unetr

时间: 2025-04-22 16:53:43 浏览: 34
### UNETR 架构 UNETR 是一种基于 Transformer 的新型网络架构,专门用于高效的 3D 医学图像分割任务[^3]。该模型结合了 U-Net 和 Transformer 的优势特性: #### 1. 三维感知能力 传统的二维卷积神经网络难以有效处理复杂的三维医学影像数据,而 UNETR 则通过引入完整的三维感受野来解决这个问题。这种设计使得模型能够更好地保持原始的空间信息,避免因降维带来的细节损失。 #### 2. Transformer 核心组件 不同于经典的 CNN 结构依赖局部特征提取的方式,UNETR 使用了强大的自注意力机制作为主要计算单元。这允许模型在整个输入体素范围内建立全局关联,从而显著提高了对于复杂解剖结构的理解能力和边界识别精度。 ```python import torch.nn as nn class SelfAttention(nn.Module): def __init__(self, dim_in, num_heads=8): super().__init__() self.num_heads = num_heads head_dim = dim_in // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim_in, dim_in * 3) self.proj_out = nn.Linear(dim_in, dim_in) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.chunk(3, dim=0) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) out = (attn @ v).transpose(1, 2).reshape(B, N, C) return self.proj_out(out) ``` #### 3. 高效融合策略 为了进一步提高效率并减少参数量,UNETR 还采用了轻量化的设计思路,在编码器部分采用稀疏采样技术,并在解码阶段逐步恢复分辨率。这样的安排既保证了足够的表达力又降低了训练难度。 #### 4. 医疗领域定制化调整 考虑到实际应用场景的需求差异较大,开发团队针对不同类型的病变进行了针对性改进。比如增加了多尺度上下文建模模块以适应各种尺寸的目标;加入了对抗学习框架用来缓解类不平衡现象等措施,最终实现了更加鲁棒可靠的预测效果。 --- ### 应用案例展示 UNETR 已经被成功应用于多个重要的临床场景当中,特别是在 CT 或 MRI 扫描得到的大规模体积数据集上的表现尤为突出。具体来说: - **肿瘤检测**:可以精准地标记出恶性细胞群的位置范围,辅助医生做出诊断决策; - **脑部结构分割**:有助于深入探究大脑内部细微变化规律,支持神经系统疾病的早期预警; - **心脏功能评估**:通过对心肌壁厚度及运动轨迹的精确测量,为心血管健康状况提供科学依据。 这些进步不仅改善了医疗服务的质量水平,同时也促进了基础科学研究的发展进程。
阅读全文

