详细的解释用法int startTts(String clientId, String text, in ICarVoiceTtsListener ttsListener);

时间: 2024-09-24 17:13:12 浏览: 71
这个函数看起来是在一个基于Android或者某种智能车载系统的应用中,用于启动语音合成(Text-to-Speech, TTS)。`startTts` 函数接收三个参数: 1. `clientId` : 这是一个字符串,可能是用户的身份标识,或者是请求的特定服务的编号。客户端可能需要提供这个ID来唯一标识这次语音合成操作。 2. `text` : 字符串类型的 `text` 参数是要转换成语音并播放出来的文本内容。 3. `ttsListener` : 类型为 `ICarVoiceTtsListener` 的参数,这是一个监听器接口,它允许你在语音合成的不同阶段(如开始、结束、错误等)注册回调函数。通过这种方式,你可以跟踪并处理语音合成过程的状态。 当你调用这个函数时,系统会开始将传入的文字转化为语音,并通过指定的监听器通知进度。例如,代码可能会像这样使用: ```java ICarVoiceTtsListener listener = new MyTtsCallback(); startTts(clientId, "你好,这是来自车辆的信息", listener); ``` 这里,`MyTtsCallback` 是你自定义的一个实现了 `ICarVoiceTtsListener` 接口的类,它包含了处理语音事件的方法。
相关问题

用C++写个例子,将字符串GroupID:10,ClientID:11中的值10与11提出来赋值给string GroupID与string ClientID变量中

在C++中,由于原始字符串"GroupID:10,ClientID:11"包含了键值对,我们可以使用字符串分割的方法将其拆分。假设我们有一个简单的工具库支持这种操作,比如`std::istringstream`,但在这个示例中我们将手动实现这个逻辑。请注意,C++标准库本身并不直接提供解析逗号分隔字符串的功能。 ```cpp #include <iostream> #include <sstream> void extractValues(const std::string& str, std::string& key, std::string& value) { size_t pos = 0; std::string pair; // 查找第一个冒号的位置 pos = str.find(':'); if (pos == std::string::npos) { std::cerr << "Invalid format: No colon found in the string." << std::endl; return; } // 提取key部分 key = str.substr(0, pos); // 提取value部分 pair = str.substr(pos + 1); //跳过冒号 // 再次查找下一个冒号的位置 pos = pair.find(','); if (pos != std::string::npos) { value = pair.substr(0, pos); pair = pair.substr(pos + 1); } else { value = pair; // 如果没有第二个冒号,那么pair就是value } std::cout << "Key: " << key << ", Value: " << value << std::endl; } int main() { const std::string input = "GroupID:10,ClientID:11"; std::string GroupID, ClientID; extractValues(input, GroupID, ClientID); return 0; } ``` 运行这段代码后,会输出: ``` Key: GroupID, Value: 10 ``` 请注意,这只是一个基础的实现,实际生产环境中可能需要更复杂的方式来处理异常情况和错误处理。如果使用的是Thrift或其他类似框架,上述过程可能会有所不同,因为它们提供了完整的接口定义和编译支持。

public string ClientId = ""; //客户端名称 在unity中 每次运行随机生成一个新的名称 怎么写

在Unity中,如果你想每次运行游戏时为`ClientId`生成一个新的随机字符串作为客户端名称,你可以创建一个脚本,并在初始化或开始新游戏循环时动态生成这个值。以下是一个简单的示例: ```csharp using UnityEngine; using System.Text; public class RandomClientIdGenerator : MonoBehaviour { public string clientIdPrefix = "Client_"; // 客户端名称前缀 private void Start() { ClientId = GenerateRandomClientId(); } private string GenerateRandomClientId() { const int length = 8; // 随机字符串长度可自定义 StringBuilder sb = new StringBuilder(length); Random random = new Random(); for (int i = 0; i < length; i++) { // 使用数字、大小写字母等生成随机字符 char c = Convert.ToChar(random.Next('A', 'Z') + 'a' - 'A' + '0' - '9'); sb.Append(c); } return clientIdPrefix + sb.ToString(); // 前缀加随机字符串 } void Update() // 如果你想每次帧更新时都更改,可以将Start替换为Update { // 这里不需要,因为通常我们只希望在启动时设置一次 // ClientId = GenerateRandomClientId(); } } ``` 在这个脚本中,`ClientId`字段会被初始化为一个随机的8位字符串。如果你需要改变生成规则,比如添加更多字符类型或更改长度,可以修改`GenerateRandomClientId`函数。
阅读全文

相关推荐

#include <WinSock2.h> #include <iostream> #include <thread> #include <vector> #include <atomic> #include <mutex> #include <string> #include <ws2tcpip.h> #include <algorithm> #pragma comment(lib, "ws2_32.lib") #define PORT 8888 #define BUFFER_SIZE 1024 struct ClientInfo { int id; SOCKET socket; }; std::vector<ClientInfo> clients; std::mutex clientsMutex; std::atomic<int> clientID(1000); void HandleClient(SOCKET clientSocket) { int currentID = clientID++; std::string idMsg = "YOUR_ID:" + std::to_string(currentID) + "\n"; send(clientSocket, idMsg.c_str(), idMsg.size(), 0); { std::lock_guard<std::mutex> lock(clientsMutex); clients.push_back({ currentID, clientSocket }); } char buffer[BUFFER_SIZE]; while (true) { int bytesReceived = recv(clientSocket, buffer, BUFFER_SIZE, 0); if (bytesReceived <= 0) break; buffer[bytesReceived] = '\0'; std::string msg = "[" + std::to_string(currentID) + "] " + std::string(buffer); { std::lock_guard<std::mutex> lock(clientsMutex); for (const auto& client : clients) { if (client.socket != clientSocket) { send(client.socket, msg.c_str(), msg.size(), 0); } } } } { std::lock_guard<std::mutex> lock(clientsMutex); clients.erase(std::remove_if(clients.begin(), clients.end(), [clientSocket](const ClientInfo& ci) { return ci.socket == clientSocket; }), clients.end()); } closesocket(clientSocket); } int main() { WSADATA wsaData; WSAStartup(MAKEWORD(2, 2), &wsaData); SOCKET serverSocket = socket(AF_INET, SOCK_STREAM, 0); sockaddr_in serverAddr{}; serverAddr.sin_family = AF_INET; serverAddr.sin_port = htons(PORT); serverAddr.sin_addr.s_addr = INADDR_ANY; bind(serverSocket, (sockaddr*)&serverAddr, sizeof(serverAddr)); listen(serverSocket, 5); std::cout << "服务器已启动,等待连接..." << std::endl; while (true) { sockaddr_in clientAddr{}; int clientSize = sizeof(clientAddr); SOCKET clientSocket = accept(serverSocket, (sockaddr*)&clientAddr, &clientSize); { std::lock_guard<std::mutex> lock(clientsMutex); std::thread(HandleClient, clientSocket).detach(); std::cout << "新客户端连接,分配ID: " << clientID.load() << ",当前连接数: " << clients.size() + 1 << std::endl; } } closesocket(serverSocket); WSACleanup(); return 0; }给这段代码不同部分的功能加上注释

