informer时间序列预测举例
时间: 2025-04-02 20:15:31 浏览: 37
### Informer时间序列预测示例代码
以下是基于PyTorch框架实现的Informer模型用于时间序列预测的一个简化版本。此代码展示了如何构建和训练一个基本的Informer模型来进行单变量或多变量的时间序列预测。
#### 数据准备
为了演示方便,假设我们有一个简单的正弦波数据集作为输入:
```python
import numpy as np
import torch
def generate_sine_data(seq_len, num_samples=1000):
t = np.linspace(0, seq_len * num_samples / 100, num_samples)
data = np.sin(t) + np.random.normal(scale=0.1, size=t.shape)
return torch.tensor(data).float()
seq_len = 96
data = generate_sine_data(seq_len)
train_size = int(len(data) * 0.8)
train_data, test_data = data[:train_size], data[train_size:]
```
#### Informer模型定义
下面是一个简化的Informer模型结构,主要由编码器、解码器以及自注意力机制组成。
```python
import torch.nn as nn
from informer import InformerModel # 假设已经安装了对应的库或者实现了该模块
class TimeSeriesPredictor(nn.Module):
def __init__(self, enc_in, dec_in, c_out, seq_len, label_len, out_len,
factor=5, d_model=512, n_heads=8, e_layers=3, d_layers=2,
d_ff=512, dropout=0.0, attn='prob', embed='fixed', freq='h',
activation='gelu'):
super(TimeSeriesPredictor, self).__init__()
self.informer = InformerModel(
enc_in=enc_in, dec_in=dec_in, c_out=c_out, seq_len=seq_len,
label_len=label_len, out_len=out_len, factor=factor, d_model=d_model,
n_heads=n_heads, e_layers=e_layers, d_layers=d_layers, d_ff=d_ff,
dropout=dropout, attn=attn, embed=embed, freq=freq, activation=activation
)
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
return self.informer(x_enc, x_mark_enc, x_dec, x_mark_dec)
```
#### 训练过程
这里展示了一个基础的训练循环逻辑。
```python
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = TimeSeriesPredictor(
enc_in=1, dec_in=1, c_out=1, seq_len=96, label_len=48, out_len=24
).to(device)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
batch_size = 32
epochs = 10
for epoch in range(epochs):
model.train()
total_loss = 0
for i in range(0, len(train_data) - batch_size*seq_len, batch_size*seq_len):
optimizer.zero_grad()
src = train_data[i:i+batch_size*seq_len].view(batch_size, seq_len, 1).to(device)
tgt = train_data[i+seq_len//2:i+batch_size*seq_len+seq_len//2].view(batch_size, seq_len, 1).to(device)
output = model(src[:, :, :], None, tgt[:, :48, :], None)
loss = criterion(output, tgt[:, 48:, :])
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / (len(train_data) // (batch_size*seq_len))
print(f"Epoch {epoch}, Loss: {avg_loss}")
```
以上代码片段提供了从数据生成到模型定义再到简单训练的过程[^2]。需要注意的是,在实际应用中可能还需要处理更多的细节,比如更复杂的数据预处理、超参数调整等。
阅读全文
相关推荐
















