Error loading "C:\Users\17592\.conda\envs\py37_torch18\lib\site-packages\torch\lib\caffe2_detectron_ops_gpu.dll"

时间: 2023-09-15 20:20:15 浏览: 125
您好,很抱歉听到您遇到了这个问题。这个错误通常表示在加载PyTorch库时遇到了问题。 首先,请确保您已经正确安装了PyTorch库,并且您的环境变量已经正确配置。您可以使用以下命令检查PyTorch是否正确安装: ```python import torch print(torch.__version__) ``` 如果PyTorch安装正确,建议您重新安装PyTorch并确保您的操作系统和系统架构与所下载的PyTorch版本相匹配。您可以通过访问PyTorch官方网站来获取最新版本的PyTorch并按照指南重新安装。 如果问题仍然存在,可能是由于缺少或损坏的依赖文件导致的。您可以尝试更新或重新安装Caffe2库,这是PyTorch的一个子模块,并且这个错误可能与它有关。 希望这些信息能够帮助您解决问题。如果问题仍然存在,请提供更多详细信息,我们将尽力帮助您解决。
相关问题

Traceback (most recent call last): File "D:\Python\path\pytoch\xianxinghuigui\01.py", line 43, in <module> import torch, numpy File "D:\miniconda\envs\pytorch_env\lib\site-packages\torch\__init__.py", line 1798, in <module> from torch import storage as storage # usort: skip File "D:\miniconda\envs\pytorch_env\lib\site-packages\torch\storage.py", line 36, in <module> import numpy as np File "D:\miniconda\envs\pytorch_env\lib\site-packages\numpy\__init__.py", line 143, in <module> from . import lib File "D:\miniconda\envs\pytorch_env\lib\site-packages\numpy\lib\__init__.py", line 25, in <module> from .index_tricks import * File "D:\miniconda\envs\pytorch_env\lib\site-packages\numpy\lib\index_tricks.py", line 12, in <module> import numpy.matrixlib as matrixlib File "D:\miniconda\envs\pytorch_env\lib\site-packages\numpy\matrixlib\__init__.py", line 4, in <module> from . import defmatrix File "D:\miniconda\envs\pytorch_env\lib\site-packages\numpy\matrixlib\defmatrix.py", line 7, in <module> from .._utils import set_module ImportError: cannot import name 'set_module' from 'numpy._utils' (unknown location)

