python调用yolo
时间: 2023-11-09 13:48:29 浏览: 272
要使用Python调用Yolo5,您需要按照以下步骤进行操作:
1. 首先,确保您已经下载了Yolo5源码,并进入该文件夹。
2. 接下来,安装所需的依赖库。在命令行中执行以下命令:
```
cd xx/xx/yolov5-master
pip install -r requirements.txt
```
3. 然后,安装PyTorch。执行以下命令:
```
pip install torch==1.7.1 cpu torchvision==0.8.2 cpu torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
```
4. 现在,您已经准备好使用Python调用Yolo5。您可以运行以下命令开始训练模型:
```
python train.py --data my_data.yaml --cfg models/yolov5s.yaml --weights yolov5s.pt --epoch 1000 --batch-size 4 --device cpu
```
通过按照上述步骤进行操作,您将能够使用Python调用Yolo5并进行相关的训练操作。请确保您已正确安装所需的依赖库和PyTorch版本,并按照所提供的命令运行代码。
相关问题
python 调用 yolo
### 如何使用YOLO进行目标检测
为了展示如何利用YOLO执行对象检测,下面给出了一段Python脚本作为实例。此代码片段展示了加载预训练的YOLO模型并应用其于图像文件`dining_table.jpg`上以识别其中的对象[^1]。
```python
import cv2
import numpy as np
import argparse
import time
def get_output_layers(net):
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
return output_layers
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
label = str(classes[class_id])
color = COLORS[class_id]
cv2.rectangle(img, (x,y), (x_plus_w,y_plus_h), color, 2)
cv2.putText(img, label, (x-10,y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
ap = argparse.ArgumentParser()
ap.add_argument('-i', '--image', required=True,
help='path to input image')
ap.add_argument('-c', '--config', required=True,
help='path to yolo config file')
ap.add_argument('-w', '--weights', required=True,
help='path to yolo pre-trained weights')
ap.add_argument('-cl', '--classes', required=True,
help='path to text file containing class names')
args = ap.parse_args()
scale = 0.00392
classes = None
with open(args.classes, 'r') as f:
classes = [line.strip() for line in f.readlines()]
COLORS = np.random.uniform(0, 255, size=(len(classes), 3))
net = cv2.dnn.readNet(args.weights, args.config)
start = time.time()
image = cv2.imread(args.image)
Width = image.shape[1]
Height = image.shape[0]
blob = cv2.dnn.blobFromImage(image, scale, (416,416), (0,0,0), True, crop=False)
net.setInput(blob)
outs = net.forward(get_output_layers(net))
end = time.time()
print(f"[INFO] YOLO took {end-start} seconds")
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * Width)
center_y = int(detection[1] * Height)
w = int(detection[2] * Width)
h = int(detection[3] * Height)
x = center_x - w / 2
y = center_y - h / 2
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for i in indices:
box = boxes[i[0]]
x = box[0]
y = box[1]
w = box[2]
h = box[3]
draw_prediction(image, class_ids[i], confidences[i], round(x), round(y), round(x+w), round(y+h))
cv2.imshow("object detection", image)
cv2.waitKey()
```
上述代码实现了命令行参数解析、读取图片以及配置YOLO网络等功能,并最终显示带有标注框的结果图。值得注意的是,在实际操作过程中可能还需要调整一些超参数来优化性能表现。
Python调用yolo4
我可以回答这个问题。Python调用yolo4是一种目标检测算法,可以用于识别图像或视频中的物体。您可以使用OpenCV和Darknet库来实现Python调用yolo4。具体实现方法可以在网上找到相关的教程和代码。
阅读全文
相关推荐