#include <WinSock2.h> #include <iostream> #include <thread> #include <vector> #include <atomic> #include <mutex> #include <string> #include <ws2tcpip.h> #pragma comment(lib, "ws2_32.lib") #define PORT 8888 #define BUFFER_SIZE 1024 std::vector<SOCKET> clientSockets; void HandleClient(SOCKET clientSocket) { char buffer[BUFFER_SIZE]; while (true) { int bytesReceived = recv(clientSocket, buffer, BUFFER_SIZE, 0); if (bytesReceived <= 0) break; buffer[bytesReceived] = '\0'; std::cout << "收到消息: " << buffer << std::endl; // 广播消息给所有客户端 for (auto& sock : clientSockets) { if (sock != clientSocket) { send(sock, buffer, bytesReceived, 0); } } } closesocket(clientSocket); } // 新增结构体:客户端信息 struct ClientInfo { int id; // 客户端唯一ID SOCKET socket; // 客户端套接字 }; std::vector<ClientInfo> clients; // 改用结构体存储 std::mutex clientsMutex; // 线程安全锁 std::atomic<int> clientID(1000); // 原子ID计数器 void HandleClient(SOCKET clientSocket) { // 分配ID并发送给客户端 int currentID = clientID++; std::string idMsg = "YOUR_ID:" + std::to_string(currentID) + "\n"; send(clientSocket, idMsg.c_str(), idMsg.size(), 0); // 将新客户端加入列表 { std::lock_guard<std::mutex> lock(clientsMutex); clients.push_back({ currentID, clientSocket }); } char buffer[1024]; while (true) { int bytesReceived = recv(clientSocket, buffer, sizeof(buffer), 0); if (bytesReceived <= 0) break; // 构建带ID的消息格式 [ID]消息内容 std::string msg = "[" + std::to_string(currentID) + "] " + std::string(buffer, bytesReceived); // 线程安全广播 { std::lock_guard<std::mutex> lock(clientsMutex); for (auto& client : clients) { if (client.socket != clientSocket) { send(client.socket, msg.c_str(), msg.size(), 0); } } } } // 客户端断开处理 { std::lock_guard<std::mutex> lock(clientsMutex); clients.erase(std::remove_if(clients.begin(), clients.end(), [clientSocket](const ClientInfo& ci) { return ci.socket == clientSocket; }), clients.end()); } closesocket(clientSocket); } int main() { WSADATA wsaData; WSAStartup(MAKEWORD(2, 2), &wsaData); SOCKET serverSocket = socket(AF_INET, SOCK_STREAM, 0); sockaddr_in serverAddr{}; serverAddr.sin_family = AF_INET; serverAddr.sin_port = htons(8888); serverAddr.sin_addr.s_addr = INADDR_ANY; bind(serverSocket, (sockaddr*)&serverAddr, sizeof(serverAddr)); listen(serverSocket, 5); std::cout << "服务器已启动,等待连接..." << std::endl; while (true) { sockaddr_in clientAddr{}; int clientSize = sizeof(clientAddr); SOCKET clientSocket = accept(serverSocket, (sockaddr*)&clientAddr, &clientSize); clients.push_back(clientSocket); std::thread(HandleClient, clientSocket).detach(); std::cout << "新客户端连接,分配ID: " << clientID << ",当前连接数: " << clients.size() << std::endl; } WSACleanup(); return 0; } 给我修改后的完整代码,不用分开解释,只需要给我修改正确的完整代码就可以

#include <WiFi.h> #include <WiFiClientSecure.h> #include #define MQTT_PORT (1883) const char *ssid = "17group";//你的WiFi名称 const char *password = "hhj20011019";//你的WiFi密码 const char *mqttServer = "39.106.6.44"; const int mqttPort = 1883; const char *mqttUser = "17group"; const char *mqttPassword = "hhj20011019"; WiFiClient espClient; PubSubClient client(espClient);//espClient是一个WiFi客户端对象 void setup_wifi() { Serial.begin(9600); WiFi.begin(ssid, password);//链接网络 while (WiFi.status() != WL_CONNECTED) { delay(500); Serial.print("."); } Serial.println("WiFi connected!"); } void callback(char* topic, byte* payload, unsigned int length) { Serial.print("Message arrived in topic: "); Serial.println(topic); Serial.print("Message:"); for (int i = 0; i < length; i++) { Serial.print((char)payload[i]); } Serial.println(); Serial.println("-----------------------"); } void reconnect() { while (!client.connected()) { Serial.println("Connecting to MQTT..."); String clientId = "esp32-" + String(random(0xffff), HEX); if (client.connect(clientId.c_str(), mqttUser, mqttPassword)) { Serial.println("Connected"); } else { Serial.print("Failed with state "); Serial.print(client.state()); delay(2000); } } } void setup() { Serial.begin(9600); setup_wifi(); client.setServer(mqttServer, mqttPort);//参数是服务器IP地址和端口 client.setCallback(callback); } void loop() { if (!client.connected()) { reconnect(); } client.loop(); char topic[100] = "test"; char payload[100] = "hello world"; //定义变量 Serial.print("Publish message: "); Serial.println(payload); //输出信息 client.publish(topic, payload); delay(1000); } 为什么连不上MQTT,该如何修改代码

/** * 上传视频,前端分片上传 * * @return */ @PostMapping("/upload") public R upload(ChunkInfo chunk) { final Integer MAX_SIZE = 100 * 1024 * 1024; if (Objects.isNull(chunk) || StringUtils.isBlank(chunk.getFilename()) || null == chunk.getChunkNumber() || StringUtils.isBlank(chunk.getIdentifier())) { return R.errorParam(); } Assert.isFalse(chunk.getTotalSize() >= MAX_SIZE, "文件最大不能超过100MB"); //获取clientId Long clientId = AccountUtil.getClientId(); MultipartFile file = chunk.getMultipartFile(); try { byte[] bytes = file.getBytes(); Path path = Paths.get(FileInfoUtils.generateCommonPath(uploadFolder, chunk, clientId)); //文件写入指定路径 Files.write(path, bytes); } catch (IOException e) { e.printStackTrace(); return R.failed(); } return R.ok(); } @PostMapping("/mergeFile") public R mergeFile(@RequestBody ChunkInfoVO chunkInfo) { if (Objects.isNull(chunkInfo) || StringUtils.isBlank(chunkInfo.getFilename()) || StringUtils.isBlank(chunkInfo.getIdentifier())) { return R.errorParam(); } Long clientId = AccountUtil.getClientId(); Long updateBy = AccountUtil.getAccountId(); /** * 根据文件类型 , 配置路径文件夹 */ String filename = chunkInfo.getFilename(); //取名称的前30个字 String substring = chunkInfo.getFilename().substring(0, filename.lastIndexOf(".")); if (substring.length() > 30) { filename = substring.substring(0, 30) + ".mp4"; } /** * 进行文件的合并操作 */ String file = uploadFolder + File.separator + clientId + File.separator + chunkInfo.getIdentifier() + File.separator + filename; String folder = uploadFolder + File.separator + clientId + File.separator + chunkInfo.getIdentifier(); String fileSuccess = FileInfoUtils.merge(file, folder, filename); log.info("文件名:" + filename); log.info("文件:" + file); log.info("文件夹:" + folder); log.info("合并状态:" + fileSuccess); chunkInfo.setLocation(file); if (HttpStatus.HTTP_INTERNAL_ERROR == Integer.parseInt(fileSuccess)) { return R.failed().setMsg("上传失败"); } boolean flag = HttpStatus.HTTP_OK == Integer.parseInt(fileSuccess); /** * 文件合并成功后,将文件直接上传到云点播 */ if (flag) { try { String uploadPart = tosHelperUtil.uploadPart(filename, file); return R.ok(); } catch (Exception e) { throw new RuntimeException(e); } } return R.failed(); } 请你检查这两个方法是否正确 如果不正确请你修改 并在合并方法补充 捕获视频第一帧 当作封面 public File generateVideoCover(File file) throws Exception { FFmpegFrameGrabber grabber = new FFmpegFrameGrabber(file); grabber.start(); // 获取第一帧 Frame frame = grabber.grabImage(); Java2DFrameConverter converter = new Java2DFrameConverter(); BufferedImage image = converter.getBufferedImage(frame, 1.0); // 保存临时文件 File tempFile = File.createTempFile("cover", ".jpg"); ImageIO.write(image, "jpg", tempFile); grabber.stop(); return tempFile; }可使用此方法 但需要你补充调用地方的逻辑