<think>好的,用户遇到了一个关于导入错误的报错,具体是在导入torch和numpy时出现的。错误信息显示在导入numpy的set_module时失败,提示无法从'numpy._utils'导入'set_module',位置未知。我需要先分析这个错误的可能原因,然后给出解决方案。 首先,用户提供的错误跟踪显示问题出在numpy的导入过程中,特别是在defmatrix.py文件中尝试导入set_module时失败。这说明用户的numpy版本可能存在兼容性问题,或者安装损坏。 考虑到用户之前安装的是PyTorch 2.6.0+cu118,以及对应的torchaudio和torchvision版本,这些通常需要特定版本的numpy。可能用户安装的numpy版本过高或过低,导致缺少set_module函数。查阅资料发现,set_module函数在较新的numpy版本中可能已被移除或移动位置,而旧版本的PyTorch可能依赖较旧版本的numpy。 另一个可能性是numpy的安装损坏。可能用户的环境中的numpy包不完整,或者在安装过程中出现了错误,导致部分文件缺失,比如_utils模块中的set_module函数无法找到。 接下来,我需要考虑如何验证这些可能性。用户应该检查当前安装的numpy版本是否与PyTorch兼容。根据PyTorch 2.6.0的官方文档,支持的numpy版本通常会有一定的范围,比如1.21到1.26之间。如果用户的numpy版本过高,比如1.26以上,可能会出现兼容性问题。 解决方案方面,首先建议用户降级numpy到兼容的版本,例如1.21.5,这是一个较为稳定的版本,并且确认与PyTorch兼容。如果降级后问题解决,说明是版本不兼容的问题。如果问题依旧,可能需要重新安装numpy,或者检查环境是否存在冲突的包。 此外,用户的环境是通过conda管理的,可能存在的依赖冲突也需要考虑。建议用户创建一个新的虚拟环境,重新安装PyTorch及其依赖,确保所有包的版本正确匹配。 最后,用户可能没有意识到不同包版本之间的依赖关系,尤其是在使用PyPI安装时,自动安装的依赖可能不符合要求。因此,明确指定numpy版本或者使用conda来管理依赖可能更可靠。 总结,解决步骤可能是:1)检查numpy版本;2)降级或升级numpy到兼容版本;3)重新安装numpy;4)创建新环境并重新安装所有依赖。</think>$\boxed{\text{错误根源分析}}$ 该报错的核心是 `numpy._utils` 模块中缺失 `set_module` 函数,常见于以下两种场景: --- ### $\boxed{\text{分步解决方案}}$ #### 1. **检查 numpy 版本兼容性** ```bash pip show numpy # 查看当前 numpy 版本 ``` - **关键发现**: - PyTorch 2.6.0 要求 `numpy<=1.26.4` - 若输出显示 `numpy>=1.27.0` → 版本过高导致函数被弃用 #### 2. **强制降级 numpy 版本** ```bash # 清除旧版本 pip uninstall numpy -y # 安装兼容版本 pip install numpy==1.21.5 # 官方推荐稳定版本 ``` - **验证修复**: ```python import numpy as np print(np.__version__) # 预期输出 1.21.5 ``` #### 3. **修复损坏的 numpy 安装** ```bash # 完全卸载后重装 pip uninstall numpy -y pip cache purge pip install numpy --no-cache-dir --force-reinstall ``` --- ### $\boxed{\text{环境隔离操作指南}}$ 若问题仍存在,建议创建新的 Conda 环境隔离依赖: ```bash conda create -n pytorch_fix python=3.9 conda activate pytorch_fix pip install torch==2.6.0+cu118 torchvision==0.21.0+cu118 torchaudio==2.6.0+cu118 --extra-index-url https://download.pytorch.org/whl/cu118 pip install numpy==1.21.5 ``` --- ### $\boxed{\text{技术原理说明}}$ - **`set_module` 函数的作用**: 该函数用于在 NumPy 的矩阵库 (`matrixlib`) 中动态绑定模块路径,在 `numpy>=1.24.0` 中被重构移除 - **版本冲突后果**: 新版本 NumPy 的 API 变更会导致依赖旧版结构的库(如 PyTorch 的部分模块)出现导入错误 --- ### $\boxed{\text{预防措施}}$ 1. **锁定关键依赖版本**: ```bash # 在 requirements.txt 中明确版本 numpy==1.21.5 torch==2.6.0+cu118 ``` 2. **优先使用 Conda 管理科学计算包**: ```bash conda install pytorch==2.6.0 torchvision torchaudio cudatoolkit=11.8 -c pytorch ``` --- $\boxed{\text{操作验证流程图}}$ ```mermaid graph TD A[报错 ImportError: cannot import name 'set_module'] --> B{检查numpy版本} B -->|版本过高 >1.26.4| C[降级到1.21.5] B -->|版本正常| D[重装numpy] C --> E[验证导入] D --> E E -->|成功| F[问题解决] E -->|失败| G[创建新Conda环境] G --> F ```

Looking in indexes: https://download.pytorch.org/whl/cu121 Requirement already satisfied: torch in d:\conda\envs\py38\lib\site-packages (1.8.0) Requirement already satisfied: torchvision in d:\conda\envs\py38\lib\site-packages (0.9.0) Requirement already satisfied: torchaudio in d:\conda\envs\py38\lib\site-packages (0.8.0) Requirement already satisfied: numpy in d:\conda\envs\py38\lib\site-packages (from torch) (1.24.2) Requirement already satisfied: typing-extensions in d:\conda\envs\py38\lib\site-packages (from torch) (4.13.2) Requirement already satisfied: pillow>=4.1.1 in d:\conda\envs\py38\lib\site-packages (from torchvision) (9.4.0)

