yolov5 代码解读mosaic
时间: 2025-04-28 16:39:07 浏览: 25
### YOLOv5 Mosaic 数据增强代码解析
#### 1. Mosaic 增强概述
Mosaic 是一种数据增强技术,在YOLO系列算法中广泛应用。通过该方法,四张图像被拼接成一张大图并调整标注框的位置和大小,从而增加模型训练多样性,提升泛化能力[^1]。
#### 2. 实现细节
在 `datasets.py` 文件内实现了具体的逻辑:
```python
def load_mosaic(self, index):
labels4 = []
s = self.img_size
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in [s // 2]] # center x, y
```
这段代码负责初始化一些变量用于后续操作,其中 `yc`, `xc` 表示新合成图像中心坐标位置;而`s=self.img_size`则代表最终输出的目标尺寸。
接着加载四个不同索引对应的图片及其标签信息,并将其放置于适当位置形成新的复合图形:
```python
for i in range(4):
# Load image
img, _, (h, w) = self.load_image(i)
# place img in img4
if i == 0: # top left
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
elif i == 1: # top right
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
elif i == 2: # bottom left
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
elif i == 3: # bottom right
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
padw = x1a - x1b
padh = y1a - y1b
# Labels
labels = targets.copy()
if nl:
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw=padw, padh=padh) # normalized xywh to pixel xyxy format
labels4.append(labels)
```
上述片段展示了如何将每张子图嵌入到由全零数组创建的大画布(`img4`)之中,并相应地更新边界框参数以适应变换后的新布局。
最后一步是对所有收集起来的对象标记执行必要的转换,使其适用于整个马赛克图像空间内的表示形式:
```python
if len(labels4):
labels4 = np.concatenate(labels4, 0)
np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_perspective
img4, labels4 = random_perspective(img4,
labels4,
degrees=self.hyp['degrees'],
translate=self.hyp['translate'],
scale=self.hyp['scale'],
shear=self.hyp['shear'],
perspective=self.hyp['perspective'],
border=self.mosaic_border) # border to remove
return img4, labels4
```
此部分不仅完成了对目标边界的裁剪处理,还引入了额外的角度旋转、缩放和平移等仿射变化作为进一步的数据扩充手段。
阅读全文
相关推荐


