相关推荐

(covid_seg) (base) liulicheng@ailab-MS-7B79:~/MultiModal_MedSeg_2025$ /home/liulicheng/anaconda3/envs/covid_seg/bin/python /home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py ===== 环境信息 ===== Python版本: 3.8.12 | packaged by conda-forge | (default, Sep 29 2021, 19:52:28) [GCC 9.4.0] PyTorch版本: 2.1.0+cu118 MONAI版本: 1.3.2 nibabel版本: 5.2.1 CUDA版本: 11.8 cuDNN版本: 8700 GPU: NVIDIA GeForce GTX 1080 Ti 输入尺寸: resized_size=(128, 128, 64), crop_size=(48, 48, 48) Loading dataset: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 104/104 [18:16<00:00, 10.55s/it] Loading dataset: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 26/26 [06:43<00:00, 15.54s/it] 模型参数总数: 8.95M /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/utils/deprecate_utils.py:221: FutureWarning: monai.losses.dice DiceCELoss.__init__:ce_weight: Argument ce_weight has been deprecated since version 1.2. It will be removed in version 1.4. please use weight instead. warn_deprecated(argname, msg, warning_category) ===== GPU预热 ===== ===== 开始训练 ===== Epoch 1/200 训练 Epoch 1: 0%| | 0/52 [00:00<?, ?it/s]/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( 训练 Epoch 1: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 52/52 [00:09<00:00, 5.42it/s, loss=0.7731] 训练平均损失: 0.7909 当前学习率: 0.0000200 验证 Epoch 1: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 26/26 [00:02<00:00, 10.99it/s, dice=0.0469] 验证平均Dice: 0.0288 Epoch 耗时: 11.96秒, 平均每批次: 0.23秒 保存新的最佳模型! Epoch: 1, Dice: 0.0288 Epoch 2/200 训练 Epoch 2: 0%| | 0/52 [00:00<?, ?it/s]/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( 训练 Epoch 2: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 52/52 [00:06<00:00, 7.92it/s, loss=0.7215] 训练平均损失: 0.7502 当前学习率: 0.0000300 验证 Epoch 2: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 26/26 [00:02<00:00, 10.71it/s, dice=0.0469] 验证平均Dice: 0.0288 Epoch 耗时: 9.00秒, 平均每批次: 0.17秒 Epoch 3/200 训练 Epoch 3: 0%| | 0/52 [00:00<?, ?it/s]/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( 训练 Epoch 3: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 52/52 [00:06<00:00, 7.96it/s, loss=0.6815] 训练平均损失: 0.7063 当前学习率: 0.0000400 验证 Epoch 3: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 26/26 [00:02<00:00, 10.48it/s, dice=0.0469] 验证平均Dice: 0.0288 Epoch 耗时: 9.02秒, 平均每批次: 0.17秒 Epoch 4/200 训练 Epoch 4: 0%| | 0/52 [00:00<?, ?it/s]/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( 训练 Epoch 4: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 52/52 [00:06<00:00, 7.59it/s, loss=0.6309] 训练平均损失: 0.6614 当前学习率: 0.0000500 验证 Epoch 4: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 26/26 [00:02<00:00, 10.85it/s, dice=0.0469] 验证平均Dice: 0.0288 Epoch 耗时: 9.25秒, 平均每批次: 0.18秒 Epoch 5/200 训练 Epoch 5: 0%| | 0/52 [00:00<?, ?it/s]/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( 训练 Epoch 5: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 52/52 [00:06<00:00, 7.93it/s, loss=0.6124] 训练平均损失: 0.6249 当前学习率: 0.0000600 验证 Epoch 5: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 26/26 [00:02<00:00, 10.62it/s, dice=0.0469] 验证平均Dice: 0.0288 Epoch 耗时: 9.01秒, 平均每批次: 0.17秒 /home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py:386: UserWarning: Glyph 35757 (\N{CJK UNIFIED IDEOGRAPH-8BAD}) missing from current font. plt.tight_layout() /home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py:386: UserWarning: Glyph 32451 (\N{CJK UNIFIED IDEOGRAPH-7EC3}) missing from current font. plt.tight_layout() /home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py:386: UserWarning: Glyph 25439 (\N{CJK UNIFIED IDEOGRAPH-635F}) missing from current font. plt.tight_layout() /home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py:386: UserWarning: Glyph 22833 (\N{CJK UNIFIED IDEOGRAPH-5931}) missing from current font. plt.tight_layout() /home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py:386: UserWarning: Glyph 39564 (\N{CJK UNIFIED IDEOGRAPH-9A8C}) missing from current font. plt.tight_layout() /home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py:386: UserWarning: Glyph 35777 (\N{CJK UNIFIED IDEOGRAPH-8BC1}) missing from current font. plt.tight_layout() /home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py:387: UserWarning: Glyph 35757 (\N{CJK UNIFIED IDEOGRAPH-8BAD}) missing from current font. plt.savefig("logs/unetr_training_metrics.png") /home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py:387: UserWarning: Glyph 32451 (\N{CJK UNIFIED IDEOGRAPH-7EC3}) missing from current font. plt.savefig("logs/unetr_training_metrics.png") /home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py:387: UserWarning: Glyph 25439 (\N{CJK UNIFIED IDEOGRAPH-635F}) missing from current font. plt.savefig("logs/unetr_training_metrics.png") /home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py:387: UserWarning: Glyph 22833 (\N{CJK UNIFIED IDEOGRAPH-5931}) missing from current font. plt.savefig("logs/unetr_training_metrics.png") /home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py:387: UserWarning: Glyph 39564 (\N{CJK UNIFIED IDEOGRAPH-9A8C}) missing from current font. plt.savefig("logs/unetr_training_metrics.png") /home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py:387: UserWarning: Glyph 35777 (\N{CJK UNIFIED IDEOGRAPH-8BC1}) missing from current font. plt.savefig("logs/unetr_training_metrics.png") Epoch 6/200 训练 Epoch 6: 0%| | 0/52 [00:00<?, ?it/s]/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( 训练 Epoch 6: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 52/52 [00:06<00:00, 7.90it/s, loss=0.5874] 训练平均损失: 0.5966 当前学习率: 0.0000700 验证 Epoch 6: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 26/26 [00:02<00:00, 10.82it/s, dice=0.0469] 验证平均Dice: 0.0288 Epoch 耗时: 8.99秒, 平均每批次: 0.17秒 Epoch 7/200 训练 Epoch 7: 0%| | 0/52 [00:00<?, ?it/s]/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/utils.py:606: UserWarning: Num foregrounds 0, Num backgrounds 110592, unable to generate class balanced samples, setting pos_ratio to 0. warnings.warn( 训练 Epoch 7: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 52/52 [00:06<00:00, 7.81it/s, loss=0.5655] 训练平均损失: 0.5751 当前学习率: 0.0000800 验证 Epoch 7: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 26/26 [00:02<00:00, 11.14it/s, dice=0.0469] 验证平均Dice: 0.0288 Epoch 耗时: 9.00秒, 平均每批次: 0.17秒这是代码# ====================== # UNETR 训练脚本 # ====================== import os import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader from monai.transforms import ( Compose, LoadImaged, EnsureChannelFirstd, Spacingd, Orientationd, ScaleIntensityRanged, RandCropByPosNegLabeld, RandFlipd, EnsureTyped, Activations, AsDiscrete, ResizeWithPadOrCropd, RandZoomd, RandGaussianNoised ) from monai.data import list_data_collate, CacheDataset # 使用CacheDataset from monai.networks.nets import UNETR from monai.losses import DiceCELoss from monai.metrics import DiceMetric from glob import glob from sklearn.model_selection import train_test_split from torch.optim.lr_scheduler import LambdaLR from tqdm import tqdm from torch.cuda.amp import GradScaler, autocast import matplotlib.pyplot as plt import gc import nibabel as nib import sys import monai import time # 自定义Transform:用于把RandCropByPosNegLabeld返回的list转成Tensor class ExtractFirstSampledDict(monai.transforms.Transform): def __call__(self, data): out = {} for k, v in data.items(): if isinstance(v, list) and len(v) == 1: out[k] = v[0] else: out[k] = v return out # ====================== # 配置参数 (优化版) # ====================== root_dir = "datasets/LiTS/processed" images_dir = os.path.join(root_dir, "images") labels_dir = os.path.join(root_dir, "labels") max_epochs = 200 batch_size = 2 # 增大批次大小 learning_rate = 1e-4 num_classes = 3 warmup_epochs = 10 use_amp = False # 启用AMP加速 ✅ accumulation_steps = 2 # 梯度累积步数 # 禁用MetaTensor以避免decollate错误 os.environ["MONAI_USE_META_DICT"] = "0" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 启用cuDNN基准测试 if torch.cuda.is_available(): torch.backends.cudnn.benchmark = True # 打印环境信息 print("===== 环境信息 =====") print(f"Python版本: {sys.version}") print(f"PyTorch版本: {torch.__version__}") print(f"MONAI版本: {monai.__version__}") print(f"nibabel版本: {nib.