int main(int argc, char* argv[]) { MQTTClient client; MQTTClient_connectOptions conn_opts = MQTTClient_connectOptions_initializer; MQTTClient_message pubmsg = MQTTClient_message_initializer; MQTTClient_deliveryToken token; int rc; const char* msg = NULL; // C/C++通用 int val; ReadMainCfg(); ReadMqttNo() ; // 读取采集设备点号信息 InitDTAMap(); // 初始化数据点映射表 printf("MQTTNO %d\n", MQTTCount); DeviceNo = pMQTTMap[0].DeviceNo; Protocol = pMQTTMap[0].Protocol; gwInitDTAInterface(Protocol,0) ; // 接口程序初始化 printf("DTAInterface State %d\n", gwGetInterfaceState(Protocol)); // 获取接口状态 gwAddDeviceNo(DeviceNo) ; // 添加采集设备信息 gwSetDTADIMap(DICount,pDIMap) ; // 设置转发数据映射表 gwSetDTAAIMap(AICount,pAIMap) ; gwSetDTADOMap(DOCount,pDOMap) ; gwSetDTAAOMap(AOCount,pAOMap) ; gwSetDTACNTMap(CNTCount,pCNTMap) ; val = gwGetMapAI(pMQTTMap[0].PointRead); // 获取数据点值 std::string str = std::to_string(val); msg = str.c_str(); // 获取只读的 char* // 注意:msg 的生命周期依赖 str,str 销毁后 msg 失效! // std::cout << "/* val = */" <<msg<< std::endl; // 直接获取字符串长度 size_t length = str.size(); // 或 str.length() // 输出验证 std::cout << "字符串长度:" << length << std::endl; // 输出 5 for(int i = 0; i < MQTTCount; i++) { printf("Tem Value %d %d \n", pMQTTMap[i].PointRead, gwGetMapAI(pMQTTMap[i].PointRead)); // 获取AI遥测数据 } // printf("AI Value 5 %d \n", gwGetMapAI(5)); // 获取AI遥测数据 // printf("AI Value 6 %d \n", gwGetMapAI(6)); // const char* uri = (argc > 1) ? argv[1] : ADDRESS; const char* uri = (argc > 1) ? argv[1] : Address; printf("Using server at %s\n", uri); if ((rc = MQTTClient_create(&client, uri, ClientId, MQTTCLIENT_PERSISTENCE_NONE, NULL)) != MQTTCLIENT_SUCCESS) { printf("Failed to create client, return code %d\n", rc); rc = EXIT_FAILURE; goto exit; } if ((rc = MQTTClient_setCallbacks(client, NULL, connlost, msgarrvd, delivered)) != MQTTCLIENT_SUCCESS) { printf("Failed to set callbacks, return code %d\n", rc); rc = EXIT_FAILURE; goto destroy_exit; } conn_opts.keepAliveInterval = 20; conn_opts.cleansession = 1; if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS) { printf("Failed to connect, return code %d\n", rc); rc = EXIT_FAILURE; goto destroy_exit; } pubmsg.payload = msg; pubmsg.payloadlen = length; pubmsg.qos = QOS; pubmsg.retained = 0; deliveredtoken = 0; if ((rc = MQTTClient_publishMessage(client, Topic, &pubmsg, &token)) != MQTTCLIENT_SUCCESS) { printf("Failed to publish message, return code %d\n", rc); rc = EXIT_FAILURE; } else { printf("Waiting for publication of %s\n" "on topic %s for client with ClientID: %s\n", msg, Topic, ClientId); while (deliveredtoken != token) usleep(10000L); } if ((rc = MQTTClient_disconnect(client, 10000)) != MQTTCLIENT_SUCCESS) { printf("Failed to disconnect, return code %d\n", rc); rc = EXIT_FAILURE; } destroy_exit: MQTTClient_destroy(&client); exit: free_main_cfg(); return rc; } 在这段程序里,我该如何做,可以监听val的值,一旦有变化,马上通过MQTTClient_publishMessage发布出去

void MQTT_Connect(char *clientid, char *username, char *passward) { char data[256] = {0}; /* 报文缓存数组 */ int len = 0; /* 报文长度计数变量 */ int remaining_length = 0; /* 剩余长度(可变报头 + 有效载荷) */ char flags = 0; /* 连接标志 */ int clientid_length = strlen(clientid); int will_topic_length = strlen(WILL_TOPIC); int will_message_length = strlen(WILL_MESSAGE); int username_length = strlen(username); int passward_length = strlen(passward); /*------------------ 连接标志配置 -----------------------*/ /* bit1 是否清除会话 */ if (CLEAN_SESSION) { flags |= 0x02; } /* bit2 是否使用遗嘱消息 */ if (WILL_FLAG) { flags |= 0x04; /* bit3、bit4 遗嘱QoS等级, 默认 QoS0 */ if (WILL_QOS == 1) { /* QoS1 */ flags |= 0x08; } if (WILL_QOS == 2) { /* QoS2 */ flags |= 0x10; } /* bit5 是否保留本次会话 */ if (WILL_RETAIN) { flags |= 0x20; } } /* bit6、bit7 是否使用账号、密码 */ if (USER_NAME_FLAG && PASS_WORD_FLAG) { flags |= 0xC0; /* 0x80 | 0x40 */ } /*------------------ 连接标志配置 END -------------------*/ /* 剩余长度 = 可变报头 + 负载的数据 */ remaining_length = 10 + (2 + clientid_length); if (WILL_FLAG) { remaining_length += (2 + will_topic_length) + (2 + will_message_length); } if (USER_NAME_FLAG) { remaining_length += (2 + username_length) + (2 + passward_length); } /* 1. Connect固定报头(Fixed header) */ data[len++] = 0x10; /* MQTT Message Type CONNECT */ /* 1.2 剩余长度编码 */ do { char encodedbyte = remaining_length % 128; remaining_length = remaining_length / 128; if (remaining_length > 0) { encodedbyte |= 128; } data[len++] = encodedbyte; } while (remaining_length > 0); /* 2. 可变报头(Variable header) */ data[len++] = 0; /* Protocol Name MSB */ data[len++] = 4; /* Protocol Name LSB */ data[len++] = 'M'; data[len++] = 'Q'; data[len++] = 'T'; data[len++] = 'T'; data[len++] = 4; /* Protocol Level */ data[len++] = flags; /* Connect Flags */ data[len++] = KEEP_ALIVE / 256; /* Keep Alive MSB */ data[len++] = KEEP_ALIVE % 256; /* Keep Alive LSB */ /* 3. 有效载荷(Payload) */ /* 3.1 客户端ID */ data[len++] = clientid_length / 256; data[len++] = clientid_length % 256; memcpy(&data[len], clientid, clientid_length); len += clientid_length; if (WILL_FLAG) { /* 3.2 遗嘱主题 */ data[len++] = will_topic_length / 256; data[len++] = will_topic_length % 256; memcpy(&data[len], WILL_TOPIC, will_topic_length); len += will_topic_length; /* 3.3 遗嘱消息 */ data[len++] = will_message_length / 256; data[len++] = will_message_length % 256; memcpy(&data[len], WILL_MESSAGE, will_message_length); len += will_message_length; } if (USER_NAME_FLAG && PASS_WORD_FLAG) { /* 3.4 用户名 */ data[len++] = username_length / 256; data[len++] = username_length % 256; memcpy(&data[len], username, username_length); len += username_length; /* 3.5 密码 */ data[len++] = passward_length / 256; data[len++] = passward_length % 256; memcpy(&data[len], passward, passward_length); len += passward_length; } Write_MQTT_TxDataBuff(data, len); /* 数据写入发送缓冲区 */ mqtt_debug(data, len, "\r\n* 1、CONNECT - 连接服务端 *: \r\n"); }简化这个函数

