unet实战pytorch
时间: 2025-04-30 09:26:26 浏览: 32
### UNet 实战 PyTorch 操作教程
#### 数据集下载与准备
为了构建基于PyTorch的UNet模型来执行特定任务,比如道路裂纹检测,首先需要获取合适的数据集并做好预处理工作。这通常涉及从公开资源或者自有渠道获得标注好的图片数据,并将其划分为训练集、验证集以及测试集[^1]。
#### 构建UNet架构
UNet是一种经典的卷积神经网络结构,特别适用于医学影像分析中的像素级分类问题。该网络由收缩路径(Contracting Path)和扩展路径(Expansive Path)组成。前者负责捕捉上下文信息;后者则专注于精确定位特征。在PyTorch中实现时,可以利用`nn.Module`类来自定义每一层的操作,包括但不限于使用`Conv2d()`进行下采样操作,而上采样的部分可以通过调用`ConvTranspose2d()`完成反卷积过程[^3]。
```python
import torch.nn as nn
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class UNet(nn.Module):
def __init__(self, n_channels, n_classes):
super(UNet, self).__init__()
bilinear = True
factor = 2 if bilinear else 1
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512 // factor)
self.up1 = Up(512, 256 // factor, bilinear)
self.up2 = Up(256, 128 // factor, bilinear)
self.up3 = Up(128, 64, bilinear)
self.outc = OutConv(64, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x = self.up1(x4, x3)
x = self.up2(x, x2)
x = self.up3(x, x1)
logits = self.outc(x)
return logits
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
else:
self.up = nn.ConvTranspose2d(in_channels , in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
```
上述代码展示了如何创建一个基础版本的UNet模型。此模型包含了编码器(即向下采样阶段)、解码器(向上采样阶段),并通过跳跃连接将两者联系起来,从而保留更多细节信息以便于后续的任务处理。
#### 训练流程设置
当完成了模型的设计之后,下一步就是配置好损失函数、优化算法以及其他必要的超参数设定。对于二元分割任务而言,常用的损失函数有交叉熵损失(`CrossEntropyLoss`)或是Dice系数损失等。至于优化方法,则可以选择Adam或SGD这样的梯度下降变体来进行权重更新。
#### 测试评估环节
最后一步是对已经训练完毕后的模型性能进行全面评测。一般会采用交并比(IoU),也称为Jaccard指数作为衡量标准之一。除此之外还可以考虑其他指标如精确率(Precision), 召回率(Recall)等等,具体取决于应用场景的需求。
阅读全文
相关推荐

















