llamafactory微调多卡爆显存 怎么回事?

时间: 2025-02-22 18:27:48 浏览: 485
### LLaMA-Factory 多 GPU 微调爆显存解决方案 在处理Llama-Factory多GPU微调过程中遇到的显存不足问题时,可以采取多种策略来缓解这一情况。这些方法不仅适用于Llama-Factory框架下的QLoRA微调过程,也广泛应用于其他基于PyTorch的大规模模型训练场景。 #### 使用混合精度训练 通过采用半精度浮点数(FP16)代替全精度浮点数(FP32),可以在几乎不影响最终性能的情况下显著减少内存占用并加速计算速度[^2]。这可以通过设置`torch.cuda.amp.GradScaler()`实现自动损失缩放机制,在保持数值稳定性的前提下充分利用硬件资源。 ```python from torch.cuda.amp import GradScaler, autocast scaler = GradScaler() for input, target in data_loader: optimizer.zero_grad() with autocast(): output = model(input) loss = criterion(output, target) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() ``` #### 启用梯度累积 当单次前向传播所需的显存量超过可用容量时,可以选择增加批处理大小的同时启用梯度累积技术。该方式允许将一次完整的参数更新拆分成多个较小批次完成,从而有效降低每步所需的最大显存消耗量[^1]。 ```yaml train: accumulate_grad_batches: 4 # 假设原始batch size为8,则现在实际使用的batch size变为32(=8*4),但每次只加载8个样本到显存中参与反向传播 ``` #### 调整学习率调度器与批量尺寸 适当调整初始学习速率以及其衰减计划有助于提高收敛效率;与此同时合理规划输入数据集划分粒度即批量尺寸(batch size)也是至关重要的因素之一。过大的批量可能会导致显存溢出,而过小则可能影响泛化能力及训练稳定性。 #### 序列长度截断或动态padding 对于自然语言处理任务而言,文本序列长度差异较大可能导致不必要的额外开销。因此建议预先设定最大token数目并对超出部分实施裁剪操作,或者利用动态填充方案仅保留必要空白填补以节省空间。 #### 分布式DataParallel (DDP)模式 如果上述措施仍无法满足需求,则考虑切换至更高效的分布式环境——Distributed Data Parallel(DPP)。相比传统的DataParallel/DDP能够更好地平衡负载分配,并支持更大规模集群间的协作运算,进而进一步提升整体吞吐能力和资源利用率。
阅读全文