#include <ESP8266WiFi.h> #include #include <espnow.h> #include <Ticker.h> Ticker ticker; #include <Servo.h> Servo servo_Ym,servo_Fx,servo_FireFx; #define YmIo 0 #define FxIo 5//尽量避免使用IO2(板载LED IO)和IO0(启动模式配置IO) #define Fire 14 #define FireFxIo 15 typedef struct struct_message { int a; int b; char c; int d; int e; int f=70; } struct_message; struct_message LeCar; const char* ssid = "MyCar"; const char* password = "1234567000"; String topicString = "LeCar214923124s";//与esp32代码中的该部分相同 const char* mqttServer1 = "test.ranye-iot.net";//test.ranye-iot.net, 8.142.157.58 const char* mqttServer2 = "8.142.157.58"; int port=1883;//MQTT服务器端口 int FireTime=70; const char* Server0=mqttServer1; //原版:94:B9:7E:10:35:CB WiFiClient wifiClient; PubSubClient mqttClient(wifiClient); const char* Mode=""; int isNowIntOk=0; void OnDataRecv(uint8_t * mac, uint8_t *incomingData, uint8_t len) { memcpy(&LeCar, incomingData, sizeof(LeCar)); if(LeCar.c=='N') {Mode="Now"; if(isNowIntOk==0) {isNowIntOk=1; digitalWrite(LED_BUILTIN,HIGH); Serial.println("First recver!"); } servo_Ym.write(LeCar.a);Serial.println(LeCar.a); servo_Fx.write(LeCar.b); servo_FireFx.write(LeCar.f); //analogWrite(Fire,LeCar.b); if(LeCar.e==1) {ticker.attach(0.01, touch);} else if(LeCar.e==2) {analogWrite(Fire, 80);}} else if(LeCar.c=='M') {Mode="MQTT"; if(LeCar.d==1) {Server0=mqttServer1;} else if(LeCar.d==2) {Server0=mqttServer2;} } } void setup() { Serial.begin(115200); pinMode(LED_BUILTIN, OUTPUT); //pinMode(Fire, OUTPUT); digitalWrite(LED_BUILTIN,LOW); analogWrite(Fire, 0); WiFi.mode(WIFI_STA); //设置ESP8266工作模式为无线终端模式(8266像手机一样连接到wifi的模式) while (esp_now_init() != 0) { Serial.println("Error initializing ESP-NOW"); } esp_now_set_self_role(ESP_NOW_ROLE_SLAVE); esp_now_register_recv_cb(OnDataRecv); servo_Ym.attach(YmIo,1000,2000); servo_Fx.attach(FxIo,500,2500); servo_FireFx.attach(FireFxIo,500,

int main(void) { /*模块初始化*/ OLED_Init(); //OLED初始化 LightSensor_Init(); //光敏传感器初始化 DHT11_Init(); //DHT11初始化 //USART2_Init(115200);//初始化串口 int light; uint8_t temp = 0; uint8_t humi = 0; char temp_str[10] = {0}; char humi_str[10] = {0}; char lux_str[10] = {0}; // 新增光照强度字符串 DHT11_Init();//再次初始化DHT11 while (1) { // 读取温湿度 DHT11_Read_Data(&temp, &humi); sprintf(temp_str, "Temp:%d C", temp); sprintf(humi_str, "Humi:%d %RH", humi); OLED_ShowString(2, 1, temp_str); OLED_ShowString(3, 1, humi_str); // 读取光照强度并显示 float lux = LightSensor_GetLux(); sprintf(lux_str, "Lux:%.1f", lux); OLED_ShowString(1, 1, lux_str); Delay_s(1); // 1. 配置ESP8266为STA模式 ESP8266_SendCmd("AT+CWMODE=1\r\n"); // 2. 连接Wi-Fi ESP8266_SendCmd("AT+CWJAP=\"t-Magic\",\"zhw890000\"\r\n"); // 3. 配置MQTT参数 ESP8266_SendCmd("AT+MQTTUSERCFG=0,1,\"67ceedd88e04aa0690bc1fe3_000001_0_1_2025031206\",\"67ceedd88e04aa0690bc1fe3_000001\",\"f674952c905f16e8cb83ff7e40f11a041220391d6bca3098ba41e76b1878d2cb\",0,0,\"\"\r\n"); // 4. 连接华为云MQTT服务器 ESP8266_SendCmd("AT+MQTTCONN=0,\"529d6c98f1.st1.iotda-device.cn-north-4.myhuaweicloud.com\",1883,1\r\n"); // 5. 订阅主题(例如属性上报) ESP8266_SendCmd("AT+MQTTSUB=0,\"$oc/devices/deviceId/sys/properties/report\",1\r\n"); sprintf(temp_str, "{\"services\":[{\"agriculture\":\"basic\",\"properties\":{\"temperature\":25}}]}"); ESP8266_SendCmd("AT+MQTTPUB=0,\"$oc/devices/67ceedd88e04aa0690bc1fe3_000001/sys/properties/report\",\"%s\",1,0\r\n", temp_str); Delay_ms(5); } } 根据主函数,重新给出适合的ESP8266.c+ESP8266.h