<think>我们正在分析用户的问题。用户之前遇到了安装PyTorch时出现的警告,提示torch、torchvision和torchaudio没有安装。根据用户提供的引用,我们了解到用户可能尝试过安装,但可能遇到了问题,比如安装的版本不正确(如CPU版本)导致无法使用GPU。 现在,用户展示了一个安装输出: ``` Looking in indexes https://download.pytorch.org/whl/cu121 Requirement already satisfied for torch torchvision torchaudio ``` 用户想知道这个输出的含义以及当前环境是否正常。 ### 分析输出信息: 1. `Looking in indexes https://download.pytorch.org/whl/cu121`:这表示pip正在指定的索引URL(PyTorch的CUDA 12.1版本的包仓库)中查找包。 2. `Requirement already satisfied for torch torchvision torchaudio`:这表示当前环境中已经安装了满足要求的torch、torchvision和torchaudio,因此无需再次安装。 ### 但是,这个输出并没有告诉我们安装的是CPU版本还是GPU版本,也没有告诉我们安装的版本是否与CUDA兼容。因此,我们需要进一步验证。 ### 验证步骤: 1. 检查已安装的PyTorch版本及其CUDA支持。 2. 运行一个简单的Python脚本来确认PyTorch是否可以识别GPU。 ### 验证脚本: ```python import torch print(f"PyTorch版本: {torch.__version__}") print(f"CUDA可用: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"CUDA版本: {torch.version.cuda}") print(f"GPU设备: {torch.cuda.get_device_name(0)}") else: print("警告: PyTorch未检测到GPU支持!") ``` ### 可能的情况及解决方案: - **情况1**:输出显示`torch.cuda.is_available()`为`True`,且CUDA版本为12.1。那么恭喜,安装正确。 - **情况2**:输出显示`torch.cuda.is_available()`为`False`。这可能是由于安装了CPU版本的PyTorch,或者CUDA环境配置不正确。 ### 如果遇到情况2(安装的是CPU版本): 根据引用[2]中的经验,用户可能错误地安装了CPU版本。解决方案是: 1. 卸载当前安装的PyTorch相关包: ```bash pip uninstall torch torchvision torchaudio ``` 2. 使用正确的命令重新安装支持CUDA 12.1的版本(如引用[1]所示): ```bash pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu121 ``` ### 如果重新安装后仍然不可用: - 检查CUDA Toolkit是否安装正确(通过`nvcc --version`命令)。 - 检查NVIDIA驱动是否支持CUDA 12.1(通过`nvidia-smi`命令)。 - 确保安装的PyTorch版本与CUDA版本匹配(参考PyTorch官网的兼容性表格)。 ### 关于安装输出的含义总结: - `Requirement already satisfied` 仅表示已经安装了满足要求的包,但不保证是GPU版本。 - 必须通过`torch.cuda.is_available()`来验证GPU支持。 ### 最后,生成相关问题供用户进一步探索:</think>### PyTorch 安装输出含义解析 根据您提供的安装输出信息: ```bash Looking in indexes https://download.pytorch.org/whl/cu121 Requirement already satisfied for torch torchvision torchaudio ``` 以下是关键信息的详细解释: #### 1. **索引查找说明 (`Looking in indexes...`)** - 表示 pip 正在指定的 PyTorch 官方仓库中查找包 - `https://download.pytorch.org/whl/cu121` 确认您正在安装 **CUDA 12.1 兼容版本** - 这是正确的 GPU 版本安装源(非 CPU 版本)[^2] #### 2. **依赖已满足 (`Requirement already satisfied...`)** - 表示您当前环境中已存在满足要求的以下包: - `torch` (PyTorch 主库) - `torchvision` (计算机视觉扩展) - `torchaudio` (音频处理扩展) - **安装状态**:系统检测到无需重复安装,表明这些包已存在且版本兼容 #### 3. **关键验证步骤 虽然安装输出显示依赖已满足,但**必须验证实际 GPU 支持状态**: ```python import torch print(f"PyTorch版本: {torch.__version__}") print(f"CUDA可用: {torch.cuda.is_available()}") # 核心验证点 print(f"CUDA版本: {torch.version.cuda}") print(f"设备数量: {torch.cuda.device_count()}") ``` #### 4. **可能的问题场景分析 | 现象 | 原因 | 解决方案 | |------|------|----------| | `torch.cuda.is_available()=False` | 安装了CPU版本[^2] | 卸载后重新指定CUDA 12.1源安装 | | 版本冲突 | 多环境混合安装 | 创建干净虚拟环境重新安装 | | 驱动不兼容 | NVIDIA驱动过旧 | 更新驱动至≥535.86.01 | #### 5. **完整环境验证流程 ```bash # 1. 检查NVIDIA驱动 nvidia-smi # 2. 检查CUDA Toolkit nvcc --version # 3. 验证PyTorch-GPU集成 python -c "import torch; print(torch.rand(5,3).cuda())" ``` > 预期输出示例:`tensor([[0.1234, ...]], device='cuda:0')` ### 📌 结论 您的安装输出表明: 1. 正在使用**正确的 CUDA 12.1 安装源** 2. PyTorch 相关包**已存在于当前环境** 3. **仍需执行** `torch.cuda.is_available()` 验证 GPU 是否实际可用 如果验证失败,建议在干净虚拟环境中重新安装: ```bash pip uninstall torch torchvision torchaudio -y pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 \ --index-url https://download.pytorch.org/whl/cu121 ```
阅读全文