相关推荐

一、目的1. 加速训练过程2. 适应大规模数据3. 资源利用率高4. 提升训练速度5. 增大系统容量6. 提高系统可用性7. 加速模型迭代二、 LLaMA-Factory1.安装2. LLaMA-Factory 校验三、 训练引擎1.DDP2. DeepSpeed3.FSDP四、WebUI五. 参数配置1. 模型2. 数据3. 训练参数4. 多卡参数1. ZeRO-12. ZeRO-23. ZeRO-3六、训练七、推理八、XTuner一、目的分布式训练是一种在多个计算节点上共同完成机器学习模型训练任务的过程,它可以充分利用多台计算机的资源,提高训练效率和模型准确性。分布式训练的主要优势包括:1. 加速训练过程通过并行计算,分布式训练大幅缩短了训练时间,提高了训练效率。提高模型准确性:利用更多的计算资源和数据样本进行训练,减少了过拟合风险,提高了模型的泛化能力和准确性。2. 适应大规模数据分布式训练能够处理传统单机训练难以应对的大规模数据集。3. 资源利用率高有效利用了计算资源,避免了单机训练时的资源闲置和浪费。4. 提升训练速度通过并行计算,分布式训练能够显著缩短模型训练的时间,尤其是在处理大规模数据集和复杂模型时效果更为明显。5. 增大系统容量随着业务量的增长,单机性能已无法满足需求。分布式训练通过多台计算设备的协同工作,能够应对更大规模的应用场景。6. 提高系统可用性分布式架构能够消除单点故障,提高系统的整体可用性。即使某个计算设备出现故障,也不会影响整个训练任务的进行。7. 加速模型迭代在快速迭代的机器学习项目中,分布式训练能够更快地完成模型训练,从而加速模型迭代和优化过程。总的来说,分布式训练在深度学习领域提高训练效率和加快模型收敛的重要手段 。二、 LLaMA-Factory1.安装在安装 LLaMA-Factory 之前,请确保您安装了下列依赖:运行以下指令以安装 LLaMA-Factory 及其依赖:git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.gitcd LLaMA-Factorypip install -e ".[torch,metrics]"123如果出现环境冲突,请尝试使用 pip install --no-deps -e . 解决2. LLaMA-Factory 校验完成安装后,可以通过使用 llamafactory-cli version 来快速校验安装是否成功如果看到类似下面的界面,就说明安装成功了。 Successfully uninstalled requests-2.31.0 Attempting uninstall: anyio Found existing installation: anyio 4.4.0 Uninstalling anyio-4.4.0: Successfully uninstalled anyio-4.4.0Successfully installed accelerate-1.2.1 aiofiles-23.2.1 aiohappyeyeballs-2.4.6 aiohttp-3.11.12 aiosignal-1.3.2 annotated-types-0.7.0 anyio-4.8.0 audioread-3.0.1 av-14.1.0 click-8.1.8 datasets-3.2.0 dill-0.3.8 docstring-parser-0.16 einops-0.8.1 fastapi-0.115.8 ffmpy-0.5.0 fire-0.7.0 frozenlist-1.5.0 gradio-5.12.0 gradio-client-1.5.4 huggingface-hub-0.28.1 jieba-0.42.1 joblib-1.4.2 lazy-loader-0.4 librosa-0.10.2.post1 llamafactory-0.9.2.dev0 llvmlite-0.44.0 markdown-it-py-3.0.0 mdurl-0.1.2 msgpack-1.1.0 multidict-6.1.0 multiprocess-0.70.16 nltk-3.9.1 numba-0.61.0 orjson-3.10.15 pandas-2.2.3 peft-0.12.0 pooch-1.8.2 propcache-0.2.1 pyarrow-19.0.0 