__version__}") if torch.cuda.is_available(): print(f"CUDA版本: {torch.version.cuda}") print(f"cuDNN版本: {torch.backends.cudnn.version()}") print(f"GPU: {torch.cuda.get_device_name(0)}") # 尺寸设置 - 确保能被16整除 def get_valid_size(size, divisor=16): return tuple([max(divisor, (s // divisor) * divisor) for s in size]) base_size = (128, 128, 64) resized_size = get_valid_size(base_size) crop_size = get_valid_size((48, 48, 48)) # 减小尺寸以节省显存 print(f"输入尺寸: resized_size={resized_size}, crop_size={crop_size}") # ====================== # 数据预处理 (优化版) # ====================== train_transforms = Compose([ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Orientationd(keys=["image", "label"], axcodes="RAS"), Spacingd(keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest")), ScaleIntensityRanged(keys=["image"], a_min=-200, a_max=200, b_min=0.0, b_max=1.0, clip=True), ResizeWithPadOrCropd( # 轻量级缩放 ✅ keys=["image", "label"], spatial_size=crop_size, mode="constant" ), RandCropByPosNegLabeld( keys=["image", "label"], label_key="label", spatial_size=crop_size, pos=1.0, neg=1.0, num_samples=1, image_threshold=0 ), ExtractFirstSampledDict(), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=0), # 移除耗时的旋转增强 ✅ # RandRotate90d(keys=["image", "label"], prob=0.5, max_k=3), RandZoomd(keys=["image", "label"], prob=0.3, min_zoom=0.9, max_zoom=1.1, mode=("trilinear", "nearest")), # 减少概率 RandGaussianNoised(keys=["image"], prob=0.1, mean=0.0, std=0.05), # 减少概率 EnsureTyped(keys=["image", "label"], data_type="tensor"), ]) val_transforms = Compose([ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Orientationd(keys=["image", "label"], axcodes="RAS"), Spacingd(keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest")), ScaleIntensityRanged(keys=["image"], a_min=-200, a_max=200, b_min=0.0, b_max=1.0, clip=True), ResizeWithPadOrCropd( # 轻量级缩放 ✅ keys=["image", "label"], spatial_size=crop_size, mode="constant" ), EnsureTyped(keys=["image", "label"], data_type="tensor"), ]) images = sorted(glob(os.path.join(images_dir, "*.nii.gz"))) labels = sorted(glob(os.path.join(labels_dir, "*.nii.gz"))) data = [{"image": img, "label": lbl} for img, lbl in zip(images, labels)] train_files, val_files = train_test_split(data, test_size=0.2, random_state=42) # 使用CacheDataset加速数据加载 ✅ cache_dir = "./data_cache" os.makedirs(cache_dir, exist_ok=True) train_ds = CacheDataset( data=train_files, transform=train_transforms, cache_rate=1.0, # 100% 缓存 num_workers=0 ) val_ds = CacheDataset( data=val_files, transform=val_transforms, cache_rate=1.0, num_workers=0 ) # 优化数据加载器 ✅ train_loader = DataLoader( train_ds, batch_size=batch_size, shuffle=True, num_workers=4, # 增加工作线程数 prefetch_factor=2, # 预取数据 collate_fn=list_data_collate, pin_memory=True # 使用固定内存 ) val_loader = DataLoader( val_ds, batch_size=1, shuffle=False, num_workers=2, collate_fn=list_data_collate, pin_memory=True ) # ====================== # 模型构建 (优化版) # ====================== model = UNETR( in_channels=1, out_channels=num_classes, img_size=crop_size, # 使用验证集的尺寸,如 (128, 128, 64) feature_size=16, hidden_size=192, mlp_dim=768, num_heads=3, proj_type="perceptron", # ✅ 替代 pos_embed norm_name="batch", res_block=True, dropout_rate=0.1 ).to(device) total_params = sum(p.numel() for p in model.parameters()) print(f"模型参数总数: {total_params / 1e6:.2f}M") # ====================== # 损失 + 优化器 # ====================== class_weights = torch.tensor([0.2, 0.3, 0.5]).to(device) loss_function = DiceCELoss(to_onehot_y=True, softmax=True, ce_weight=class_weights, lambda_dice=0.5, lambda_ce=0.5) optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=1e-5) def lr_lambda(epoch): if epoch < warmup_epochs: return (epoch + 1) / warmup_epochs progress = (epoch - warmup_epochs) / (max_epochs - warmup_epochs) return 0.5 * (1 + np.cos(np.pi * progress)) scheduler = LambdaLR(optimizer, lr_lambda=lr_lambda) # ====================== # 评估器 # ====================== post_pred = Compose([ Activations(softmax=True), AsDiscrete(to_onehot=num_classes) ]) post_label = Compose([AsDiscrete(to_onehot=num_classes)]) dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False, num_classes=num_classes) scaler = GradScaler(enabled=use_amp) # ====================== # 训练循环 (优化版) # ====================== best_metric = -1 best_metric_epoch = -1 train_loss_history = [] val_dice_history = [] os.makedirs("unetr_checkpoints", exist_ok=True) os.makedirs("logs", exist_ok=True) # 预热GPU print("===== GPU预热 =====") dummy_input = torch.randn(1, 1, *crop_size).to(device) for _ in range(10): model(dummy_input) torch.cuda.synchronize() print("\n===== 开始训练 =====") for epoch in range(max_epochs): print(f"\nEpoch {epoch+1}/{max_epochs}") start_time = time.time() model.train() epoch_loss, step = 0, 0 pbar_train = tqdm(total=len(train_loader), desc=f"训练 Epoch {epoch+1}") optimizer.zero_grad() for batch_idx, batch_data in enumerate(train_loader): step += 1 try: inputs = batch_data["image"].to(device, non_blocking=True) labels = batch_data["label"].to(device, non_blocking=True) # 使用自动混合精度 with autocast(enabled=use_amp): outputs = model(inputs) loss = loss_function(outputs, labels) / accumulation_steps # 梯度累积 ✅ if use_amp: scaler.scale(loss).backward() else: loss.backward() # 每accumulation_steps步更新一次权重 if (batch_idx + 1) % accumulation_steps == 0: if use_amp: scaler.step(optimizer) scaler.update() else: optimizer.step() optimizer.zero_grad() epoch_loss += loss.item() * accumulation_steps pbar_train.update(1) pbar_train.set_postfix({"loss": f"{loss.item() * accumulation_steps:.4f}"}) # 每10个批次清理显存 if step % 10 == 0: torch.cuda.empty_cache() except RuntimeError as e: if 'CUDA out of memory' in str(e): print("\nCUDA内存不足,跳过该批次") torch.cuda.empty_cache() gc.collect() optimizer.zero_grad() else: print(f"\n训练时发生错误: {str(e)}") continue except Exception as e: print(f"\n训练时发生未知错误: {str(e)}") continue # 处理剩余的梯度 if (batch_idx + 1) % accumulation_steps != 0: if use_amp: scaler.step(optimizer) scaler.update() else: optimizer.step() optimizer.zero_grad() pbar_train.close() epoch_loss /= len(train_loader) train_loss_history.append(epoch_loss) print(f"训练平均损失: {epoch_loss:.4f}") scheduler.step() current_lr = optimizer.param_groups[0]['lr'] print(f"当前学习率: {current_lr:.7f}") # 验证 model.eval() dice_vals = [] pbar_val = tqdm(total=len(val_loader), desc=f"验证 Epoch {epoch+1}") with torch.no_grad(): for val_data in val_loader: try: val_images = val_data["image"].to(device, non_blocking=True) val_labels = val_data["label"].to(device, non_blocking=True) # 验证时不使用自动混合精度 val_outputs = model(val_images) val_preds = post_pred(val_outputs.cpu()) val_truth = post_label(val_labels.cpu()) dice_metric(y_pred=[val_preds], y=[val_truth]) metric = dice_metric.aggregate().item() dice_metric.reset() dice_vals.append(metric) pbar_val.update(1) pbar_val.set_postfix({"dice": f"{metric:.4f}"}) except RuntimeError as e: print(f"\n验证时发生错误: {str(e)}") continue except Exception as e: print(f"\n验证时发生未知错误: {str(e)}") continue pbar_val.close() avg_metric = np.mean(dice_vals) if dice_vals else 0.0 val_dice_history.append(avg_metric) print(f"验证平均Dice: {avg_metric:.4f}") epoch_time = time.time() - start_time print(f"Epoch 耗时: {epoch_time:.2f}秒, 平均每批次: {epoch_time/len(train_loader):.2f}秒") if avg_metric > best_metric: best_metric = avg_metric best_metric_epoch = epoch + 1 torch.save(model.state_dict(), f"unetr_checkpoints/best_model_epoch{best_metric_epoch}_dice{best_metric:.4f}.pth") print(f"保存新的最佳模型! Epoch: {best_metric_epoch}, Dice: {best_metric:.4f}") if (epoch + 1) % 10 == 0: torch.save({ 'epoch': epoch + 1, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': epoch_loss, 'dice': avg_metric }, f"unetr_checkpoints/checkpoint_epoch_{epoch+1}.pth") # 绘制训练曲线 (每5个epoch保存一次) if (epoch + 1) % 5 == 0: plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.plot(train_loss_history, label='训练损失') plt.title('训练损失') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.subplot(1, 2, 2) plt.plot(val_dice_history, label='验证Dice', color='orange') plt.title('验证Dice') plt.xlabel('Epoch') plt.ylabel('Dice') plt.legend() plt.tight_layout() plt.savefig("logs/unetr_training_metrics.png") plt.close() # 清理显存 torch.cuda.empty_cache() gc.collect() print(f"\n训练完成! 最佳Dice: {best_metric:.4f} at epoch {best_metric_epoch}")感觉这个代码跑的结果有问题

