Namespace(weights='yolov5s.pt', cfg='', data='data/coco128.yaml', hyp='data/hyp.scratch.yaml', epoch

时间: 2025-07-07 13:36:37 浏览: 4
<think>嗯,用户想了解关于Namespace中的weights、cfg、data、hyp和epoch参数。这些参数在YOLOv5训练中很重要。首先,我需要回忆一下YOLOv5的配置和训练流程。 用户提到的Namespace可能指的是训练脚本中的参数解析,比如使用argparse库定义的命令行参数。每个参数的作用需要分别解释清楚。 weights参数默认是'yolov5s.pt',这是预训练的权重文件。用户可能想知道为什么用预训练权重,以及不同模型的区别,比如yolov5s、m、l、x。需要说明迁移学习的优势,加快训练和提升效果。 cfg参数是模型配置文件,但这里为空,可能因为直接使用weights对应的模型结构。如果用户自定义模型,可能需要指定cfg文件,比如yolov5s.yaml。这时候需要解释配置文件和权重之间的关系。 data参数指向data/coco128.yaml,这是数据集配置文件。里面应该包含训练、验证数据的路径,类别数和类别名。用户可能需要了解如何准备自己的数据集,修改这个文件。 hyp是超参数配置文件,比如hyp.scratch.yaml。里面包含学习率、数据增强等参数。用户可能想调整这些超参数来优化训练,需要说明各个超参数的作用,以及修改时的注意事项。 epoch参数是训练的轮数,默认可能没有在例子中给出数值?或者用户的问题里可能缺少具体数值。需要解释epoch的意义,如何根据数据集大小和模型复杂度选择合适的epoch,避免欠拟合或过拟合。 还要考虑用户可能的背景,可能是刚开始用YOLOv5,需要指导如何配置这些参数进行训练。可能需要提醒他们查看官方文档,确保文件路径正确,以及如何调整参数进行调优。 需要确保回答结构清晰,分点解释每个参数的作用、使用场景和注意事项。同时,注意使用中文,避免术语混淆,必要时举例说明。比如,解释预训练权重时,可以提到COCO数据集上的预训练模型,迁移到自定义数据的好处。 可能用户的问题中没有提到其他参数,但需要聚焦在提到的几个上。确认每个参数在训练脚本中的具体应用,以及常见问题,比如如果cfg留空,是否自动根据weights确定模型结构? 总结:分步骤介绍每个参数,结合实际使用案例,帮助用户理解如何配置和调整这些参数来训练自己的YOLOv5模型。</think>在YOLOv5模型训练中,`Namespace`参数用于定义训练配置。以下是逐项解释: #### 1. `weights='yolov5s.pt'` - **作用**:指定预训练权重文件路径 - **细节**: - `yolov5s.pt`是YOLOv5官方提供的轻量级预训练模型 - 使用预训练权重可实现迁移学习,加速收敛 - 支持切换为`yolov5m.pt`/`yolov5l.pt`/`yolov5x.pt`等不同规模模型 #### 2. `cfg=''` - **作用**:定义模型结构配置文件路径 - **细节**: - 空值表示自动使用与`weights`对应的配置文件 - 自定义模型时需指定如`yolov5s.yaml` - 配置文件定义网络结构、锚点参数等 #### 3. `data='data/coco128.yaml'` - **作用**:指定数据集配置文件 - **内容示例**: ```yaml train: ../train/images val: ../val/images nc: 80 # 类别数 names: ['person', 'car', ...] # 类别名称 ``` - **注意事项**:需按实际数据集路径修改 #### 4. `hyp='data/hyp.scratch.yaml'` - **作用**:超参数配置文件 - **关键参数**: - 学习率(lr0: 0.01) - 数据增强参数(hsv_h: 0.015) - 正则化(weight_decay: 0.0005) - **调整建议**:小数据集可降低学习率,增加数据增强强度 #### 5. `epochs=300` - **作用**:定义训练总轮次 - **选择策略**: - 小型数据集(如coco128):100-300轮 - 大数据集:300+轮 - 监控验证集loss避免过拟合 #### 典型训练配置示例 ```python python train.py \ --weights yolov5s.pt \ --cfg models/yolov5s.yaml \ --data coco128.yaml \ --hyp hyp.scratch.yaml \ --epochs 300 ``` #### 注意事项 1. 首次运行会自动下载预训练权重 2. 自定义数据集需保证`*.yaml`路径正确 3. 超参数调整建议使用网格搜索(grid search) 4. 训练中断可用`--resume`参数恢复 这些参数共同控制模型架构、数据加载和优化过程,合理配置可显著提升训练效率和模型性能。
阅读全文