pydantic-2.10.6 pydantic-core-2.27.2 pydub-0.25.1 python-multipart-0.0.20 pytz-2025.1 regex-2024.11.6 requests-2.32.3 rich-13.9.4 rouge-chinese-1.0.3 ruff-0.9.6 safehttpx-0.1.6 safetensors-0.5.2 scikit-learn-1.6.1 scipy-1.15.1 semantic-version-2.10.0 sentencepiece-0.2.0 shellingham-1.5.4 shtab-1.7.1 soundfile-0.13.1 soxr-0.5.0.post1 sse-starlette-2.2.1 starlette-0.45.3 termcolor-2.5.0 threadpoolctl-3.5.0 tiktoken-0.9.0 tokenizers-0.21.0 tomlkit-0.13.2 tqdm-4.67.1 transformers-4.48.3 trl-0.9.6 typer-0.15.1 typing-extensions-4.12.2 tyro-0.8.14 tzdata-2025.1 uvicorn-0.34.0 websockets-14.2 xxhash-3.5.0 yarl-1.18.3WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venvroot@autodl-container-c2d74383d9-db8bb7c4:~/autodl-tmp/LLaMA-Factory# llamafactory-cli version----------------------------------------------------------| Welcome to LLaMA Factory, version 0.9.2.dev0 || || Project page: https://github.com/hiyouga/LLaMA-Factory |----------------------------------------------------------root@autodl-container-c2d74383d9-db8bb7c4:~/autodl-tmp/LLaMA-Factory# 1234567891011121314三、 训练引擎LLaMA-Factory 支持单机多卡和多机多卡分布式训练。同时也支持 DDP , DeepSpeed 和 FSDP 三种分布式引擎。1.DDPDDP (DistributedDataParallel) 通过实现模型并行和数据并行实现训练加速。 使用 DDP 的程序需要生成多个进程并且为每个进程创建一个 DDP 实例,他们之间通过 torch.distributed 库同步。2. DeepSpeedDeepSpeed 是微软开发的分布式训练引擎,并提供ZeRO(Zero Redundancy Optimizer)、offload、Sparse Attention、1 bit Adam、流水线并行等优化技术。 您可以根据任务需求与设备选择使用。3.FSDP通过全切片数据并行技术(Fully Sharded Data Parallel)来处理更多更大的模型。在 DDP 中,每张 GPU 都各自保留了一份完整的模型参数和优化器参数。而 FSDP 切分了模型参数、梯度与优化器参数,使得每张 GPU 只保留这些参数的一部分。 除了并行技术之外,FSDP 还支持将模型参数卸载至CPU,从而进一步降低显存需求。由于deepseek分布式训练加速,采用混合精度(fp16/fp32)和ZeRO优化,减少显存占用,从而加速训练。所以本文采用DeepSpeed 是训练引擎。四、WebUILLaMA-Factory 支持通过 WebUI 零代码微调大语言模型。 在完成 安装 后,您可以通过以下指令进入 WebUI:llamafactory-cli webui1WebUI 主要分为四个界面:训练、评估与预测、对话、导出。当运行上面命令后,打开如下界面在开始训练模型之前,需要指定的参数有:模型名称及路径训练阶段微调方法训练数据集学习率、训练轮数等训练参数微调参数等其他参数输出目录及配置路径