# ====================== # UNETR 训练脚本 # ====================== import os import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader from monai.transforms import ( Compose, LoadImaged, EnsureChannelFirstd, Spacingd, Orientationd, ScaleIntensityRanged, RandCropByPosNegLabeld, RandFlipd, EnsureTyped, Activations, AsDiscrete, ResizeWithPadOrCropd, RandZoomd, RandGaussianNoised ) from monai.data import list_data_collate, CacheDataset # 使用CacheDataset from monai.networks.nets import UNETR from monai.losses import DiceCELoss from monai.metrics import DiceMetric from glob import glob from sklearn.model_selection import train_test_split from torch.optim.lr_scheduler import LambdaLR from tqdm import tqdm from torch.cuda.amp import GradScaler, autocast import matplotlib.pyplot as plt import gc import nibabel as nib import sys import monai import time # 自定义Transform:用于把RandCropByPosNegLabeld返回的list转成Tensor class ExtractFirstSampledDict(monai.transforms.Transform): def __call__(self, data): out = {} for k, v in data.items(): if isinstance(v, list) and len(v) == 1: out[k] = v[0] else: out[k] = v return out # ====================== # 配置参数 (优化版) # ====================== root_dir = "datasets/LiTS/processed" images_dir = os.path.join(root_dir, "images") labels_dir = os.path.join(root_dir, "labels") max_epochs = 200 batch_size = 2 # 增大批次大小 learning_rate = 1e-4 num_classes = 3 warmup_epochs = 10 use_amp = False # 启用AMP加速 ✅ accumulation_steps = 2 # 梯度累积步数 # 禁用MetaTensor以避免decollate错误 os.environ["MONAI_USE_META_DICT"] = "0" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 启用cuDNN基准测试 if torch.cuda.is_available(): torch.backends.cudnn.benchmark = True # 打印环境信息 print("===== 环境信息 =====") print(f"Python版本: {sys.version}") print(f"PyTorch版本: {torch.__version__}") print(f"MONAI版本: {monai.__version__}") print(f"nibabel版本: {nib.__version__}") if torch.cuda.is_available(): print(f"CUDA版本: {torch.version.cuda}") print(f"cuDNN版本: {torch.backends.cudnn.version()}") print(f"GPU: {torch.cuda.get_device_name(0)}") # 尺寸设置 - 确保能被16整除 def get_valid_size(size, divisor=16): return tuple([max(divisor, (s // divisor) * divisor) for s in size]) base_size = (128, 128, 64) resized_size = get_valid_size(base_size) crop_size = get_valid_size((48, 48, 48)) # 减小尺寸以节省显存 print(f"输入尺寸: resized_size={resized_size}, crop_size={crop_size}") # ====================== # 数据预处理 (优化版) # ====================== train_transforms = Compose([ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Orientationd(keys=["image", "label"], axcodes="RAS"), Spacingd(keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest")), ScaleIntensityRanged(keys=["image"], a_min=-200, a_max=200, b_min=0.0, b_max=1.0, clip=True), ResizeWithPadOrCropd( # 轻量级缩放 ✅ keys=["image", "label"], spatial_size=crop_size, mode="constant" ), RandCropByPosNegLabeld( keys=["image", "label"], label_key="label", spatial_size=crop_size, pos=1.0, neg=1.0, num_samples=1, image_threshold=0 ), ExtractFirstSampledDict(), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=0), # 移除耗时的旋转增强 ✅ # RandRotate90d(keys=["image", "label"], prob=0.5, max_k=3), RandZoomd(keys=["image", "label"], prob=0.3, min_zoom=0.9, max_zoom=1.1, mode=("trilinear", "nearest")), # 减少概率 RandGaussianNoised(keys=["image"], prob=0.1, mean=0.0, std=0.05), # 减少概率 EnsureTyped(keys=["image", "label"], data_type="tensor"), ]) val_transforms = Compose([ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Orientationd(keys=["image", "label"], axcodes="RAS"), Spacingd(keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest")), ScaleIntensityRanged(keys=["image"], a_min=-200, a_max=200, b_min=0.0, b_max=1.0, clip=True), ResizeWithPadOrCropd( # 轻量级缩放 ✅ keys=["image", "label"], spatial_size=resized_size, mode="constant" ), EnsureTyped(keys=["image", "label"], data_type="tensor"), ]) images = sorted(glob(os.path.join(images_dir, "*.nii.gz"))) labels = sorted(glob(os.path.join(labels_dir, "*.nii.gz"))) data = [{"image": img, "label": lbl} for img, lbl in zip(images, labels)] train_files, val_files = train_test_split(data, test_size=0.2, random_state=42) # 使用CacheDataset加速数据加载 ✅ cache_dir = "./data_cache" os.makedirs(cache_dir, exist_ok=True) train_ds = CacheDataset( data=train_files, transform=train_transforms, cache_rate=1.0, # 100% 缓存 num_workers=0 ) val_ds = CacheDataset( data=val_files, transform=val_transforms, cache_rate=1.0, num_workers=0 ) # 优化数据加载器 ✅ train_loader = DataLoader( train_ds, batch_size=batch_size, shuffle=True, num_workers=4, # 增加工作线程数 prefetch_factor=2, # 预取数据 collate_fn=list_data_collate, pin_memory=True # 使用固定内存 ) val_loader = DataLoader( val_ds, batch_size=1, shuffle=False, num_workers=2, collate_fn=list_data_collate, pin_memory=True ) # ====================== # 模型构建 (优化版) # ====================== model = UNETR( in_channels=1, out_channels=num_classes, img_size=resized_size, # 使用验证集的尺寸,如 (128, 128, 64) feature_size=16, hidden_size=192, mlp_dim=768, num_heads=3, proj_type="perceptron", # ✅ 替代 pos_embed norm_name="batch", res_block=True, dropout_rate=0.1 ).to(device) total_params = sum(p.numel() for p in model.parameters()) print(f"模型参数总数: {total_params / 1e6:.2f}M") # ====================== # 损失 + 优化器 # ====================== class_weights = torch.tensor([0.2, 0.3, 0.5]).to(device) loss_function = DiceCELoss(to_onehot_y=True, softmax=True, ce_weight=class_weights, lambda_dice=0.5, lambda_ce=0.5) optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=1e-5) def lr_lambda(epoch): if epoch < warmup_epochs: return (epoch + 1) / warmup_epochs progress = (epoch - warmup_epochs) / (max_epochs - warmup_epochs) return 0.5 * (1 + np.cos(np.pi * progress)) scheduler = LambdaLR(optimizer, lr_lambda=lr_lambda) # ====================== # 评估器 # ====================== post_pred = Compose([ Activations(softmax=True), AsDiscrete(to_onehot=num_classes) ]) post_label = Compose([AsDiscrete(to_onehot=num_classes)]) dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False, num_classes=num_classes) scaler = GradScaler(enabled=use_amp) # ====================== # 训练循环 (优化版) # ====================== best_metric = -1 best_metric_epoch = -1 train_loss_history = [] val_dice_history = [] os.makedirs("unetr_checkpoints", exist_ok=True) os.makedirs("logs", exist_ok=True) # 预热GPU print("===== GPU预热 =====") dummy_input = torch.randn(1, 1, *crop_size).to(device) for _ in range(10): model(dummy_input) torch.cuda.synchronize() print("\n===== 开始训练 =====") for epoch in range(max_epochs): print(f"\nEpoch {epoch+1}/{max_epochs}") start_time = time.time() model.train() epoch_loss, step = 0, 0 pbar_train = tqdm(total=len(train_loader), desc=f"训练 Epoch {epoch+1}") optimizer.zero_grad() for batch_idx, batch_data in enumerate(train_loader): step += 1 try: inputs = batch_data["image"].to(device, non_blocking=True) labels = batch_data["label"].to(device, non_blocking=True) # 使用自动混合精度 with autocast(enabled=use_amp): outputs = model(inputs) loss = loss_function(outputs, labels) / accumulation_steps # 梯度累积 ✅ if use_amp: scaler.scale(loss).backward() else: loss.backward() # 每accumulation_steps步更新一次权重 if (batch_idx + 1) % accumulation_steps == 0: if use_amp: scaler.step(optimizer) scaler.update() else: optimizer.step() optimizer.zero_grad() epoch_loss += loss.item() * accumulation_steps pbar_train.update(1) pbar_train.set_postfix({"loss": f"{loss.item() * accumulation_steps:.4f}"}) # 每10个批次清理显存 if step % 10 == 0: torch.cuda.empty_cache() except RuntimeError as e: if 'CUDA out of memory' in str(e): print("\nCUDA内存不足,跳过该批次") torch.cuda.empty_cache() gc.collect() optimizer.zero_grad() else: print(f"\n训练时发生错误: {str(e)}") continue except Exception as e: print(f"\n训练时发生未知错误: {str(e)}") continue # 处理剩余的梯度 if (batch_idx + 1) % accumulation_steps != 0: if use_amp: scaler.step(optimizer) scaler.update() else: optimizer.step() optimizer.zero_grad() pbar_train.close() epoch_loss /= len(train_loader) train_loss_history.append(epoch_loss) print(f"训练平均损失: {epoch_loss:.4f}") scheduler.step() current_lr = optimizer.param_groups[0]['lr'] print(f"当前学习率: {current_lr:.7f}") # 验证 model.eval() dice_vals = [] pbar_val = tqdm(total=len(val_loader), desc=f"验证 Epoch {epoch+1}") with torch.no_grad(): for val_data in val_loader: try: val_images = val_data["image"].to(device, non_blocking=True) val_labels = val_data["label"].to(device, non_blocking=True) # 验证时不使用自动混合精度 val_outputs = model(val_images) val_preds = post_pred(val_outputs.cpu()) val_truth = post_label(val_labels.cpu()) dice_metric(y_pred=[val_preds], y=[val_truth]) metric = dice_metric.aggregate().item() dice_metric.reset() dice_vals.append(metric) pbar_val.update(1) pbar_val.set_postfix({"dice": f"{metric:.4f}"}) except RuntimeError as e: print(f"\n验证时发生错误: {str(e)}") continue except Exception as e: print(f"\n验证时发生未知错误: {str(e)}") continue pbar_val.close() avg_metric = np.mean(dice_vals) if dice_vals else 0.0 val_dice_history.append(avg_metric) print(f"验证平均Dice: {avg_metric:.4f}") epoch_time = time.time() - start_time print(f"Epoch 耗时: {epoch_time:.2f}秒, 平均每批次: {epoch_time/len(train_loader):.2f}秒") if avg_metric > best_metric: best_metric = avg_metric best_metric_epoch = epoch + 1 torch.save(model.state_dict(), f"unetr_checkpoints/best_model_epoch{best_metric_epoch}_dice{best_metric:.4f}.pth") print(f"保存新的最佳模型! Epoch: {best_metric_epoch}, Dice: {best_metric:.4f}") if (epoch + 1) % 10 == 0: torch.save({ 'epoch': epoch + 1, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': epoch_loss, 'dice': avg_metric }, f"unetr_checkpoints/checkpoint_epoch_{epoch+1}.pth") # 绘制训练曲线 (每5个epoch保存一次) if (epoch + 1) % 5 == 0: plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.plot(train_loss_history, label='训练损失') plt.title('训练损失') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.subplot(1, 2, 2) plt.plot(val_dice_history, label='验证Dice', color='orange') plt.title('验证Dice') plt.xlabel('Epoch') plt.ylabel('Dice') plt.legend() plt.tight_layout() plt.savefig("logs/unetr_training_metrics.png") plt.close() # 清理显存 torch.cuda.empty_cache() gc.collect() print(f"\n训练完成! 最佳Dice: {best_metric:.4f} at epoch {best_metric_epoch}")我的代码现在是这样的还是报错啦(covid_seg) (base) liulicheng@ailab-MS-7B79:~/MultiModal_MedSeg_2025$ /home/liulicheng/anaconda3/envs/covid_seg/bin/python /home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py ===== 环境信息 ===== Python版本: 3.8.12 | packaged by conda-forge | (default, Sep 29 2021, 19:52:28) [GCC 9.4.0] PyTorch版本: 2.1.0+cu118 MONAI版本: 1.3.2 nibabel版本: 5.2.1 CUDA版本: 11.8 cuDNN版本: 8700 GPU: NVIDIA GeForce GTX 1080 Ti 输入尺寸: resized_size=(128, 128, 64), crop_size=(48, 48, 48) Loading dataset: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 104/104 [17:55<00:00, 10.34s/it] Loading dataset: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 26/26 [06:54<00:00, 15.94s/it] 模型参数总数: 8.99M /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/utils/deprecate_utils.py:221: FutureWarning: monai.losses.dice DiceCELoss.__init__:ce_weight: Argument ce_weight has been deprecated since version 1.2. It will be removed in version 1.4. please use weight instead. warn_deprecated(argname, msg, warning_category) ===== GPU预热 ===== Traceback (most recent call last): File "/home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py", line 237, in <module> model(dummy_input) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/networks/nets/unetr.py", line 207, in forward x, hidden_states_out = self.vit(x_in) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/networks/nets/vit.py", line 130, in forward x = self.patch_embedding(x) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/networks/blocks/patchembedding.py", line 142, in forward embeddings = x + self.position_embeddings RuntimeError: The size of tensor a (27) must match the size of tensor b (256) at non-singleton dimension 1