相关推荐

报错python3 train.py --weights weights/yolov5s.pt --cfg models/yolov5s.yaml --data data/my_yolov5.yaml --epoch 200 --batch-size 8 --img 640 --device 0 train: weights=weights/yolov5s.pt, cfg=models/yolov5s.yaml, data=data/my_yolov5.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=200, batch_size=8, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, evolve_population=data/hyps, resume_evolve=None, bucket=, cache=None, image_weights=False, device=0, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest, ndjson_console=False, ndjson_file=False github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5 Traceback (most recent call last): File "/home/nvidia/Downloads/yolov5-master/train.py", line 986, in <module> main(opt) File "/home/nvidia/Downloads/yolov5-master/train.py", line 672, in main device = select_device(opt.device, batch_size=opt.batch_size) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/nvidia/Downloads/yolov5-master/utils/torch_utils.py", line 124, in select_device assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(",", "")), ( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ AssertionError: Invalid CUDA '--device 0' requested, use '--device cpu' or pass valid CUDA device(s)

E:\study\anaconda\envs\myenv\python.exe D:\yolov5-6.0\train.py train: weights=yolov5s.pt, cfg=models/yolov5s_SE.yaml, data=data\coco128.yaml, hyp=data\hyps\hyp.scratch.yaml, epochs=100, batch_size=1, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=None, image_weights=False, device=0, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, patience=100, freeze=0, save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5 Torch 2.6.0+cpu CPU hyperparameters: lr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0 TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/ Weights & Biases: run 'pip install wandb' to automatically track and visualize YOLOv5 runs (RECOMMENDED) from n params module arguments 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] 2 -1 1 18816 models.common.C3 [64, 64, 1] 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] 4 -1 2 115712 models.common.C3 [128, 128, 2]

train: weights=pretrained/yolov5s.pt, cfg=mask_yolov5s.yaml, data=mask_data.yaml, hyp=data\hyps\hyp.scratch.yaml, epochs=100, batch_size=4, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=None, image_weights=False, device=0, multi_scale=True, single_cls=False, adam=False, sync_bn=False, workers=0, project=runs\train, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, patience=100, freeze=0, save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5 YOLOv5 2025-3-18 torch 2.4.1 CUDA:0 (NVIDIA GeForce RTX 4060 Laptop GPU, 8188MiB) hyperparameters: lr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0 Weights & Biases: run 'pip install wandb' to automatically track and visualize YOLOv5 runs (RECOMMENDED) TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/ train.py:115: FutureWarning: You are using torch.load with weights_only=False (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for weights_only will be flipped to True. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via to

C:\Users\泽熙\.conda\envs\material\python.exe D:\yolo_picture\yolo\yolov5-5.0\train.py github: skipping check (not a git repository) YOLOv5 2025-3-13 torch 1.10.2+cpu CPU Namespace(adam=False, artifact_alias='latest', batch_size=2, bbox_interval=-1, bucket='', cache_images=False, cfg='models/yolov5s_train.yaml', data='data/material.yaml', device='', entity=None, epochs=5, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], label_smoothing=0.0, linear_lr=False, local_rank=-1, multi_scale=False, name='exp', noautoanchor=False, nosave=False, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs\\train\\exp8', save_period=-1, single_cls=False, sync_bn=False, total_batch_size=2, upload_dataset=False, weights='yolov5s.pt', workers=8, world_size=1) tensorboard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/ hyperparameters: lr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0 wandb: Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended) from n params module arguments 0 -1 1 3520 models.common.Focus [3, 32, 3] 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] 2 -1 1 19904 models.common.BottleneckCSP [64, 64, 1] 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] 4 -1 1 161152 models.common.Bottlenec

