接收由前面提到的CNN编码器产生的输出,并进一步加工这些抽象表示形式:
```python
class LSTMLayer(nn.Module):
def __init__(self, hidden_dim=128, num_layers=2, bidirectional=False):
super(LSTMLayer, self).__init__()
self.lstm = nn.LSTM(input_size=hidden_dim,
hidden_size=hidden_dim,
num_layers=num_layers,
batch_first=True,
bidirectional=bidirectional)
def forward(self, x):
lstm_out, _ = self.lstm(x)
return lstm_out
```
#### 实现Attention机制
最后加入自注意机制以便让模型学会关注最相关的上下文信息片段。这里展示了一个简单的加法型attention函数实现方式:
```python
class AttentionLayer(nn.Module):
def __init__(self, method='dot'):
super(AttentionLayer, self).__init__()
self.method = method
if self.method not in ['dot', 'general']:
raise ValueError('Unknown attention type')
elif self.method == "general":
self.attn = nn.Linear(hidden_dim, hidden_dim)
def dot_score(self, query, key):
return torch.sum(query * key, dim=-1)
def general_score(self, query, key):
energy = self.attn(key)
return torch.sum(query * energy, dim=-1)
def forward(self, query, keys):
# Calculate the alignment scores based on chosen method.
if self.method == 'dot':
attn_energies = self.dot_score(query.unsqueeze(1), keys)
elif self.method == 'general':
attn_energies = self.general_score(query.unsqueeze(1), keys)
# Transpose max_length and batch_size dimensions to get (batch_size, max_length).
attn_weights = F.softmax(attn_energies.t(), dim=1).unsqueeze(1)
context_vector = torch.bmm(attn_weights, keys)
return context_vector.squeeze(1), attn_weights
```
#### 组合各组件形成完整的模型
现在有了上述三个主要组成部分之后就可以把它们组装起来构成最终的目标模型——即带有注意力机制的支持长短期记忆特性的卷积神经网络了:
```python
class CNN_LSTM_Attention(nn.Module):
def __init__(self, cnn_encoder, lstm_layer, atten_method="dot"):
super(CNN_LSTM_Attention, self).__init__()
self.cnn_encoder = cnn_encoder
self.lstm_layer = lstm_layer
self.attention_layer = AttentionLayer(method=atten_method)
def forward(self, inputs):
conv_output = self.cnn_encoder(inputs.permute(0, 2, 1)) # Adjust dimension order for Conv1D operation.
lstm_input = conv_output.permute(0, 2, 1) # Restore original shape before feeding into LSTM.
lstm_outputs = self.lstm_layer(lstm_input)
context_vector, attn_weights = self.attention_layer(lstm_outputs[:, -1], lstm_outputs)
return context_vector, attn_weights
```
此代码段展示了如何使用PyTorch搭建一个融合了CNN、LSTM和Attention三种技术优势于一体的深度学习模型[^1]。
阅读全文
相关推荐


