# ====================== # UNETR 训练脚本 # ====================== import os import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader from monai.transforms import ( Compose, LoadImaged, EnsureChannelFirstd, Spacingd, Orientationd, ScaleIntensityRanged, RandCropByPosNegLabeld, RandFlipd, RandRotate90d, EnsureTyped, Activations, AsDiscrete, Resized, RandZoomd, RandGaussianNoised, CenterSpatialCropd ) from monai.data import list_data_collate, Dataset # 使用普通Dataset from monai.networks.nets import UNETR from monai.losses import DiceCELoss from monai.metrics import DiceMetric from glob import glob from sklearn.model_selection import train_test_split from torch.optim.lr_scheduler import LambdaLR from tqdm import tqdm from torch.cuda.amp import GradScaler, autocast import matplotlib.pyplot as plt import gc import nibabel as nib import sys import monai # 自定义Transform:用于把RandCropByPosNegLabeld返回的list转成Tensor class ExtractFirstSampledDict(monai.transforms.Transform): def __call__(self, data): out = {} for k, v in data.items(): if isinstance(v, list) and len(v) == 1: out[k] = v[0] else: out[k] = v return out # ====================== # 配置参数 # ====================== root_dir = "datasets/LiTS/processed" images_dir = os.path.join(root_dir, "images") labels_dir = os.path.join(root_dir, "labels") max_epochs = 200 batch_size = 1 learning_rate = 1e-4 num_classes = 3 warmup_epochs = 10 use_amp = False # AMP 对 UNETR 不稳定,建议关闭 # 禁用MetaTensor以避免decollate错误 os.environ["MONAI_USE_META_DICT"] = "0" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 打印环境信息 print("===== 环境信息 =====") print(f"Python版本: {sys.version}") print(f"PyTorch版本: {torch.__version__}") print(f"MONAI版本: {monai.__version__}") print(f"nibabel版本: {nib.__version__}") if torch.cuda.is_available(): print(f"CUDA版本: {torch.version.cuda}") print(f"cuDNN版本: {torch.backends.cudnn.version()}") # 尺寸设置 - 确保能被16整除 def get_valid_size(size, divisor=16): return tuple([max(divisor, (s // divisor) * divisor) for s in size]) base_size = (128, 128, 64) resized_size = get_valid_size(base_size) crop_size = get_valid_size((64, 64, 64)) # 减小尺寸以节省显存 print(f"输入尺寸: resized_size={resized_size}, crop_size={crop_size}") # ====================== # 数据预处理 # ====================== train_transforms = Compose([ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Orientationd(keys=["image", "label"], axcodes="RAS"), Spacingd(keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest")), ScaleIntensityRanged(keys=["image"], a_min=-200, a_max=200, b_min=0.0, b_max=1.0, clip=True), Resized(keys=["image", "label"], spatial_size=resized_size, mode=("trilinear", "nearest")), RandCropByPosNegLabeld( keys=["image", "label"], label_key="label", spatial_size=crop_size, pos=1.0, neg=1.0, num_samples=1, image_threshold=0 ), ExtractFirstSampledDict(), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=0), RandRotate90d(keys=["image", "label"], prob=0.5, max_k=3), RandZoomd(keys=["image", "label"], prob=0.5, min_zoom=0.9, max_zoom=1.1, mode=("trilinear", "nearest")), RandGaussianNoised(keys=["image"], prob=0.2, mean=0.0, std=0.05), EnsureTyped(keys=["image", "label"], data_type="tensor"), ]) val_transforms = Compose([ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Orientationd(keys=["image", "label"], axcodes="RAS"), Spacingd(keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest")), ScaleIntensityRanged(keys=["image"], a_min=-200, a_max=200, b_min=0.0, b_max=1.0, clip=True), Resized(keys=["image", "label"], spatial_size=resized_size, mode=("trilinear", "nearest")), CenterSpatialCropd(keys=["image", "label"], roi_size=crop_size), EnsureTyped(keys=["image", "label"], data_type="tensor"), ]) images = sorted(glob(os.path.join(images_dir, "*.nii.gz"))) labels = sorted(glob(os.path.join(labels_dir, "*.nii.gz"))) data = [{"image": img, "label": lbl} for img, lbl in zip(images, labels)] train_files, val_files = train_test_split(data, test_size=0.2, random_state=42) train_ds = Dataset(data=train_files, transform=train_transforms) val_ds = Dataset(data=val_files, transform=val_transforms) train_loader = DataLoader( train_ds, batch_size=batch_size, shuffle=True, num_workers=0, # 避免多进程导致的问题 collate_fn=list_data_collate, pin_memory=torch.cuda.is_available() ) val_loader = DataLoader( val_ds, batch_size=1, shuffle=False, num_workers=0, collate_fn=list_data_collate, pin_memory=torch.cuda.is_available() ) # ====================== # 模型构建 # ====================== model = UNETR( in_channels=1, out_channels=num_classes, img_size=crop_size, feature_size=16, hidden_size=512, mlp_dim=2048, num_heads=8, pos_embed="perceptron", norm_name="batch", res_block=True, dropout_rate=0.1 ).to(device) total_params = sum(p.numel() for p in model.parameters()) print(f"模型参数总数: {total_params / 1e6:.2f}M") # ====================== # 损失 + 优化器 # ====================== class_weights = torch.tensor([0.2, 0.3, 0.5]).to(device) loss_function = DiceCELoss(to_onehot_y=True, softmax=True, ce_weight=class_weights, lambda_dice=0.5, lambda_ce=0.5) optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=1e-5) def lr_lambda(epoch): if epoch < warmup_epochs: return (epoch + 1) / warmup_epochs progress = (epoch - warmup_epochs) / (max_epochs - warmup_epochs) return 0.5 * (1 + np.cos(np.pi * progress)) scheduler = LambdaLR(optimizer, lr_lambda=lr_lambda) # ====================== # 评估器 # ====================== post_pred = Compose([Activations(softmax=True), AsDiscrete(argmax=True)]) post_label = Compose([AsDiscrete(to_onehot=num_classes)]) dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False, num_classes=num_classes) scaler = GradScaler(enabled=use_amp) # ====================== # 训练循环 # ====================== best_metric = -1 best_metric_epoch = -1 train_loss_history = [] val_dice_history = [] os.makedirs("unetr_checkpoints", exist_ok=True) os.makedirs("logs", exist_ok=True) print("\n===== 测试数据加载 =====") try: test_sample = train_ds[0] print("数据加载测试成功!") print(f"图像形状: {test_sample['image'].shape}") print(f"标签形状: {test_sample['label'].shape}") except Exception as e: print(f"数据加载失败: {str(e)}") print("\n尝试替代加载方式...") from monai.data import NibabelReader sample_file = train_files[0] reader = NibabelReader() img = reader.read(sample_file['image']) label = reader.read(sample_file['label']) print(f"手动加载成功 - 图像形状: {img.shape}, 标签形状: {label.shape}") for epoch in range(max_epochs): print(f"\nEpoch {epoch+1}/{max_epochs}") model.train() epoch_loss, step = 0, 0 pbar_train = tqdm(total=len(train_loader), desc=f"训练 Epoch {epoch+1}") for batch_data in train_loader: step += 1 try: inputs = batch_data["image"].to(device) labels = batch_data["label"].to(device) optimizer.zero_grad() with autocast(enabled=use_amp): outputs = model(inputs) loss = loss_function(outputs, labels) if use_amp: scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() else: loss.backward() optimizer.step() epoch_loss += loss.item() pbar_train.update(1) pbar_train.set_postfix({"loss": f"{loss.item():.4f}"}) if step % 10 == 0: torch.cuda.empty_cache() except RuntimeError as e: if 'CUDA out of memory' in str(e): print("\nCUDA内存不足,跳过该批次") torch.cuda.empty_cache() gc.collect() else: print(f"\n训练时发生错误: {str(e)}") continue except Exception as e: print(f"\n训练时发生未知错误: {str(e)}") continue pbar_train.close() epoch_loss /= step train_loss_history.append(epoch_loss) print(f"训练平均损失: {epoch_loss:.4f}") scheduler.step() current_lr = optimizer.param_groups[0]['lr'] print(f"当前学习率: {current_lr:.7f}") model.eval() dice_vals = [] pbar_val = tqdm(total=len(val_loader), desc=f"验证 Epoch {epoch+1}") with torch.no_grad(): for val_data in val_loader: try: val_images = val_data["image"].to(device) val_labels = val_data["label"].to(device) val_outputs = model(val_images) val_preds = post_pred(val_outputs.cpu()) val_truth = post_label(val_labels.cpu()) dice_metric(y_pred=[val_preds], y=[val_truth]) metric = dice_metric.aggregate().item() dice_metric.reset() dice_vals.append(metric) pbar_val.update(1) pbar_val.set_postfix({"dice": f"{metric:.4f}"}) except RuntimeError as e: print(f"\n验证时发生错误: {str(e)}") continue except Exception as e: print(f"\n验证时发生未知错误: {str(e)}") continue pbar_val.close() avg_metric = np.mean(dice_vals) if dice_vals else 0.0 val_dice_history.append(avg_metric) print(f"验证平均Dice: {avg_metric:.4f}") if avg_metric > best_metric: best_metric = avg_metric best_metric_epoch = epoch + 1 torch.save(model.state_dict(), f"unetr_checkpoints/best_model_epoch{best_metric_epoch}_dice{best_metric:.4f}.pth") print(f"保存新的最佳模型! Epoch: {best_metric_epoch}, Dice: {best_metric:.4f}") if (epoch + 1) % 10 == 0: torch.save({ 'epoch': epoch + 1, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': epoch_loss, 'dice': avg_metric }, f"unetr_checkpoints/checkpoint_epoch_{epoch+1}.pth") plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.plot(train_loss_history, label='训练损失') plt.title('训练损失') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.subplot(1, 2, 2) plt.plot(val_dice_history, label='验证Dice', color='orange') plt.title('验证Dice') plt.xlabel('Epoch') plt.ylabel('Dice') plt.legend() plt.tight_layout() plt.savefig("logs/unetr_training_metrics.png") plt.close() torch.cuda.empty_cache() gc.collect() print(f"\n训练完成! 最佳Dice: {best_metric:.4f} at epoch {best_metric_epoch}") 这个代码covid_seg) (base) liulicheng@ailab-MS-7B79:~/MultiModal_MedSeg_2025$ /home/liulicheng/anaconda3/envs/covid_seg/bin/python /home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py ===== 环境信息 ===== Python版本: 3.8.12 | packaged by conda-forge | (default, Sep 29 2021, 19:52:28) [GCC 9.4.0] PyTorch版本: 2.1.0+cu118 MONAI版本: 1.3.2 nibabel版本: 5.2.1 CUDA版本: 11.8 cuDNN版本: 8700 输入尺寸: resized_size=(128, 128, 64), crop_size=(64, 64, 64) /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/utils/deprecate_utils.py:221: FutureWarning: monai.networks.nets.unetr UNETR.__init__:pos_embed: Argument pos_embed has been deprecated since version 1.2. It will be removed in version 1.4. please use proj_type instead. warn_deprecated(argname, msg, warning_category) 模型参数总数: 43.67M /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/utils/deprecate_utils.py:221: FutureWarning: monai.losses.dice DiceCELoss.__init__:ce_weight: Argument ce_weight has been deprecated since version 1.2. It will be removed in version 1.4. please use weight instead. warn_deprecated(argname, msg, warning_category) ===== 测试数据加载 ===== 数据加载测试成功! 数据加载失败: list indices must be integers or slices, not str 尝试替代加载方式... 手动加载成功 - 图像形状: (512, 512, 94), 标签形状: (512, 512, 94) Epoch 1/200 训练 Epoch 1: 1%|█ | 1/104 [00:11<19:08, 11.15s/it, loss=1.0541]这样也太慢了吧