/* 1、客户端请求与服务端建立连接 C -> S */ void MQTT_Connect(void) { char data[256] = {0}; // 报文缓存数组 int len = 0; // 报文长度计数变量 int Data_Len = 0; // 剩余长度(可变报头 + 有效载荷) char flags = 0; // 连接标志 //------------------ 连接标志配置 ----------------------- // bit1 是否清除会话 if (CLEAN_SESSION) flags |= 0x02; // bit2 是否使用遗嘱消息 if (WILL_FLAG) { flags |= 0x04; // bit3、bit4 遗嘱QoS等级, 默认 QoS0 if (1 == WILL_QOS) // QoS1 flags |= 0x08; if (2 == WILL_QOS) // QoS2 flags |= 0x10; // bit5 是否保留本次会话 if (WILL_RETAIN) flags |= 0x20; } // bit6、bit7 是否使用账号、密码 if (USER_NAME_FLAG ) flags |= 0xC0; // 0x80 | 0x40 //------------------ 连接标志配置 END ----------------------- // 剩余长度 = 可变报头 + 有效载荷(每个字段包含两个字节的长度标识) Data_Len = 10 + (2 + strlen(ClientID)); if (WILL_FLAG) Data_Len += (2 + strlen(WILL_TOPIC)) + (2 + strlen(WILL_MESSAGE)); // 当使用遗嘱消息 if (USER_NAME_FLAG ) Data_Len += (2 + strlen(UserName)) + (2 + strlen(PassWard)); // 当使用用户名和密码登录 // 1. Connect固定报头(Fixed header) // 1.1 控制报文类型 data[len++] = 0x10; // MQTT Message Type CONNECT // 1.2 剩余长度(不包括固定头部) do { char encodedByte = Data_Len % 128; Data_Len = Data_Len / 128; if (Data_Len > 0) // if there are more data to encode, set the top bit of this byte encodedByte = encodedByte | 128; data[len++] = encodedByte; // 填充剩余长度的值 } while (Data_Len > 0); // 2. 可变报头(Variable header) data[len++] = 0; // 2.1 协议名(Protocol Name) data[len++] = 4; data[len++] = 'M'; data[len++] = 'Q'; data[len++] = 'T'; data[len++] = 'T'; data[len++] = 4; // 2.2 协议级别(3.1.1 版协议) data[len++] = flags; // 2.3 连接标志(Connect Flags) C2:置位用户名标志,密码标志,清理会话标志 data[len++] = KEEP_ALIVE / 256; // 2.4 保持连接(Keep Alive) data[len++] = KEEP_ALIVE % 256; // 3. 有效载荷(Payload) /* 3.1 客户端ID */ data[len++] = strlen(ClientID) / 256; data[len++] = strlen(ClientID) % 256; memcpy(&data[len], ClientID, strlen(ClientID)); len += strlen(ClientID); if (WILL_FLAG) { /* 3.2 遗嘱主题 */ data[len++] = strlen(WILL_TOPIC) / 256; data[len++] = strlen(WILL_TOPIC) % 256; memcpy(&data[len], WILL_TOPIC, strlen(WILL_TOPIC)); len += strlen(WILL_TOPIC); /* 3.3 遗嘱消息 */ data[len++] = strlen(WILL_MESSAGE) / 256; data[len++] = strlen(WILL_MESSAGE) % 256; memcpy(&data[len], WILL_MESSAGE, strlen(WILL_MESSAGE)); len += strlen(WILL_MESSAGE); } if (USER_NAME_FLAG) { /* 3.4 用户名 */ data[len++] = strlen(UserName) / 256; data[len++] = strlen(UserName) % 256; memcpy(&data[len], UserName, strlen(UserName)); len += strlen(UserName); /* 3.5 密码 */ data[len++] = strlen(PassWard) / 256; data[len++] = strlen(PassWard) % 256; memcpy(&data[len], PassWard, strlen(PassWard)); len += strlen(PassWard); } // MQTT_SendData(data, len); // 通过串口发送数据到服务器 Write_MQTT_TxDataBuff(data, len); // 将数据复制到发送缓冲数组 #if MQTT_DEBUG // 串口显示信息 printf("\r\n* 1、CONNECT – 连接服务端 *: \r\n"); mqtt_debug(data, len); // 打印调试信息 #endif WIFI_Clean(); } 优化这段代码

#include <WiFi.h> #include #include "esp_camera.h" // WiFi配置 const char *ssid = "@PHICOMM_DC"; const char *password = "13625900271"; // 阿里云MQTT配置 const char* mqttHostUrl = "k1gy7PGezyP.iot-as-mqtt.cn-shanghai.aliyuncs.com"; const int mqttPort = 1883; const char* mqttUser = "esp32&k1gy7PGezyP"; const char* mqttPassword = "7c816276f8ad52225cc3a9c32dbbeaa62b511f7a6849058514cd4cf2c336c52f"; const char* clientId = "k1gy7PGezyP.esp32|securemode=2,signmethod=hmacsha256,timestamp=1742611788205|"; // 阿里云组包配置 #define PRODUCT_KEY "k1gy7PGezyP" #define DEVICE_NAME "esp32" #define ALINK_BODY_FORMAT "{\"id\":\"level\",\"version\":\"1.0\",\"method\":\"thing.event.property.post\",\"params\":%s}" #define ALINK_TOPIC_PROP_POST "/sys/" PRODUCT_KEY "/" DEVICE_NAME "/thing/event/property/post" // 摄像头配置 #define CAMERA_MODEL_AI_THINKER #define PWDN_GPIO_NUM 32 #define RESET_GPIO_NUM -1 #define XCLK_GPIO_NUM 0 #define SIOD_GPIO_NUM 26 #define SIOC_GPIO_NUM 27 #define Y9_GPIO_NUM 35 #define Y8_GPIO_NUM 34 #define Y7_GPIO_NUM 39 #define Y6_GPIO_NUM 36 #define Y5_GPIO_NUM 21 #define Y4_GPIO_NUM 19 #define Y3_GPIO_NUM 18 #define Y2_GPIO_NUM 5 #define VSYNC_GPIO_NUM 25 #define HREF_GPIO_NUM 23 #define PCLK_GPIO_NUM 22 void startCameraServer(); // 全局对象 WiFiClient espClient; PubSubClient client(espClient); unsigned long lastMs = 0; void setup() { Serial.begin(115200); Serial.setDebugOutput(true); // 初始化摄像头 camera_config_t config; config.ledc_channel = LEDC_CHANNEL_0; config.ledc_timer = LEDC_TIMER_0; config.pin_d0 = Y2_GPIO_NUM; config.pin_d1 = Y3_GPIO_NUM; config.pin_d2 = Y4_GPIO_NUM; config.pin_d3 = Y5_GPIO_NUM; config.pin_d4 = Y6_GPIO_NUM; config.pin_d5 = Y7_GPIO_NUM; config.pin_d6 = Y8_GPIO_NUM; config.pin_d7 = Y9_GPIO_NUM; config.pin_xclk = XCLK_GPIO_NUM; config.pin_pclk = PCLK_GPIO_NUM; config.pin_vsync = VSYNC_GPIO_NUM; config.pin_href = HREF_GPIO_NUM; config.pin_sccb_sda = SIOD_GPIO_NUM; config.pin_sccb_scl = SIOC_GPIO_NUM; config.pin_pwdn = PWDN_GPIO_NUM; config.pin_reset = RESET_GPIO_NUM; config.xclk_freq_hz = 20000000; config.frame_size = FRAMESIZE_UXGA; config.pixel_format = PIXFORMAT_JPEG; config.grab_mode = CAMERA_GRAB_WHEN_EMPTY; config.fb_location = CAMERA_FB_IN_PSRAM; config.jpeg_quality = 12; config.fb_count = 1; if (psramFound()) { config.jpeg_quality = 10; config.fb_count = 2; config.grab_mode = CAMERA_GRAB_LATEST; } esp_err_t err = esp_camera_init(&config); if (err != ESP_OK) { Serial.printf("Camera init failed: 0x%x", err); return; } // 连接WiFi WiFi.begin(ssid, password); WiFi.setSleep(false); Serial.print("Connecting to WiFi"); while (WiFi.status() != WL_CONNECTED) { delay(500); Serial.print("."); } Serial.println("\nWiFi connected"); // 启动摄像头服务器 startCameraServer(); Serial.print("Camera Ready! Use: http://"); Serial.println(WiFi.localIP()); // 初始化MQTT client.setServer(mqttHostUrl, mqttPort); mqttCheckConnect(); } void loop() { client.loop(); if (millis() - lastMs >= 5000) { lastMs = millis(); if (!client.connected()) { mqttCheckConnect(); } mqttIntervalPost(); } } // MQTT连接检查 void mqttCheckConnect() { while (!client.connected()) { Serial.println("Connecting to MQTT..."); if (client.connect(clientId, mqttUser, mqttPassword)) { Serial.println("MQTT connected"); } else { Serial.print("Failed, rc="); Serial.print(client.state()); delay(2000); } } } // MQTT数据发送 void mqttIntervalPost() { char param[32]; char jsonBuf[128]; sprintf(param, "{\"num8\":%d}", 9); sprintf(jsonBuf, ALINK_BODY_FORMAT, param); client.publish(ALINK_TOPIC_PROP_POST, jsonBuf); Serial.println("Data sent: " + String(jsonBuf)); } 降低代码对硬件的消耗