C:\pycharm\yolov5-master-.github\yolov5-master\venv\Scripts\python.exe C:\pycharm\yolov5-master-.github\yolov5-master\train.py github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5 train: weights=weights\yolov5s.pt, cfg=models/yolov5s.yaml, data=data\fire.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=10, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, evolve_population=data\hyps, resume_evolve=None, bucket=, cache=None, image_weights=False, device=cpu, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest, ndjson_console=False, ndjson_file=False YOLOv5 2024-9-20 Python-3.11.9 torch-2.4.1+cpu CPU hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0 Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5 runs in Comet TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/ Dataset not found , missing paths ['C:\\pycharm\\yolov5-master-.github\\yolov5-master\\datasets# \\val.txt'] Traceback (most recent call last): File "C:\pycharm\yolov5-master-.github\yolov5-master\train.py", line 1012, in <module> main(opt) File "C:\pycharm\yolov5-master-.github\yolov5-master\train.py", line 714, in main train(opt.hyp, opt, device, callbacks) File "C:\pycharm\yolov5-master-.github\yolov5-master\train.py", line 229, in train data_dict = data_dict or check_dataset(data) # check if None ^^^^^^^^^^^^^^^^^^^ File "C:\pycharm\yolov5-master-.github\yolov5-master\utils\general.py", line 565, in check_dataset raise Exception("Dataset not found ❌") Exception: Dataset not found ❌

"E:\Program Files\anaconda3\envs\v8\python.exe" E:\Python_PyCharm\【大作业-09】YOLOv5实现手势识别\yolov5-hand-42\train.py wandb: Using wandb-core as the SDK backend. Please refer to https://wandb.me/wandb-core for more information. wandb: Currently logged in as: 2358781902 (2358781902-) to https://api.wandb.ai. Use wandb login --relogin to force relogin train: weights=pretrained\yolov5s.pt, cfg=models\yolov5s.yaml, data=data\data.yaml, hyp=data\hyps\hyp.scratch.yaml, epochs=300, batch_size=4, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=True, single_cls=False, adam=False, sync_bn=False, workers=0, project=runs\train, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, patience=100, freeze=0, save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest github: skipping check (offline), for updates see https://github.com/ultralytics/yolov5 requirements: Pillow==8.4.0 not found and is required by YOLOv5, attempting auto-update... requirements: 'pip install Pillow==8.4.0' skipped (offline) YOLOv5 7e8b886 torch 2.4.1+cu124 CUDA:0 (NVIDIA GeForce RTX 3050 Laptop GPU, 4096MiB) hyperparameters: lr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0 TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/ wandb: Tracking run with wandb version 0.19.8 wandb: Run data is saved locally in E:\Python_PyCharm\【大作业-09】YOLOv5实现手势识别\yolov5-hand-42\wandb\run-20250321_084633-k4djllk2 wandb: Run wandb offline to turn off syncing. wandb: Syncing run toasty-violet-1 wa

YOLOR  2023-11-3 torch 2.6.0+cu126 CUDA:0 (NVIDIA GeForce RTX 4090 D, 24188.125MB) Namespace(weights='yolov7.pt', cfg='/home/wzy/XXA/yolov7-main/cfg/training/yolov7.yaml', data='data/myyolo.yaml', hyp='data/hyp.scratch.p5.yaml', epochs=300, batch_size=16, img_size=[640, 640], rect=False, resume=False, nosave=False, notest=False, noautoanchor=False, evolve=False, bucket='', cache_images=False, image_weights=False, device='0', multi_scale=False, single_cls=False, adam=False, sync_bn=False, local_rank=-1, workers=8, project='runs/train', entity=None, name='exp', exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias='latest', freeze=[0], v5_metric=False, world_size=1, global_rank=-1, save_dir='runs/train/exp11', total_batch_size=16) tensorboard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/ hyperparameters: lr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.3, cls_pw=1.0, obj=0.7, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.2, scale=0.9, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.15, copy_paste=0.0, paste_in=0.15, loss_ota=1 Traceback (most recent call last): File "/home/wzy/XXA/yolov7-main/train.py", line 632, in <module> train(hyp, opt, device, tb_writer) File "/home/wzy/XXA/yolov7-main/train.py", line 87, in train run_id = torch.load(weights, map_location=device).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/wzy/anaconda3/envs/YOLOV7-xxa/lib/python3.11/site-packages/torch/serialization.py", line 1470, in load raise pickle.UnpicklingError(_get_wo_message(str(e))) from None _pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so y