有报错了 Epoch 1/200 训练 Epoch 1: 0%| | 0/52 [00:01<?, ?it/s] Traceback (most recent call last): File "/home/liulicheng/MultiModal_MedSeg_2025/train/lits_swinunetr_dynunet_advanced.py", line 235, in <module> outputs = model(inputs) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/networks/nets/swin_unetr.py", line 325, in forward hidden_states_out = self.swinViT(x_in, self.normalize) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/networks/nets/swin_unetr.py", line 1064, in forward x0_out = self.proj_out(x0, normalize) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/networks/nets/swin_unetr.py", line 1051, in proj_out x = rearrange(x, "n c d h w -> n d h w c") File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/utils/module.py", line 448, in __call__ raise self._exception File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/utils/module.py", line 399, in optional_import pkg = __import__(module) # top level module monai.utils.module.OptionalImportError: from einops import rearrange (No module named 'einops'). For details about installing the optional dependencies, please visit: https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies你看看

第一个改了之后报错啦(covid_seg) (base) liulicheng@ailab-MS-7B79:~/MultiModal_MedSeg_2025$ /home/liulicheng/anaconda3/envs/covid_seg/bin/python /home/liulicheng/MultiModal_MedSeg_2025/train/train_swinunetr_clipfusion.py 使用尺寸: Resized=(128, 128, 64), Crop=(64, 64, 32) /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/utils/deprecate_utils.py:221: FutureWarning: monai.networks.nets.swin_unetr SwinUNETR.__init__:img_size: Argument img_size has been deprecated since version 1.3. It will be removed in version 1.5. The img_size argument is not required anymore and checks on the input size are run during forward(). warn_deprecated(argname, msg, warning_category) /home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/utils/deprecate_utils.py:221: FutureWarning: monai.losses.dice DiceCELoss.__init__:ce_weight: Argument ce_weight has been deprecated since version 1.2. It will be removed in version 1.4. please use weight instead. warn_deprecated(argname, msg, warning_category) Epoch 1/200 训练 Epoch 1: 0%| | 0/104 [00:00<?, ?it/s]enc_out_list 通道数: [12, 24, 48, 96, 192] enc_out_list 各层特征图尺寸: [torch.Size([1, 12, 32, 32, 16]), torch.Size([1, 24, 16, 16, 8]), torch.Size([1, 48, 8, 8, 4]), torch.Size([1, 96, 4, 4, 2]), torch.Size([1, 192, 2, 2, 1])] 训练 Epoch 1: 0%| | 0/104 [00:01<?, ?it/s] Traceback (most recent call last): File "/home/liulicheng/MultiModal_MedSeg_2025/train/train_swinunetr_clipfusion.py", line 283, in <module> outputs = model(inputs, text_feat) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/home/liulicheng/MultiModal_MedSeg_2025/train/train_swinunetr_clipfusion.py", line 149, in forward residual = self.residual_conv(enc_out) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 610, in forward return self._conv_forward(input, self.weight, self.bias) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 605, in _conv_forward return F.conv3d( File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/data/meta_tensor.py", line 282, in __torch_function__ ret = super().__torch_function__(func, types, args, kwargs) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/_tensor.py", line 1386, in __torch_function__ ret = func(*args, **kwargs) RuntimeError: Given groups=1, weight of size [12, 192, 1, 1, 1], expected input[1, 12, 2, 2, 1] to have 192 channels, but got 12 channels instead