最新推荐

recommend-type

第一章计算机系统概述.ppt

第一章计算机系统概述.ppt
recommend-type

智慧城市科技有限公司出资协议(确定稿).doc

智慧城市科技有限公司出资协议(确定稿).doc
recommend-type

智能化技术在电气工程自动化控制中的应用分析-1.docx

智能化技术在电气工程自动化控制中的应用分析-1.docx
recommend-type

网络玄幻小说受众特征研究.docx

网络玄幻小说受众特征研究.docx
recommend-type

基于CesiumJS的三维WebGIS研究与开发.docx

基于CesiumJS的三维WebGIS研究与开发.docx
recommend-type

深入解析PetShop4.0电子商务架构与技术细节

标题和描述中提到的是PetShop4.0,这是一个由微软官方发布的示例电子商务应用程序,它使用ASP.NET构建,并且遵循三层架构的设计模式。在这个上下文中,“三层架构”指的是将应用程序分为三个基本的逻辑组件:表示层、业务逻辑层和数据访问层。 ### ASP.NET三层架构 ASP.NET是微软推出的一个用于构建动态网站、Web应用程序和Web服务的服务器端技术。ASP.NET能够运行在.NET框架上,为开发者提供了编写Web应用程序的丰富控件和库。 #### 表示层(用户界面层) 表示层是用户与应用程序交互的界面,通常包括Web页面。在PetShop4.0中,这包括了购物车界面、产品展示界面、用户登录和注册界面等。ASP.NET中的Web表单(.aspx文件)通常用于实现表示层。 #### 业务逻辑层(中间层) 业务逻辑层负责处理应用程序的业务规则和逻辑。在PetShop4.0中,这一层可能包括订单处理、产品管理、用户管理等功能。在ASP.NET中,业务逻辑通常被封装在类和方法中,可以通过Web服务(.asmx)或Web API(.asmx)暴露给客户端或前端。 #### 数据访问层 数据访问层负责与数据库进行交互,如执行SQL命令、存储过程等。PetShop4.0使用了数据访问组件来实现数据的读取、写入等操作。在.NET框架中,通常使用ADO.NET来实现数据访问层的功能,包括数据库连接、数据读取和写入等。 ### PetShop4.0技术详解 PetShop4.0的架构和技术实现是学习ASP.NET电子商务应用程序开发的理想案例,其技术特性如下: 1. **三层架构**:PetShop4.0清晰地展示了如何将应用程序分为三个层次,每一层都有清晰的职责。这为开发者提供了一个良好的架构模式,可以有效地组织代码,提高可维护性。 2. **ASP.NET Web Forms**:这一版本的PetShop使用ASP.NET Web Forms来构建用户界面。Web Forms允许开发者通过拖放服务器控件来快速开发网页,并处理回发事件。 3. **ADO.NET**:数据访问层使用ADO.NET来与数据库进行通信。ADO.NET提供了一套丰富的数据访问API,可以执行SQL查询和存储过程,以及进行数据缓存等高级操作。 4. **C# 编程语言**:PetShop4.0使用C#语言开发。C#是.NET框架的主要编程语言之一,它提供了面向对象、类型安全、事件驱动的开发能力。 5. **企业库(Enterprise Library)**:企业库是.NET框架中的一套设计良好的应用程序块集合,用于简化常见企业级开发任务,比如数据访问、异常管理等。PetShop4.0可能集成了企业库,用以提高代码的可靠性与易用性。 6. **LINQ(语言集成查询)**:在更高版本的.NET框架中,LINQ提供了一种将查询直接集成到C#等.NET语言中的方式,可以用来查询和操作数据。尽管PetShop4.0可能未直接使用LINQ,但是了解其如何工作对于理解数据访问层设计是非常有益的。 ### PetShop4.0安装和部署 通过标题中提到的文件名“Microsoft .NET Pet Shop 4.0.msi”,我们知道这是一个安装程序文件,用于将PetShop4.0安装到系统中。安装时,该安装包将引导用户完成必要的步骤,包括配置数据库连接(通常是SQL Server),并安装所需的.NET框架组件。 ### 学习PetShop4.0的意义 作为电子商务网站的开发人员,学习PetShop4.0可以带来以下好处: - **架构理解**:通过分析PetShop4.0的代码和架构,开发者可以深入理解三层架构模式的实际应用。 - **代码实践**:可以直接研究和修改源代码,了解ASP.NET应用程序的工作机制。 - **技术熟练**:通过部署和维护PetShop4.0,开发者能够提升在ASP.NET平台上的实际操作能力。 - **最佳实践**:作为一个示例项目,PetShop4.0展示了微软推荐的开发方法和模式,有助于遵循最佳实践。 总之,PetShop4.0不仅是一个电子商务应用的示例,它也是一个学习和练习ASP.NET开发技能的优秀平台。通过对这一范例的深入学习和研究,开发者能够掌握构建复杂的Web应用程序所需的架构设计、编程实践和系统维护等多方面知识。
recommend-type

【技术揭秘】:7步打造YOLOv8人员溺水检测告警监控系统

# 摘要 本论文详细介绍了YOLOv8人员溺水检测系统的构建与优化策略。首先概述了该系统的设计理念及理论基础,深入解析了YOLOv8模型的架构及其在溺水检测领域的应用。
recommend-type

stm32CAN总线

<think>我们正在处理一个关于STM32 CAN总线配置和使用的问题。用户要求提供配置和使用指南,因此我们需要系统地介绍CAN总线的配置步骤、关键参数设置以及常见使用场景。 根据引用内容,STM32的CAN总线配置主要涉及两个部分:CAN初始化和过滤器配置。我们将按照以下结构组织回答: 1. CAN总线基本概念(简要介绍) 2. CAN总线配置步骤(重点) a. CAN初始化结构体配置(包括工作模式、位时序、波特率等) b. CAN过滤器配置(标识符过滤规则) 3. 发送和接收消息的基本流程 4. 常见问题及解决方法 注意:引用中提供的代码片段是配置示例,我
recommend-type