最新推荐

recommend-type

SetupSTM32CubeMX-6.14.1-Win.exe

SetupSTM32CubeMX-6.14.1-Win.exe
recommend-type

模拟电子技术基础学习指导与习题精讲

模拟电子技术是电子技术的一个重要分支,主要研究模拟信号的处理和传输,涉及到的电路通常包括放大器、振荡器、调制解调器等。模拟电子技术基础是学习模拟电子技术的入门课程,它为学习者提供了电子器件的基本知识和基本电路的分析与设计方法。 为了便于学习者更好地掌握模拟电子技术基础,相关的学习指导与习题解答资料通常会包含以下几个方面的知识点: 1. 电子器件基础:模拟电子技术中经常使用到的电子器件主要包括二极管、晶体管、场效应管(FET)等。对于每种器件,学习指导将会介绍其工作原理、特性曲线、主要参数和使用条件。同时,还需要了解不同器件在电路中的作用和性能优劣。 2. 直流电路分析:在模拟电子技术中,需要掌握直流电路的基本分析方法,这包括基尔霍夫电压定律和电流定律、欧姆定律、节点电压法、回路电流法等。学习如何计算电路中的电流、电压和功率,以及如何使用这些方法解决复杂电路的问题。 3. 放大电路原理:放大电路是模拟电子技术的核心内容之一。学习指导将涵盖基本放大器的概念,包括共射、共基和共集放大器的电路结构、工作原理、放大倍数的计算方法,以及频率响应、稳定性等。 4. 振荡电路:振荡电路能够产生持续的、周期性的信号,它在模拟电子技术中非常重要。学习内容将包括正弦波振荡器的原理、LC振荡器、RC振荡器等类型振荡电路的设计和工作原理。 5. 调制与解调:调制是将信息信号加载到高频载波上的过程,解调则是提取信息信号的过程。学习指导会介绍调幅(AM)、调频(FM)、调相(PM)等调制方法的基本原理和解调技术。 6. 模拟滤波器:滤波器用于分离频率成分不同的信号。模拟滤波器一般可分为低通、高通、带通和带阻滤波器。学习指导会涉及到模拟滤波器的设计原理、特性曲线和应用。 7. 电源技术:电源电路是电子设备中不可或缺的部分,它主要为电子设备提供稳定的直流电压和电流。在模拟电子技术基础学习指导中,会讲解线性稳压电源和开关稳压电源的设计原理及其实现方法。 8. 实际问题应用:模拟电子技术在实际中有着广泛的应用,学习指导会结合具体案例,如音响系统设计、射频接收机、仪器仪表等,帮助学习者将理论知识应用到实践中,提高解决实际问题的能力。 9. 习题解答:为了帮助学习者巩固理论知识和分析问题的能力,相关习题解答资料将提供大量精选习题,并给出详细的解答步骤和答案。习题类型涵盖选择题、填空题、计算题和设计题,旨在帮助学习者全面掌握知识点。 学习模拟电子技术需要具备一定的数学、物理基础,尤其是对电路分析的理解。通过学习指导与习题解答资料的帮助,学习者可以更加深入地理解模拟电子技术的基本概念,熟练掌握模拟电路的分析与设计方法,并为将来的深入学习和实际应用打下坚实的基础。
recommend-type

【5G通信背后的秘密】:极化码与SCL译码技术的极致探索

# 摘要 本文首先概述了5G通信技术及其重要性,然后深入探讨了极化码的基础理论与应用,包括其理论基础、编解码过程和在5G中的应用评估。接着,文章详细解析了SCL译码技术的原理、改进方法以及实现和优化策略。在第四章中,分析了极化码与SCL译码技术在5G通信中的实践挑战、优化案例,以及未来的发展趋势。最后一章展望了极化码与S
recommend-type

谷歌浏览器中如何使用hackbar

<think>我们正在处理用户关于在Google Chrome浏览器中安装和使用HackBar插件的请求。根据引用[1]和引用[2]的信息,我们可以总结出安装步骤。注意,引用中提到了两种安装方法:一种是直接拖放crx文件(但可能会遇到问题),另一种是将crx文件改为rar格式再安装。同时,引用[2]还提到了Firefox的安装方法,但用户只关心Chrome。 由于Chrome浏览器对扩展程序的安全性要求提高,直接从第三方下载的crx文件可能会被阻止安装。因此,我们需要提供一种可行的安装方法。 根据引用[2]的步骤,我们可以这样安装: 1. 下载HackBar_v2.2.6插件(通常是一个c
recommend-type

一步搞定局域网共享设置的超级工具

在当前信息化高速发展的时代,局域网共享设置成为了企业、学校甚至家庭用户在资源共享、网络协同办公或学习中不可或缺的一部分。局域网共享不仅能够高效地在本地网络内部分发数据,还能够在保护网络安全的前提下,让多个用户方便地访问同一资源。然而,对于部分用户而言,局域网共享设置可能显得复杂、难以理解,这时一款名为“局域网共享设置超级工具”的软件应运而生,旨在简化共享设置流程,使得即便是对网络知识了解不多的用户也能够轻松配置。 ### 局域网共享知识点 #### 1. 局域网基础 局域网(Local Area Network,LAN)指的是在一个较小的地理范围内,如一座建筑、一个学校或者一个家庭内部,通过电缆或者无线信号连接的多个计算机组成的网络。局域网共享主要是指将网络中的某台计算机或存储设备上的资源(如文件、打印机等)对网络内其他用户开放访问权限。 #### 2. 工作组与域的区别 在Windows系统中,局域网可以通过工作组或域来组织。工作组是一种较为简单的组织方式,每台电脑都是平等的,没有中心服务器管理,各个计算机间互为对等网络,共享资源只需简单的设置。而域模式更为复杂,需要一台中央服务器(域控制器)进行集中管理,更适合大型网络环境。 #### 3. 共享设置的要素 - **共享权限:**决定哪些用户或用户组可以访问共享资源。 - **安全权限:**决定了用户对共享资源的访问方式,如读取、修改或完全控制。 - **共享名称:**设置的名称供网络上的用户通过网络邻居访问共享资源时使用。 #### 4. 共享操作流程 在使用“局域网共享设置超级工具”之前,了解传统手动设置共享的流程是有益的: 1. 确定需要共享的文件夹,并右键点击选择“属性”。 2. 进入“共享”标签页,点击“高级共享”。 3. 勾选“共享此文件夹”,可以设置共享名称。 4. 点击“权限”按钮,配置不同用户或用户组的共享权限。 5. 点击“安全”标签页配置文件夹的安全权限。 6. 点击“确定”,完成设置,此时其他用户可以通过网络邻居访问共享资源。 #### 5. 局域网共享安全性 共享资源时,安全性是一个不得不考虑的因素。在设置共享时,应避免公开敏感数据,并合理配置访问权限,以防止未授权访问。此外,应确保网络中的所有设备都安装了防病毒软件和防火墙,并定期更新系统和安全补丁,以防恶意软件攻击。 #### 6. “局域网共享设置超级工具”特点 根据描述,该软件提供了傻瓜式的操作方式,意味着它简化了传统的共享设置流程,可能包含以下特点: - **自动化配置:**用户只需简单操作,软件即可自动完成网络发现、权限配置等复杂步骤。 - **友好界面:**软件可能具有直观的用户界面,方便用户进行设置。 - **一键式共享:**一键点击即可实现共享设置,提高效率。 - **故障诊断:**可能包含网络故障诊断功能,帮助用户快速定位和解决问题。 - **安全性保障:**软件可能在设置共享的同时,提供安全增强功能,如自动更新密码、加密共享数据等。 #### 7. 使用“局域网共享设置超级工具”的注意事项 在使用该类工具时,用户应注意以下事项: - 确保安装了最新版本的软件以获得最佳的兼容性和安全性。 - 在使用之前,了解自己的网络安全政策,防止信息泄露。 - 定期检查共享设置,确保没有不必要的资源暴露在网络中。 - 对于不熟悉网络共享的用户,建议在专业人士的指导下进行操作。 ### 结语 局域网共享是实现网络资源高效利用的基石,它能大幅提高工作效率,促进信息共享。随着技术的进步,局域网共享设置变得更加简单,各种一键式工具的出现让设置过程更加快捷。然而,安全性依旧是不可忽视的问题,任何时候在享受便捷的同时,都要确保安全措施到位,防止数据泄露和网络攻击。通过合适的工具和正确的设置,局域网共享可以成为网络环境中一个强大而安全的资源。
recommend-type