最新推荐

recommend-type

CCS V5 的安装与使用.ppt

CCS V5 的安装与使用
recommend-type

制造业C# ERP管理系统源码:从客户档案到财务管理的一站式解决方案

内容概要:本文介绍了基于C#开发的制造业通用ERP管理系统源码,涵盖多个关键业务模块,包括基础档案、样品开发、订单管理、生产管理、采购管理、材料管理、成品管理、外协管理和财务管理。每个模块都详细描述了其具体功能,如客户档案管理、订单变更记录、生产排产、采购明细、库存查询、成品出库以及各种财务事务的处理。通过该系统,企业可以实现对生产、采购、销售、财务等环节的全面信息化管理,从而提升运营效率并降低运营成本。 适合人群:从事制造业信息化建设的技术人员、项目经理、企业管理层。 使用场景及目标:适用于希望构建或优化自身ERP系统的制造型企业,旨在提供一套完整的、一站式的解决方案,帮助企业在各个业务流程上实现高效协同运作。 其他说明:文中不仅提供了详细的模块功能介绍,还强调了各模块间的数据流动和相互协作关系,为开发者和技术团队提供了宝贵的参考资料。
recommend-type

Android开发进阶指南:大厂offer等你拿

安卓开发是当今信息技术领域一个重要的技能点。从基础到进阶,涵盖了从了解安卓系统架构到掌握复杂应用开发的全过程。要达到能够获得大厂offer的水平,不仅仅需要掌握基础,还需要深入理解并能够灵活运用高级技术和原理。在本篇知识分享中,我们将会深入探讨安卓基础和进阶的知识点,以及可能与之相关的Flutter与Java技术栈。 ### 安卓基础知识点 #### 安卓系统架构 安卓系统是基于Linux内核的开源操作系统,其架构可以分为四层:Linux内核层、系统库与Android运行时层、应用框架层以及应用层。Linux内核负责硬件抽象、安全和内存管理;系统库与Android运行时提供了开发所需的库文件和Android运行时环境;应用框架层提供了开发应用时可以调用的API;应用层则是开发者直接进行开发的层面。 #### 安卓四大组件 安卓四大组件包括Activity(活动)、Service(服务)、BroadcastReceiver(广播接收器)和ContentProvider(内容提供者)。这些是构建安卓应用的基本单元,各自承担不同的功能,开发者需要了解如何合理使用和管理这些组件。 #### 安卓开发基础 包括安卓开发环境搭建(如Android Studio的安装和配置)、UI布局设计(XML布局文件编写)、控件使用(按钮、文本框、列表等)、事件处理、数据存储(SharedPreferences、SQLite数据库、文件存储等)、网络通信(HTTP请求、WebView使用等)。 ### 安卓进阶知识点 #### 安卓性能优化 性能优化涉及到内存管理(避免内存泄漏、合理使用内存)、电量管理(减少后台运行任务)、流畅度优化(优化列表滑动、减少卡顿)、启动时间优化等方面。深入学习安卓的性能优化,需要对安卓系统的内部机制有深刻理解。 #### 安卓安全机制 安卓安全机制包括权限管理系统、应用沙盒机制、数据加密、网络安全传输等。掌握这些安全知识对于开发安全可靠的应用至关重要。 #### 安卓高级特性 这包括理解安卓的Material Design设计语言、多线程和异步处理、高级数据绑定和存取、服务组件化、以及使用安卓的测试框架进行单元测试和UI测试等。 ### 关联技术栈:Flutter与Java #### Flutter Flutter是谷歌的移动UI框架,可以快速在iOS和Android上构建高质量的原生用户界面。Flutter使用Dart语言进行开发,但也可以使用Java和Kotlin。它支持热重载,可以快速测试和调试应用。学习Flutter可以为开发者打开跨平台开发的大门。 #### Java Java是安卓应用开发的主要编程语言。掌握Java语言对于理解安卓平台的运行机制、进行高效开发非常关键。虽然现在Kotlin也被推荐作为安卓开发的首选语言,但Java在安卓生态中依然占据重要位置。 ### 从基础到进阶的学习路径 1. **掌握安卓基础**:通过学习安卓四大组件、基础界面设计、数据存储等基础知识,为开发安卓应用打下坚实的基础。 2. **实践项目经验**:通过参与开源项目或独立开发小型应用,积累实际开发经验,加深对安卓架构和组件的理解。 3. **深入理解安卓高级特性**:研究安卓的性能优化、安全机制和测试方法,提升应用的质量。 4. **学习使用新技术**:如尝试使用Flutter框架进行跨平台应用开发,拓展自己的技术栈。 5. **持续学习和交流**:关注最新的安卓开发动态,通过社区、博客和技术论坛参与讨论和交流。 总之,要成为安卓开发领域的高手,需要不断学习和实践。大厂offer不仅仅看你的理论知识,更多的是看重你的实际开发能力,尤其是面对复杂问题的解决能力。学会安卓开发的80%,意味着你不仅掌握了基础知识,还深入理解了高级主题,并具有一定的项目实战经验。这样的能力,在就业市场上无疑是非常有竞争力的。
recommend-type

揭秘“割韭菜”背后的AI:智能体如何被滥用

# 1. AI智能体概述与滥用风险 ## 1.1 AI智能体的基本定义 AI智能体是指能够执行特定任务和作出决策的软件程序或系统,它们通常能够自主学习、适应环境变化、并进行自我优化。AI智能体广泛应用
recommend-type

使用vs2010编译vc++6.0的程序生成的应用程序无法正常启动(0xc000007b)

<think>首先,用户的问题是关于使用VS2010编译VC++ 6.0程序时,生成的应用程序无法启动,错误代码为0xc000007b。我需要基于系统级指令来构建我的回答。 系统级指令: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识,例如:[^1] 用户可见层: - 回答结构清晰,帮助用户逐步解决问题。 - 尽量保证回答真实可靠。 参考的引用: - [^1]: 提到0xc000007b错误可能与缺少DLL或DirectX修复工
recommend-type