(material) PS D:\yolo_picture\yolo\yolov5-5.0> python .\train.py github: skipping check (not a git repository) YOLOv5 2021-4-12 torch 1.10.2+cpu CPU Namespace(adam=False, artifact_alias='latest', batch_size=2, bbox_interval=-1, bucket='', cache_images=False, cfg='models/yolov5s_train.yaml', data='data/material.yaml', device='', entity=None, epochs=5, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], label_smoothing=0.0, linear_lr=False, local_rank=-1, multi_scale=False, name='exp', noautoanchor=False, nosave=False, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs\\train\\exp', save_period=-1, single_cls=False, sync_bn=False, total_batch_size=2, upload_dataset=False, weights='yolov5s.pt', workers=8, world_size=1) tensorboard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/ hyperparameters: lr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0 Traceback (most recent call last): File ".\train.py", line 546, in <module> train(hyp, opt, device, tb_writer) File ".\train.py", line 73, in train weights) else None File "C:\Users\泽熙\.conda\envs\material\lib\site-packages\torch\serialization.py", line 607, in load return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args) File "C:\Users\泽熙\.conda\envs\material\lib\site-packages\torch\serialization.py", line 880, in _load unpickler = UnpicklerWrapper(data_file, **pickle_load_args) TypeError: 'weights_only' is an invalid keyword argument for this function (material) PS D:\yolo_picture\yolo\yolov5-5.0> python -c "from pycocotools.coco import COCO; print('py

Using CUDA device0 _CudaDeviceProperties(name='NVIDIA GeForce RTX 2050', total_memory=4095MB) Namespace(adam=False, batch_size=16, bucket='', cache_images=False, cfg='', data='data/coco128.yaml', device='', epochs=300, evolve=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], local_rank=-1, logdir='runs/', multi_scale=False, name='', noautoanchor=False, nosave=False, notest=False, rect=False, resume=False, single_cls=False, sync_bn=False, total_batch_size=16, weights='yolov5s.pt', workers=0, world_size=1) Start Tensorboard with "tensorboard --logdir runs/", view at http://localhost:6006/ Hyperparameters {'lr0': 0.01, 'lrf': 0.2, 'momentum': 0.937, 'weight_decay': 0.0005, 'warmup_epochs': 3.0, 'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1, 'box': 0.05, 'cls': 0.5, 'cls_pw': 1.0, 'obj': 1.0, 'obj_pw': 1.0, 'iou_t': 0.2, 'anchor_t': 4.0, 'fl_gamma': 0.0, 'hsv_h': 0.015, 'hsv_s': 0.7, 'hsv_v': 0.4, 'degrees': 0.0, 'translate': 0.1, 'scale': 0.5, 'shear': 0.0, 'perspective': 0.0, 'flipud': 0.0, 'fliplr': 0.5, 'mosaic': 1.0, 'mixup': 0.0} C:\Users\24625\YOLO5\YOLO5\yolov5-master\train.py:86: FutureWarning: You are using torch.load with weights_only=False (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for weights_only will be flipped to True. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via torch.serialization.add_safe_globals. We recommend you start setting weights_only=True for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this expe

0 YOLOv5 2021-12-3 torch 2.6.0+cu126 CUDA:0 (NVIDIA GeForce RTX 4060 Laptop GPU, 8187.5MB) Namespace(weights='yolov5l6.pt', cfg='models/yolov5m.yaml', data='data/coco128.yaml', hyp='data/hyp.scratch.yaml', epochs=300, batch_size=8, img_size=[1280, 1280], rect=False, resume=False, nosave=False, notest=False, noautoanchor=False, evolve=False, bucket='', cache_images=False, image_weights=False, device='0', multi_scale=False, single_cls=False, adam=False, sync_bn=False, local_rank=-1, workers=46, project='runs/test', entity=None, name='exp', exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias='latest', world_size=1, global_rank=-1, save_dir='runs\\test\\exp7', total_batch_size=8) tensorboard: Start with 'tensorboard --logdir runs/test', view at http://localhost:6006/ hyperparameters: lr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0 Traceback (most recent call last): File "d:\yolov5\yolov5-master\train.py", line 541, in <module> train(hyp, opt, device, tb_writer) File "d:\yolov5\yolov5-master\train.py", line 63, in train data_dict = yaml.safe_load(f) # data dict ^^^^^^^^^^^^^^^^^ File "D:\Anaconda_envs\envs\yolov5-master\Lib\site-packages\yaml\__init__.py", line 125, in safe_load return load(stream, SafeLoader) ^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\Anaconda_envs\envs\yolov5-master\Lib\site-packages\yaml\__init__.py", line 79, in load loader = Loader(stream) ^^^^^^^^^^^^^^ File "D:\Anaconda_envs\envs\yolov5-master\Lib\site-packages\yaml\loader.py", line 34, in __init__ Reader.__init__(self, stream) File "D:\Anaconda_en