PBIDesktop在Win7上的终极安装秘籍:兼容性问题一次性解决!

# 摘要 PBIDesktop作为数据可视化工具,其在Windows 7系统上的安装及使用备受企业关注。本文首先概述了PBIDesktop的安装过程,并从理论上探讨了其兼容性问题,包括问题类型、原因以及通用解决原则。通过具体
recommend-type

#include "stm32f10x.h" #include "delay.h" #include "OLED.h" #include "dht11.h" #include "FMQ.h" #include "Serial.h" #include "esp8266.h" #include "stm32f10x_it.h" // 系统时钟配置 void SystemClock_Config(void) { SystemInit(); RCC_DeInit(); RCC_HSEConfig(RCC_HSE_ON); // 添加HSE启动检测 if(!RCC_WaitForHSEStartUp()) { while(1); // HSE启动失败,陷入死循环 } FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); FLASH_SetLatency(FLASH_Latency_2); RCC_HCLKConfig(RCC_SYSCLK_Div1); RCC_PCLK1Config(RCC_HCLK_Div2); RCC_PCLK2Config(RCC_HCLK_Div1); RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); RCC_PLLCmd(ENABLE); while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); while(RCC_GetSYSCLKSource() != 0x08); } // 全局变量 u8 temp, humi; int main(void) { // 系统初始化 SystemClock_Config(); Delay_Init(); OLED_Init(); DHT11_Init(); mfq_Init(); Serial_Init(); // 用于调试的串口 // 显示初始化 OLED_ShowCN(0, 0, "温度:"); // 修改为正确的中文字库函数 OLED_ShowCN(0, 16, "湿度:"); OLED_ShowCN(64, 16, "RH"); OLED_ShowCN(64, 0, "C"); OLED_Update(); // 初始化ESP8266为AP模式 ESP8266_Init(); printf("ESP8266 AP Mode Ready\r\n"); printf("Connect to WiFi: ESP8266wd, Password:123456789\r\n"); printf("Then connect to TCP Server: 192.168.4.1:8080\r\n"); uint32_t lastSendTime = 0; while(1) { // 读取温湿度 if(DHT11_Read_Data(&temp, &humi)) { // 更新显示 OLED_ShowNum(47, 0, temp, 2, OLED_8X16); OLED_ShowNum(47, 16, humi, 2, OLED_8X16); OLED_Update(); // 控制蜂鸣器 fmq(temp, humi); // 串口输出信息 printf("temp=%d, humi=%d RH\r\n", temp, humi); // 准备WiFi发送数据 sprintf(wifi_data, "Temp:%d,Humi:%d\r\n", temp, humi); ESP8266_SendData(wifi_data); } delay_ms(5000); // 5秒更新一次 } } /** ****************************************************************************** * @file Project/STM32F10x_StdPeriph_Template/stm32f10x_conf.h * @author MCD Application Team * @version V3.5.0 * @date 08-April-2011 * @brief Library configuration file. ****************************************************************************** * @attention * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * * <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2> ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F10x_CONF_H #define __STM32F10x_CONF_H /* Includes ------------------------------------------------------------------*/ /* Uncomment/Comment the line below to enable/disable peripheral header file inclusion */ #include "stm32f10x_adc.h" #include "stm32f10x_bkp.h" #include "stm32f10x_can.h" #include "stm32f10x_cec.h" #include "stm32f10x_crc.h" #include "stm32f10x_dac.h" #include "stm32f10x_dbgmcu.h" #include "stm32f10x_dma.h" #include "stm32f10x_exti.h" #include "stm32f10x_flash.h" #include "stm32f10x_fsmc.h" #include "stm32f10x_gpio.h" #include "stm32f10x_i2c.h" #include "stm32f10x_iwdg.h" #include "stm32f10x_pwr.h" #include "stm32f10x_rcc.h" #include "stm32f10x_rtc.h" #include "stm32f10x_sdio.h" #include "stm32f10x_spi.h" #include "stm32f10x_tim.h" #include "stm32f10x_usart.h" #include "stm32f10x_wwdg.h" #include "misc.h" /* High level functions for NVIC and SysTick (add-on to CMSIS functions) */ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Uncomment the line below to expanse the "assert_param" macro in the Standard Peripheral Library drivers code */ /* #define USE_FULL_ASSERT 1 */ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function which reports * the name of the source file and the source line number of the call * that failed. If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0 : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0) #endif /* USE_FULL_ASSERT */ #endif /* __STM32F10x_CONF_H */ /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/ /** ****************************************************************************** * @file Project/STM32F10x_StdPeriph_Template/stm32f10x_it.c * @author MCD Application Team * @version V3.5.0 * @date 08-April-2011 * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * * <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2> ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f10x_it.h" volatile uint32_t sysTickUptime = 0; // 添加在文件顶部 /** @addtogroup STM32F10x_StdPeriph_Template * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { // 添加SysTick中断处理 sysTickUptime++; } /******************************************************************************/ /* STM32F10x Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f10x_xx.s). */ /******************************************************************************/ /** * @brief This function handles USART3 global interrupt request. * @param None * @retval None */ void USART2_IRQHandler(void) { // 调用ESP8266模块的中断处理函数 extern void ESP8266_IRQHandler(void); ESP8266_IRQHandler(); } uint32_t HAL_GetTick(void) { return sysTickUptime; } /** * @} */ /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/ /** ****************************************************************************** * @file Project/STM32F10x_StdPeriph_Template/stm32f10x_it.h * @author MCD Application Team * @version V3.5.0 * @date 08-April-2011 * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * * <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2> ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F10x_IT_H #define __STM32F10x_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32f10x.h" extern volatile uint32_t sysTickUptime; uint32_t HAL_GetTick(void); /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); #ifdef __cplusplus } #endif #endif /* __STM32F10x_IT_H */ /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/ #include "esp8266.h" #include <string.h> #include "stm32f10x_usart.h" #include "stm32f10x_gpio.h" #include "stm32f10x_rcc.h" // 发送AT指令 void ESP8266_SendCmd(char* cmd, char* resp, uint16_t timeout) { USART_ClearFlag(ESP8266_USARTx, USART_FLAG_TC); // 发送命令 while(*cmd) { USART_SendData(ESP8266_USARTx, *cmd++); while(USART_GetFlagStatus(ESP8266_USARTx, USART_FLAG_TC) == RESET); } // 等待响应 uint32_t start = HAL_GetTick(); while(strstr((const char*)USART_RxBuffer, resp) == NULL) { if(HAL_GetTick() - start > timeout) { break; } } delay_ms(50); } // 初始化ESP8266为AP模式 void ESP8266_Init(void) { // 初始化USART2 USART_InitTypeDef USART_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; // 配置USART2 Tx (PA2) 为复用推挽输出 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); // 配置USART2 Rx (PA3) 为浮空输入 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); USART_InitStructure.USART_BaudRate = ESP8266_USART_BAUDRATE; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(ESP8266_USARTx, &USART_InitStructure); USART_Cmd(ESP8266_USARTx, ENABLE); // 添加NVIC中断配置 NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); // 配置ESP8266为AP模式 Delay_ms(1000); // 等待模块启动 ESP8266_SendCmd("AT+RST\r\n", "OK", 2000); ESP8266_SendCmd("AT+CWMODE=2\r\n", "OK", 2000); // 设置为AP模式 ESP8266_SendCmd("AT+CWSAP=\"ESP8266_AP\",\"12345678\",1,4\r\n", "OK", 2000); // 设置AP参数 ESP8266_SendCmd("AT+CIPMUX=1\r\n", "OK", 2000); // 允许多连接 ESP8266_SendCmd("AT+CIPSERVER=1,8080\r\n", "OK", 2000); // 开启TCP服务器 } // 发送数据到TCP客户端 u8 ESP8266_SendData(char* data) { char cmd[64]; sprintf(cmd, "AT+CIPSEND=0,%d\r\n", strlen(data)); ESP8266_SendCmd(cmd, "OK", 1000); // 等待OK响应 ESP8266_SendCmd(data, ">", 1000); // 等待>提示符 ESP8266_SendCmd((char*)0x1A, "SEND OK", 1000); // 发送Ctrl+Z return 0; } // esp8266.h #ifndef __ESP8266_H #define __ESP8266_H #include "stm32f10x.h" #include "stm32f10x_usart.h" #include "delay.h" #define ESP8266_USARTx USART2 #define ESP8266_USART_BAUDRATE 115200 void ESP8266_Init(void); void ESP8266_SendCmd(char* cmd); u8 ESP8266_SendData(char* data); #endif 将代码修改正确

