video swin transformer进行视频分类
时间: 2025-04-27 07:10:07 浏览: 39
### 使用Swin Transformer 实现视频分类任务
#### 构建 Video-Swin-Transformer 模型架构
为了利用 Swin Transformer 进行视频分类,模型设计上采用了三维卷积核来处理时空特征。具体来说,在输入阶段接受连续帧作为输入,并通过分层的窗口多头自注意机制(SW-MSA),有效提取时间维度上的依赖关系[^3]。
```python
import torch.nn as nn
from timm.models.layers import trunc_normal_
class VideoSwinTransformer(nn.Module):
""" Video Swin Transformer model.
A PyTorch implementation of the Video-Swin-Transformer architecture from:
'Video Swin Transformer' (https://arxiv.org/abs/2106.13230)
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
num_classes (int): Number of classes for classification head
"""
def __init__(self, pretrained=True, num_classes=400):
super().__init__()
self.backbone = create_video_swin_transformer(pretrained=pretrained)
self.classifier = nn.Linear(self.backbone.num_features, num_classes)
# Initialize weights
if not pretrained:
self.apply(_init_weights)
def forward(self, x):
features = self.backbone(x)
logits = self.classifier(features.mean([-2, -1]))
return logits
def _init_weights(m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
```
#### 数据预处理与加载
对于视频数据集而言,通常需要先将其转换成适合网络输入的形式。这涉及到读取原始视频文件、抽样固定数量的关键帧以及标准化像素值等操作。可以借助 `torchvision` 和其他工具库完成这些工作[^1]。
```python
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
from pytorchvideo.data.encoded_video_dataset import EncodedVideoDataset
from pytorchvideo.transforms import (
ApplyTransformToKey,
UniformTemporalSubsample,
ShortSideScale,
)
transform = Compose([
ApplyTransformToKey(
key="video",
transform=Compose([
UniformTemporalSubsample(num_frames),
Lambda(lambda x: x / 255.),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]),
),
])
dataset = EncodedVideoDataset(
data_path='path/to/video/files',
clip_sampler=lambda video_length, annotations: [
([start_time, end_time], label) for start_time, end_time, label in zip(
np.linspace(0, max(video_length - duration, 0), samples_per_video),
np.linspace(duration, min(video_length, duration * samples_per_video), samples_per_video),
itertools.repeat(label))
],
decode_audio=False,
decoder="pyav",
transform=transform,
)
```
#### 训练过程配置
训练过程中可以通过命令行参数灵活调整超参设置,比如学习率、批次大小等。这里展示了一个简单的解析器定义方式用于接收外部传入的配置项[^2]。
```python
import argparse
parser = argparse.ArgumentParser('Swin Transformer Training Script', add_help=False)
parser.add_argument('--batch_size', default=32, type=int, help='Batch size per GPU')
parser.add_argument('--learning_rate', default=0.001, type=float, help='Initial learning rate')
args = parser.parse_args()
```
#### 开始训练
最后一步就是编写实际执行训练循环的部分了。这部分代码会迭代整个数据集并更新权重直到满足停止条件为止。建议使用混合精度加速收敛速度,并定期保存最佳性能下的模型副本以便后续评估或部署。
```python
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model.to(device=device)
criterion = nn.CrossEntropyLoss().to(device=device)
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)
for epoch in range(start_epoch, args.max_epochs):
train_one_epoch(args, model, criterion, optimizer, data_loader_train, device, epoch)
acc_top1, acc_top5 = evaluate(data_loader_val, model, device=device)
```
阅读全文
相关推荐


