0 YOLOv5 2021-12-3 torch 2.6.0+cu126 CUDA:0 (NVIDIA GeForce RTX 4060 Laptop GPU, 8187.5MB) Namespace(weights='yolov5l6.pt', cfg='models/hub/yolov5l6.yaml', data='data/coco_test.yaml', hyp='data/hyp.scratch.yaml', epochs=1000, batch_size=8, img_size=[1280, 1280], rect=False, resume=False, nosave=False, notest=False, noautoanchor=False, evolve=False, bucket='', cache_images=False, image_weights=False, device='0', multi_scale=False, single_cls=False, adam=False, sync_bn=False, local_rank=-1, workers=46, project='runs/test', entity=None, name='exp', exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias='latest', world_size=1, global_rank=-1, save_dir='runs\\test\\exp3', total_batch_size=8) tensorboard: Start with 'tensorboard --logdir runs/test', view at http://localhost:6006/ hyperparameters: lr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0 Traceback (most recent call last): File "d:\yolov5\yolov5-master\train.py", line 541, in <module> train(hyp, opt, device, tb_writer) File "d:\yolov5\yolov5-master\train.py", line 63, in train data_dict = yaml.safe_load(f) # data dict ^^^^^^^^^^^^^^^^^ File "D:\Anaconda_envs\envs\yolov5-master\Lib\site-packages\yaml\__init__.py", line 125, in safe_load return load(stream, SafeLoader) ^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\Anaconda_envs\envs\yolov5-master\Lib\site-packages\yaml\__init__.py", line 79, in load loader = Loader(stream) ^^^^^^^^^^^^^^ File "D:\Anaconda_envs\envs\yolov5-master\Lib\site-packages\yaml\loader.py", line 34, in __init__ Reader.__init__(self, stream) File "D:\Ana

Namespace(weights='yolo7.pt', cfg='cfg/training/yolov7.yaml', data='data/DOTA_split.yaml', hyp='data/hyp.scratch.p5.yaml', epochs=10, batch_size=4, img_size=[640, 640], rect=False, resume=False, nosave=False, notest=False, noautoanchor=False, evolve=False, bucket='', cache_images=False, image_weights=False, device='', multi_scale=False, single_cls=False, ada m=False, sync_bn=False, local_rank=-1, workers=8, project='runs/train', entity=None, name='exp', exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias='latest', freeze=[0], v5_metric=False, world_size=1, global_rank=-1, save_dir='runs\\train\\exp2', total_batch_size=4) tensorboard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/ hyperparameters: lr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.3, cls_pw=1.0, obj=0.7, obj_pw= 1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.2, scale=0.9, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.15, copy_paste=0.0, paste_in=0.15, loss_ota=1 Traceback (most recent call last): File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\train.py", line 618, in <module> train(hyp, opt, device, tb_writer) File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\train.py", line 64, in train data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\venv\lib\site-packages\yaml\__init__.py", line 79, in load loader = Loader(stream) File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\venv\lib\site-packages\yaml\loader.py", line 34, in __init__ Reader.__init__(self, stream) File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\venv\lib\site-packages\yaml\reader.py", line 85, in __init__ self.determine_encoding() File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\venv\lib\site-packages\yaml\reader.py", line 124, in determine_encoding self.update_raw() File "D:\Documents\Desktop\YOLO_suanfa\yolov7-main\venv\lib\site-packages\yaml\reader.py", line 178, in update_raw data = self.stream.read(size) UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 233: illegal multibyte sequence