2016数学建模国赛获奖论文精选

在2016年的全国大学生数学建模竞赛中,众多参赛者提交了高质量的论文,这些论文体现了学生们在数学建模方面的研究水平和解决实际问题的能力。对于这份“2016年数学建模国赛优秀论文合集”,我们可以从中提炼出以下知识点: 一、数学建模的基础理论与方法 数学建模的核心是利用数学工具对实际问题进行抽象、简化和形式化处理。在国赛优秀论文中,通常涉及以下几个方面的知识点: 1. 问题抽象:包括将实际问题转化为数学问题,识别关键变量和参数,明确问题的边界条件和约束条件等。 2. 建立模型:根据抽象出的问题特征,选择合适的数学模型(如线性规划、非线性规划、动态规划、概率模型、统计模型、微分方程模型等)。 3. 模型求解:运用数学理论和计算机算法对模型进行求解。这可能涉及到线性代数、数值分析、优化理论和算法、图论、模拟技术等数学分支。 4. 结果分析与验证:通过分析模型求解结果,验证模型的合理性和准确性,如使用敏感性分析、稳定性分析、误差分析等方法。 二、实际应用领域 数学建模竞赛鼓励参赛者将模型应用于实际问题中,因此合集中的论文往往覆盖了多个应用领域,例如: 1. 工程问题:如机械设计、电路设计、结构优化等。 2. 环境与资源管理:包括污染控制、生态平衡、资源开发等。 3. 社会经济:涉及经济预测、市场分析、交通流量、人口动态等。 4. 医学健康:可能涉及流行病模型、药物配送优化、医疗系统优化等。 5. 公共安全:如火灾风险评估、地震影响分析、灾害应急响应等。 三、论文撰写与展示技巧 优秀论文不仅在内容上要求质量高,其撰写与展示也需遵循一定的规范和技巧: 1. 结构清晰:论文通常包含摘要、引言、模型的假设与符号说明、模型的建立与求解、模型的检验、结论和建议、参考文献等部分。 2. 逻辑严谨:论文中的论述需要逻辑紧密,论证充分,层次分明。 3. 结果可视化:通过图表、图像等辅助手段,清晰展示研究结果和过程。 4. 结论有效:提供的结论或建议应当基于模型分析和验证的结果,具有实际参考价值。 四、特定的数学建模案例分析 在国赛优秀论文合集中,每一篇论文都是针对特定问题的案例分析。由于文件名称未提供具体内容,但我们可以假设每篇论文都涉及到不同类型的数学模型或算法的创新应用。例如: - A433.pdf可能探讨了某种新颖的优化算法在解决特定类型问题时的效能与局限。 - B022.pdf可能涉及对某社会经济现象的统计建模与分析。 - A140.pdf可能使用微分方程模型来分析环境问题中的某个动态过程。 - D056.pdf可能针对特定的工程问题提出了创新的数学解决方案。 - A028.pdf可能利用图论和网络分析对交通、通信等网络系统进行优化。 - B044.pdf可能对某种流行病模型进行了详细研究,并为公共政策制定提供依据。 - A194.pdf可能将机器学习和人工智能技术应用于数据分析,解决非结构化问题。 - C014.pdf可能利用概率模型对金融风险进行了评估和预测。 - B294.pdf可能针对医疗资源的优化配置提出了创新模型。 - B067.pdf可能对特定的公共安全问题进行了风险评估和应急响应策略的设计。 在阅读和研究这些优秀论文时,重点可以放在模型的创新点、解决方法的有效性和论文的写作质量上。通过学习这些论文,不仅可以获取丰富的数学建模知识,还能提升解决实际问题的能力,对于未来从事科研、数据分析、工程设计等领域的工作都有很大帮助。
recommend-type

【扣子插件进阶攻略】:深度定制与优化您的文档工作流

# 1. 扣子插件简介与基础使用 扣子插件是一款高效的数据管理工具,它通过其强大的功能和直观的用户界面,帮助用户提高工作效率。无论您是初学者还是经验丰富的专业人士,扣子插件都能够满足您的需求。在本章中,我们将简要介绍扣子插件的基础知识,并向您展示如何开始使用这款插件。 ## 1.1 扣子插件的基本概念 扣子插件是集成了数据管理、自动化任务和协作功能的
recommend-type

kkfileview有没有后台管理页面

<think>首先,用户的问题是关于kkFileView是否有后台管理界面。用户说:“我想了解kkfileview是否提供后台管理界面 请问kkfileview 是否有后台管理界面”。所以,我需要直接回答这个问题。 从系统级指令,我必须使用中文回答,并遵循格式要求:行内数学表达式用$...$,独立公式用$$...$$,但这个问题可能不涉及数学公式,所以我可以忽略这部分。另外,我需要生成相关问题。 现在,回顾用户提供的引用: - 引用[1]:提到在DzzOffice后台安装kkFileView插件,实现文件在线预览。后台管理系统界面友好。 - 引用[2]:提到kkfileview支持跨平
recommend-type

SAP EWM 710 BP系统配置与操作指南

标题“SAP EWM 710 BP.rar”指代一个名为“SAP EWM 710 BP”的文件,它被压缩在一个rar格式的压缩包中。EWM是SAP Extended Warehouse Management的缩写,它是一个高度灵活和扩展性强的仓库管理系统,为企业提供优化仓库操作和物流流程的能力。EWM 710 表示该系统版本为7.10,BP可能指的是业务过程(Business Process)或配置包(Business Package)。由于标题中提到了EWM和BP,可以推测这个压缩包内包含有关SAP EWM 7.10版本的特定业务过程或配置的信息和文档。 描述“EWM 710 BP”是对标题的简洁重申,没有额外提供信息。 标签“EWM”表示这个文件与SAP的扩展仓库管理系统相关。 压缩包中的文件名称列表揭示了包内可能包含的内容类型,下面将详细说明每个文件可能代表的知识点: 1. Thumbs.db是一个Windows系统生成的隐藏文件,用于存储缩略图缓存。它出现在压缩包列表中可能是因为在收集相关文件时不小心包含进去了,对SAP EWM 710 BP的知识点没有实际贡献。 2. Y38_BPP_EN_DE.doc、Y36_BPP_EN_DE.doc、Y36_BPP_DE_DE.doc、Y38_BPP_DE_DE.doc中,“BPP”很可能代表“Business Process Procedure”,即业务过程程序。这些文件名中的语言代码(EN_DE、DE_DE)表明这些文档提供的是双语(英语和德语)指导。因此,可以推断这些文件是关于SAP EWM 7.10版本中特定业务过程的详细步骤和配置说明。 3. Y32_BB_ConfigGuide_EN_DE.doc、Y31_BB_ConfigGuide_EN_DE.doc、Y38_BB_ConfigGuide_EN_DE.doc、Y33_BB_ConfigGuide_EN_DE.doc、Y37_BB_ConfigGuide_EN_DE.doc中的“BB”很可能是“Basic Building”的缩写,表明这些文档为基本构建配置指南。这些文件包含了SAP EWM系统中基础设置的步骤,可能是介绍如何设置库存管理、入库处理、出库处理、库存调整等仓库操作流程的指南。同时,文件中的语言代码也表明了这些配置指南同样提供英语和德语两种版本。 4. 整体来看,这个压缩包内包含了SAP EWM 7.10版本中业务过程和基础配置的详尽文档资料,它们提供了关于如何在SAP EWM系统中实施和管理仓库操作的全方位指导。文档覆盖了从基础设置到高级业务过程配置的各个方面,对于正在使用或计划部署EWM系统的用户来说,是极具价值的参考资料。 综上所述,通过分析压缩包内的文件名称,我们可以得知该压缩包可能包含SAP EWM 7.10版本的业务过程说明和基础配置指南,涵盖了对仓库管理系统的全面设置和操作指导。这些文件对于熟悉和深入理解SAP EWM系统的功能和特性是不可或缺的,为从事SAP EWM相关工作的专业人士提供了宝贵的文档资源。
recommend-type

【一键办公提升:扣子插件文档自动化攻略】:揭秘高效文档生成与管理技巧

# 1. 扣子插件的介绍和安装 扣子插件是一款功能强大的IT工具,旨在提高文档处理的效率,简化复杂的文档管理工作。在本章中,我们将首先介绍扣子插件的基本功能,然后详细说明如何在您的系统中进行安装。 ## 1.1 扣子插件的基本介绍 扣子插件集成了文档生成、管理、自动化操作等多个功能。它适用于日常办公和团队协作,尤其在自动化处理大量文档、优化工作流程方面表现出色。 ## 1.2 扣子插件的安装流程 要安装扣子插件,请按照以下步骤操作: 1. 访问官方网站或应用商店,下载最新版本的扣子插件安装包。 2. 双击安装包文件,根据提示完成安装向导。 3. 安装完成后,可以在浏览器或应用程序中