yolov11输出预测结果
时间: 2025-01-14 17:49:34 浏览: 332
### YOLOv11 模型预测输出方法
对于YOLOv11模型而言,获取其预测输出通常涉及加载预训练权重、准备输入图像以及处理网络输出。下面提供了一个Python代码示例来展示这一过程:
```python
import torch
from yolov11 import YOLOv11 # 假设这是YOLOv11的定义文件
def load_model(weights_path):
model = YOLOv11()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
state_dict = torch.load(weights_path, map_location=device)
model.load_state_dict(state_dict)
model.eval().to(device)
return model
def preprocess_image(image_path):
image = Image.open(image_path).convert('RGB')
transform = transforms.Compose([
transforms.Resize((640, 640)), # 调整到适合YOLOv11输入尺寸
transforms.ToTensor(),
])
tensor = transform(image).unsqueeze(0) # 添加批次维度
return tensor
def postprocess_predictions(predictions, conf_threshold=0.5):
boxes = []
scores = []
labels = []
for pred in predictions:
box = pred[:4].detach().numpy()
score = pred[4].item()
label = pred[5:].argmax().item()
if score >= conf_threshold:
boxes.append(box)
scores.append(score)
labels.append(label)
return boxes, scores, labels
model = load_model('path/to/weights.pth') # 加载模型并设置为评估模式
image_tensor = preprocess_image('path/to/image.jpg') # 预处理图片
with torch.no_grad():
outputs = model(image_tensor) # 获取模型预测结果
boxes, scores, labels = postprocess_predictions(outputs) # 后处理得到最终检测框和其他信息
```
上述代码展示了如何通过PyTorch库加载YOLOv11模型及其权重,并对单张图片执行推理操作以获得边界框、置信度分数和类别标签等预测数据。
阅读全文
相关推荐


