毕业设计资料分享与学习方法探讨

标题和描述提供了两个主要线索:毕业设计和网上购物。结合标题和描述,我们可以推断出该毕业设计很可能是与网上购物相关的项目或研究。同时,请求指导和好的学习方法及资料也说明了作者可能在寻求相关领域的建议和资源。 【网上购物相关知识点】 1. 网上购物的定义及发展: 网上购物指的是消费者通过互联网进行商品或服务的浏览、选择、比较、下单和支付等一系列购物流程。它依托于电子商务(E-commerce)的发展,随着互联网技术的普及和移动支付的便捷性增加,网上购物已经成为现代人生活中不可或缺的一部分。 2. 网上购物的流程: 网上购物的基本流程包括用户注册、商品浏览、加入购物车、填写订单信息、选择支付方式、支付、订单确认、收货、评价等。了解这个流程对于设计网上购物平台至关重要。 3. 网上购物平台的构成要素: 网上购物平台通常由前端展示、后端数据库、支付系统、物流系统和客户服务等几大部分组成。前端展示需要吸引用户,并提供良好的用户体验;后端数据库需要对商品信息、用户数据进行有效管理;支付系统需要确保交易的安全性和便捷性;物流系统需要保证商品能够高效准确地送达;客户服务则需处理订单问题、退换货等售后服务。 4. 网上购物平台设计要点: 设计网上购物平台时需要注意用户界面UI(User Interface)和用户体验UX(User Experience)设计,保证网站的易用性和响应速度。此外,平台的安全性、移动适配性、搜索优化SEO(Search Engine Optimization)、个性化推荐算法等也都是重要的设计考量点。 5. 网上购物的支付方式: 目前流行的支付方式包括信用卡支付、电子钱包支付(如支付宝、微信支付)、银行转账、货到付款等。不同支付方式的特点和使用频率随着国家和地区的不同而有所差异。 6. 网上购物中的数据分析: 在设计网上购物平台时,数据分析能力至关重要。通过收集和分析用户的购买行为数据、浏览行为数据和交易数据,商家可以更好地理解市场趋势、用户需求、优化商品推荐,提高转化率和客户忠诚度。 7. 网上购物的法律法规: 网上购物平台运营需遵守相关法律法规,如《中华人民共和国电子商务法》、《消费者权益保护法》等。同时,还需了解《数据安全法》和《个人信息保护法》等相关隐私保护法律,确保用户信息的安全和隐私。 8. 网上购物的网络营销策略: 网络营销包括搜索引擎优化(SEO)、搜索引擎营销(SEM)、社交媒体营销、电子邮件营销、联盟营销、内容营销等。一个成功的网上购物平台往往需要多渠道的网络营销策略来吸引和维持客户。 9. 网上购物的安全问题: 网络安全是网上购物中一个非常重要的议题。这涉及到数据传输的加密(如SSL/TLS)、个人信息保护、交易安全、抗DDoS攻击等方面。安全问题不仅关系到用户的财产安全,也直接关系到平台的信誉和长期发展。 10. 毕业设计的选题方法和资料搜集: 在进行毕业设计时,可以围绕当前电子商务的发展趋势、存在的问题、未来的发展方向等来选题。资料搜集可以利用图书馆资源、网络学术资源、行业报告、相关书籍和专业论文等途径。同时,实际参与网上购物平台的使用、调查问卷、访谈等方式也是获取资料的有效途径。 根据标题、描述和文件名,可以认为毕业设计资料信息的内容可能围绕“网上购物”的相关概念、技术、市场和法律法规进行深入研究。上述知识点的总结不仅包括了网上购物的基础知识,也涵盖了设计和运营网上购物平台的多个关键方面,为有志于在这个领域的学生提供了理论和实践的参考。
recommend-type

模式识别期末复习精讲:87个问题的全面解析与策略

# 1. 模式识别基础概念与理论框架 ## 1.1 定义与应用范围 模式识别是一门关于如何使机器能够自动识别数据模式和规律的交叉学科。其核心在