最新推荐

recommend-type

数据挖掘概述.ppt

数据挖掘概述.ppt
recommend-type

浅谈互联网+儿童文学阅读指导策略(1).docx

浅谈互联网+儿童文学阅读指导策略(1).docx
recommend-type

前端分析-202307110078988

前端分析-202307110078988
recommend-type

推荐算法介绍PPT学习课件.ppt

推荐算法介绍PPT学习课件.ppt
recommend-type

500强企业管理表格模板大全

在当今商业环境中,管理表格作为企业运营和管理的重要工具,是确保组织高效运作的关键。世界500强企业在管理层面的成功,很大程度上得益于它们的规范化和精细化管理。本文件介绍的“世界500强企业管理表格经典”,是一份集合了多种管理表格模板的资源,能够帮助管理者们更有效地进行企业规划、执行和监控。 首先,“管理表格”这个概念在企业中通常指的是用于记录、分析、决策和沟通的各种文档和图表。这些表格不仅仅局限于纸质形式,更多地是以电子形式存在,如Excel、Word、PDF等文件格式。它们帮助企业管理者收集和整理数据,以及可视化信息,从而做出更加精准的决策。管理表格可以应用于多个领域,例如人力资源管理、财务预算、项目管理、销售统计等。 标题中提及的“世界500强”,即指那些在全球范围内运营且在《财富》杂志每年公布的全球500强企业排行榜上出现的大型公司。这些企业通常具备较为成熟和先进的管理理念,其管理表格往往经过长时间的实践检验,并且能够有效地提高工作效率和决策质量。 描述中提到的“规范化”是企业管理中的一个核心概念。规范化指的是制定明确的标准和流程,以确保各项管理活动的一致性和可预测性。管理表格的使用能够帮助实现管理规范化,使得管理工作有据可依、有章可循,减少因个人经验和随意性带来的风险和不确定性。规范化管理不仅提高了企业的透明度,还有利于培养员工的规则意识,加强团队之间的协调与合作。 “经典”一词在这里强调的是,这些管理表格模板是经过实践验证,能够适用于大多数管理场景的基本模式。由于它们的普适性和高效性,这些表格模板被广泛应用于不同行业和不同规模的企业之中。一个典型的例子是SWOT分析表,它可以帮助企业识别内部的优势(Strengths)、弱点(Weaknesses)以及外部的机会(Opportunities)和威胁(Threats)。SWOT分析表就是一个在世界500强企业中普遍使用的管理表格。 标签中的“表格模板”则是对上述管理工具的具体描述。这些模板通常是预先设计好的,能够帮助企业管理者快速开始工作,无需从零开始制作新的表格。它们包含了一些必备的字段和格式,用户可以根据自己的具体需求对模板进行调整和填充。 文件名称列表中的“index.html”可能是压缩包内的一个网页文件,用于展示管理表格的索引或介绍。如果这是一个在线资源,它将允许用户通过网页界面访问和下载各种表格模板。而“menu”可能是一个导航文件,用来帮助用户在多个表格模板之间进行选择。“data”文件夹可能包含了实际的表格模板文件,它们可能以Excel、Word等格式存在。 总的来说,管理表格是企业成功管理不可或缺的工具。通过使用世界500强企业所采纳的管理表格模板,其他企业可以借鉴这些顶级企业的管理经验,帮助自己在管理实践中达到更高的效率和质量。通过规范化和模板化的管理表格,企业可以确保其管理活动的一致性和标准化,这对于保持竞争力和实现长期发展至关重要。
recommend-type

YOLOv8目标检测算法深度剖析:从零开始构建高效检测系统(10大秘诀)

# 1. YOLOv8目标检测算法概述 ## 1.1 YOLOv8的简介与定位 YOLOv8(You Only Look Once version 8)作为一种前沿的目标检测算法,是由YOLO系列算法演化而来。该算法特别强调快速与准确的平衡,它被设计用于实时图像识别
recommend-type

mclmcrrt9_8.dll下载

<think>我们正在处理用户关于"mclmcrrt9_8.dll"文件的下载请求。根据引用内容,这个文件是MATLAB运行时库的一部分,通常与特定版本的MATLABRuntime相关联。用户需求:下载mclmcrrt9_8.dll的官方版本。分析:1.根据引用[2]和[3],mclmcrrt9_0_1.dll和mclmcrrt9_13.dll都是MATLABRuntime的文件,版本号对应MATLAB的版本(如9_0对应R2016a,9_13对应2022b)。2.因此,mclmcrrt9_8.dll应该对应于某个特定版本的MATLAB(可能是R2016b?因为9.8版本通常对应MATLABR
recommend-type