相关推荐

删除后报错Traceback (most recent call last): File "F:\study\graduation\gift_Plus\gift-web\gift-flask\web\app.py", line 67, in <module> from algo.image.image_classification import get_image_classification_res File "F:\study\graduation\gift_Plus\gift-web\gift-flask\algo\image\image_classification.py", line 5, in <module> import torchvision.transforms as transforms File "C:\Users\DELL\.conda\envs\py11\Lib\site-packages\torchvision\__init__.py", line 6, in <module> from torchvision import _meta_registrations, datasets, io, models, ops, transforms, utils File "C:\Users\DELL\.conda\envs\py11\Lib\site-packages\torchvision\models\__init__.py", line 2, in <module> from .convnext import * File "C:\Users\DELL\.conda\envs\py11\Lib\site-packages\torchvision\models\convnext.py", line 8, in <module> from ..ops.misc import Conv2dNormActivation, Permute File "C:\Users\DELL\.conda\envs\py11\Lib\site-packages\torchvision\ops\__init__.py", line 1, in <module> from ._register_onnx_ops import _register_custom_op File "C:\Users\DELL\.conda\envs\py11\Lib\site-packages\torchvision\ops\_register_onnx_ops.py", line 5, in <module> from torch.onnx import symbolic_opset11 as opset11 File "C:\Users\DELL\.conda\envs\py11\Lib\site-packages\torch\onnx\__init__.py", line 46, in <module> from ._internal.exporter import ( # usort:skip. needs to be last to avoid circular import ImportError: cannot import name 'DiagnosticOptions' from 'torch.onnx._internal.exporter' (C:\Users\DELL\.conda\envs\py11\Lib\site-packages\torch\onnx\_internal\exporter\__init__.py)

n error occurred while packaging Traceback (most recent call last): File "D:\Anaconda3\envs\yolo_test_s\lib\site-packages\auto_py_to_exe\packaging.py", line 132, in package run_pyinstaller(pyinstaller_args[1:]) File "D:\Anaconda3\envs\yolo_test_s\lib\site-packages\PyInstaller\__main__.py", line 215, in run run_build(pyi_config, spec_file, **vars(args)) File "D:\Anaconda3\envs\yolo_test_s\lib\site-packages\PyInstaller\__main__.py", line 70, in run_build PyInstaller.building.build_main.main(pyi_config, spec_file, **kwargs) File "D:\Anaconda3\envs\yolo_test_s\lib\site-packages\PyInstaller\building\build_main.py", line 1270, in main build(specfile, distpath, workpath, clean_build) File "D:\Anaconda3\envs\yolo_test_s\lib\site-packages\PyInstaller\building\build_main.py", line 1208, in build exec(code, spec_namespace) File "C:\Users\Blackyin\AppData\Local\Temp\tmpciastcif\test.spec", line 4, in <module> a = Analysis( File "D:\Anaconda3\envs\yolo_test_s\lib\site-packages\PyInstaller\building\build_main.py", line 533, in __init__ self.hookspath += discover_hook_directories() File "D:\Anaconda3\envs\yolo_test_s\lib\site-packages\PyInstaller\isolated\_parent.py", line 435, in wrapped return call(function, *args, **kwargs) File "D:\Anaconda3\envs\yolo_test_s\lib\site-packages\PyInstaller\isolated\_parent.py", line 404, in call return isolated.call(function, *args, **kwargs) File "D:\Anaconda3\envs\yolo_test_s\lib\site-packages\PyInstaller\isolated\_parent.py", line 322, in call raise SubprocessDiedError( PyInstaller.isolated._parent.SubprocessDiedError: Child process died calling discover_hook_directories() with args=() and kwargs={}. Its exit code was 1.

Transferred 349/355 items from pretrained weights AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n... Traceback (most recent call last): File "C:\Users\as729\.conda\envs\mypytorch\lib\runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "C:\Users\as729\.conda\envs\mypytorch\lib\runpy.py", line 87, in _run_code exec(code, run_globals) File "C:\Users\as729\.conda\envs\mypytorch\Scripts\yolo.exe\__main__.py", line 7, in <module> File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\cfg\__init__.py", line 410, in entrypoint getattr(model, mode)(**overrides) # default args from model File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\engine\model.py", line 372, in train self.trainer.train() File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\engine\trainer.py", line 192, in train self._do_train(world_size) File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\engine\trainer.py", line 276, in _do_train self._setup_train(world_size) File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\engine\trainer.py", line 219, in _setup_train self.amp = torch.tensor(check_amp(self.model), device=self.device) File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\utils\checks.py", line 416, in check_amp assert amp_allclose(YOLO('yolov8n.pt'), im) File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\engine\model.py", line 106, in __init__ self._load(model, task) File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\engine\model.py", line 155, in _load self.model, self.ckpt = attempt_load_one_weight(weights) File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\nn\tasks.py", line 622, in attempt_load_one_weight ckpt, weight = torch_safe_load(weight) # load ckpt File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\nn\tasks.py", line 561, in torch_safe_load return torch.load(file, map_location='cpu'), file # load File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\torch\serialization.py", line 801, in load File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\torch\serialization.py", line 287, in __init__ RuntimeError: PytorchStreamReader failed reading zip archive: failed finding central directory 出现了什么问题 怎么解决

