wrn_28_2
时间: 2025-03-13 10:14:20 浏览: 39
### Wide Residual Networks (WRN) 的概述
Wide Residual Networks (WRN),即宽残差网络,是一种改进版的卷积神经网络架构,旨在通过增加网络宽度而非深度来提升模型性能[^1]。这种设计的核心理念在于,在有限计算资源下,较宽的网络可能比更深的网络表现更好。
#### WRN-28-2 参数解释
WRN-28-2 是一种特定配置下的 Wide Residual Network 实现。其中,“28”表示网络的整体深度(层数),而“2”则代表扩展因子 \( k \),用于控制每层滤波器的数量相对于原始 ResNet 基础版本的增长比例[^2]。具体来说:
- **Depth (深度)**: 网络总共有 28 层。
- **Width Factor (扩展因子)**: 扩展因子为 2,意味着每一层中的滤波器数量是基础 ResNet 架构对应层滤波器数量的两倍。
以下是基于 PyTorch 的 WRN-28-2 配置实现的一个简单代码示例:
```python
import torch.nn as nn
class BasicBlock(nn.Module):
def __init__(self, in_planes, out_planes, stride, dropRate=0.0):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.droprate = dropRate
def forward(self, x):
out = self.conv1(self.relu1(self.bn1(x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
return torch.cat([x, out], 1)
def make_layer(block, in_planes, out_planes, blocks, stride, dropRate=0.0):
layers = []
for i in range(int(blocks)):
layers.append(block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, dropRate))
return nn.Sequential(*layers)
class WideResNet(nn.Module):
def __init__(self, depth=28, widen_factor=2, num_classes=10, dropRate=0.0):
super(WideResNet, self).__init__()
nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
assert ((depth - 4) % 6 == 0), f"Depth should be 6n+4, got {depth}"
n = (depth - 4) / 6
block = BasicBlock
self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1, padding=1, bias=False)
self.block1 = make_layer(block, nChannels[0], nChannels[1], n, 1, dropRate)
self.block2 = make_layer(block, nChannels[1], nChannels[2], n, 2, dropRate)
self.block3 = make_layer(block, nChannels[2], nChannels[3], n, 2, dropRate)
self.bn1 = nn.BatchNorm2d(nChannels[3])
self.relu = nn.ReLU(inplace=True)
self.fc = nn.Linear(nChannels[3], num_classes)
def forward(self, x):
out = self.conv1(x)
out = self.block1(out)
out = self.block2(out)
out = self.block3(out)
out = self.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(-1, self.nChannels[3])
return self.fc(out)
```
上述代码定义了一个基本的 WRN 结构,支持自定义深度和扩展因子设置。对于 WRN-28-2 来说,`widen_factor=2` 和 `depth=28` 即可满足需求[^3]。
### 性能优化与应用领域
WRN 在图像分类任务上表现出色,尤其是在 CIFAR 数据集上的实验表明其能够显著超越传统 ResNet 模型的表现[^4]。此外,由于引入了 dropout 技术以及更宽的设计思路,WRN 对于过拟合具有更强的鲁棒性。
阅读全文
相关推荐