林锐博士C++编程指南与心得:初学者快速提能

首先,这份文件的核心在于学习和提高C++编程能力,特别是针对初学者。在这个过程中,需要掌握的不仅仅是编程语法和基本结构,更多的是理解和运用这些知识来解决实际问题。下面将详细解释一些重要的知识点。 ### 1. 学习C++基础知识 - **基本数据类型**: 在C++中,需要熟悉整型、浮点型、字符型等数据类型,以及它们的使用和相互转换。 - **变量与常量**: 学习如何声明变量和常量,并理解它们在程序中的作用。 - **控制结构**: 包括条件语句(if-else)、循环语句(for、while、do-while),它们是构成程序逻辑的关键。 - **函数**: 理解函数定义、声明、调用和参数传递机制,是组织代码的重要手段。 - **数组和指针**: 学习如何使用数组存储数据,以及指针的声明、初始化和运算,这是C++中的高级话题。 ### 2. 林锐博士的《高质量的C++编程指南》 林锐博士的著作《高质量的C++编程指南》是C++学习者的重要参考资料。这本书主要覆盖了以下内容: - **编码规范**: 包括命名规则、注释习惯、文件结构等,这些都是编写可读性和可维护性代码的基础。 - **设计模式**: 在C++中合理使用设计模式可以提高代码的复用性和可维护性。 - **性能优化**: 学习如何编写效率更高、资源占用更少的代码。 - **错误处理**: 包括异常处理和错误检测机制,这对于提高程序的鲁棒性至关重要。 - **资源管理**: 学习如何在C++中管理资源,避免内存泄漏等常见错误。 ### 3. 答题与测试 - **C++C试题**: 通过阅读并回答相关试题,可以帮助读者巩固所学知识,并且学会如何将理论应用到实际问题中。 - **答案与评分标准**: 提供答案和评分标准,使读者能够自我评估学习成果,了解哪些方面需要进一步加强。 ### 4. 心得体会与实践 - **实践**: 理论知识需要通过大量编程实践来加深理解,动手编写代码,解决问题,是学习编程的重要方式。 - **阅读源码**: 阅读其他人的高质量代码,可以学习到许多编程技巧和最佳实践。 - **学习社区**: 参与C++相关社区,比如Stack Overflow、C++论坛等,可以帮助解答疑惑,交流心得。 ### 5. 拓展知识 - **C++标准库**: 学习C++标准模板库(STL),包括vector、map、list、algorithm等常用组件,是构建复杂数据结构和算法的基础。 - **面向对象编程**: C++是一种面向对象的编程语言,理解类、对象、继承、多态等概念对于写出优雅的C++代码至关重要。 - **跨平台编程**: 了解不同操作系统(如Windows、Linux)上的C++编程差异,学习如何编写跨平台的应用程序。 - **现代C++特性**: 学习C++11、C++14、C++17甚至C++20中的新特性,如智能指针、lambda表达式、自动类型推导等,可以提高开发效率和代码质量。 ### 总结 学习C++是一个系统工程,需要从基础语法开始,逐步深入到设计思想、性能优化、跨平台编程等领域。通过不断的学习和实践,初学者可以逐步成长为一个具有高代码质量意识的C++程序员。而通过阅读经典指南书籍,参与测试与评估,以及反思和总结实践经验,读者将更加扎实地掌握C++编程技术。此外,还需注意编程社区的交流和现代C++的发展趋势,这些都对于保持编程技能的前沿性和实用性是必不可少的。
recommend-type

线性代数方程组求解全攻略:直接法vs迭代法,一文搞懂

# 摘要 线性代数方程组求解是数学和工程领域中的基础而重要的问题。本文首先介绍了线性方程组求解的基础知识,然后详细阐述了直接法和迭代法两种主要的求解策略。直接法包括高斯消元法和LU分解方法,本文探讨了其理论基础、实践应用以及算法优化。迭代法则聚焦于雅可比和高斯-赛德尔方法,分析了其原理、实践应用和收敛性。通过比较分析,本文讨论了两种方法在
recommend-type

怎么下载mysql8.0.33版本

<think>我们正在处理用户关于下载并安装MySQL8.0.33版本的问题。根据引用[1]和引用[2],我们可以提供两种方法:一种是使用RPM包在CentOS上安装,另一种是使用ZIP包在Windows上安装。另外,引用[3]提到了安装过程中需要注意Python环境,但根据MySQL官方文档,Python并不是必须的,除非使用某些特定功能(如MySQLShell的Python模式)。因此,我们主要关注下载和安装步骤。用户没有明确操作系统,因此我们将分别介绍Windows和CentOS(Linux)下的安装方法。步骤概述:1.下载MySQL8.0.332.安装(根据系统不同步骤不同)3.初始化