<think>好的,我需要帮助用户修改他们的代码。首先,我得仔细阅读用户提供的代码,找出其中的问题。用户提到他们使用STM32F10x系列的MCU,结合DHT11、OLED、ESP8266等外设,但可能存在错误需要修正。 首先看主函数部分。在SystemClock_Config函数中,用户调用了SystemInit(),然后进行RCC_DeInit(),这可能有问题,因为SystemInit()已经初始化了系统时钟,而RCC_DeInit()会将RCC寄存器复位,可能导致冲突。正确的做法应该是在SystemInit()之后不再调用RCC_DeInit(),或者在配置前先确保时钟设置正确。
recommend-type

PC-lint 8.0升级至'a'级的patch安装指南

从提供的文件信息中,我们可以推断出以下知识点: 标题中提到的“PCLint 8.0patch”是指PCLint软件的某个版本的补丁更新。PCLint是一款由美国软件公司Gimpel Software开发的用于C和C++语言的静态代码分析工具。它主要被用来检测软件开发中的编程错误、不符合编码标准的代码以及可能引起bug的问题。该工具广泛用于嵌入式软件开发、遵循MISRA(Motor Industry Software Reliability Association)标准的项目中,以确保代码的高质量和可靠性。PCLint可以集成到多种集成开发环境(IDEs)中,例如Eclipse、Visual Studio等。 描述中指出补丁级别的推断方法,即通过后续的字母表示补丁的版本。在这里,补丁级别的“a”是紧随版本号“8.00”之后的第一个字母,暗示补丁“a”是最初发布的补丁。随后,描述中提到如果要更新到补丁级别“c”,则需要下载特定的文件。 从补丁级别更新的描述来看,这表明PCLint版本8.0的后续更新遵循了一个版本控制逻辑,其中补丁级别是按字母顺序递增的。这意味着“a”后面应该是“b”,然后是“c”等。这种命名模式可以帮助用户轻松识别补丁的更新顺序,从而能够获取到最新的错误修复和功能改进。 标签“PClint”是对软件名称的直接引用,并且用于文件管理、检索或者分类时,它能够帮助用户快速定位与PCLint相关的资源或讨论。 在提供的文件信息中,唯一列出的文件“PATCH.EXE”是一个可执行文件,很可能是用于安装PCLint补丁的安装程序。在软件开发和维护过程中,补丁或更新通常会以可执行文件或安装包的形式提供给用户,以便能够自动化安装过程,并确保补丁正确地应用到软件中。当用户下载此PATCH.EXE文件并运行时,程序会执行必要的更新步骤,这通常包括替换旧文件、添加新文件以及更新配置信息等。 为了使用PATCH.EXE更新PCLint,用户可能需要按照如下步骤操作: 1. 访问Gimpel Software的官方网站或获取更新通知。 2. 确认当前安装的PCLint版本,以确保补丁的兼容性。 3. 下载相应版本的补丁文件PATCH.EXE。 4. 关闭所有正在运行的IDE或其他相关程序。 5. 运行PATCH.EXE,通常会有一个向导引导用户完成安装过程。 6. 重启相关开发环境,以确保补丁生效。 7. 运行PCLint,进行检查以确保更新正确应用。 通过这样的更新过程,开发者可以确保他们的静态代码分析工具始终处于最新状态,从而帮助他们保持代码质量,并符合行业标准或公司政策。
recommend-type

【TMR技术的突破】:如何克服传感器设计的挑战,巩固现代科技地位

# 1. TMR技术概述 在信息技术飞速发展的今天,隧道磁阻(TMR)技术作为一种前沿的磁性传感器技术,正逐渐成为业界关注的焦点。TMR传感器以其高灵敏度、低功耗和小尺寸的特点,为磁性检测领域带来革命性的改变。本章节将深入探讨TMR技术的基础知识,包括它的基本原理、工作方式以及在现代电子设备中的应用前景。通过理解这些基础知识,我们可以更好地把握TMR技术的内
recommend-type

java单例的特性

<think>首先,用户的问题是:“我想了解Java中单例模式的特性 请问Java 单例模式的特点和实现方式”。所以,我需要专注于Java单例模式的特点和实现方式。 从系统级指令: - 所有行内数学表达式必须使用$...$格式,但在这个上下文中,可能没有数学表达式,因为主题是Java单例模式,而不是数学。所以,我应该避免不必要的数学,除非有相关部分。 - 独立公式必须使用$$...$$格式并单独成段,同样,可能不适用。 - LaTeX语法正确:确保任何LaTeX正确。 - 使用中文回答:整个回答必须用中文。 - 生成相关问题:在回答后,添加相关问题。 - 回答中引用的段落末尾自然地添加引用标