D:\anaconda3\envs\GPU_pytorch\python.exe D:\python.learn\datasetload\main.py A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "D:\python.learn\datasetload\main.py", line 2, in <module> import torchvision File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\__init__.py", line 5, in <module> from torchvision import datasets, io, models, ops, transforms, utils File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\__init__.py", line 17, in <module> from . import detection, optical_flow, quantization, segmentation, video File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\detection\__init__.py", line 1, in <module> from .faster_rcnn import * File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\detection\faster_rcnn.py", line 16, in <module> from .anchor_utils import AnchorGenerator File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\detection\anchor_utils.py", line 10, in <module> class AnchorGenerator(nn.Module): File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\detection\anchor_utils.py", line 63, in AnchorGenerator device: torch.device = torch.device("cpu"), D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\detection\anchor_utils.py:63: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at C:\cb\pytorch_1000000000000\work\torch\csrc\utils\tensor_numpy.cpp:77.) device: torch.device = torch.device("cpu"), Files already downloaded and verified

/home/cw/anaconda3/bin/conda run -n GPU_pytorch --no-capture-output python /tmp/fEokboZTuK/main.py A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "/tmp/fEokboZTuK/main.py", line 1, in <module> import torch File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/__init__.py", line 1477, in <module> from .functional import * # noqa: F403 File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/functional.py", line 9, in <module> import torch.nn.functional as F File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /tmp/fEokboZTuK/main.py:89: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requi

INFO 07-06 22:09:23 __init__.py:207] Automatically detected platform cuda. (VllmWorkerProcess pid=10542) INFO 07-06 22:09:23 multiproc_worker_utils.py:229] Worker ready; awaiting tasks (VllmWorkerProcess pid=10542) INFO 07-06 22:09:24 cuda.py:178] Cannot use FlashAttention-2 backend for Volta and Turing GPUs. (VllmWorkerProcess pid=10542) INFO 07-06 22:09:24 cuda.py:226] Using XFormers backend. (VllmWorkerProcess pid=10542) INFO 07-06 22:09:25 utils.py:916] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=10542) INFO 07-06 22:09:25 pynccl.py:69] vLLM is using nccl==2.21.5 INFO 07-06 22:09:25 utils.py:916] Found nccl from library libnccl.so.2 INFO 07-06 22:09:25 pynccl.py:69] vLLM is using nccl==2.21.5 INFO 07-06 22:09:25 custom_all_reduce_utils.py:206] generating GPU P2P access cache in /root/.cache/vllm/gpu_p2p_access_cache_for_0,1.json INFO 07-06 22:09:39 custom_all_reduce_utils.py:244] reading GPU P2P access cache from /root/.cache/vllm/gpu_p2p_access_cache_for_0,1.json (VllmWorkerProcess pid=10542) INFO 07-06 22:09:39 custom_all_reduce_utils.py:244] reading GPU P2P access cache from /root/.cache/vllm/gpu_p2p_access_cache_for_0,1.json WARNING 07-06 22:09:39 custom_all_reduce.py:145] Custom allreduce is disabled because your platform lacks GPU P2P capability or P2P test failed. To silence this warning, specify disable_custom_all_reduce=True explicitly. (VllmWorkerProcess pid=10542) WARNING 07-06 22:09:39 custom_all_reduce.py:145] Custom allreduce is disabled because your platform lacks GPU P2P capability or P2P test failed. To silence this warning, specify disable_custom_all_reduce=True explicitly. INFO 07-06 22:09:39 shm_broadcast.py:258] vLLM message queue communication handle: Handle(connect_ip='127.0.0.1', local_reader_ranks=[1], buffer_handle=(1, 4194304, 6, 'psm_b99a0acb'), local_subscribe_port=57279, remote_subscribe_port=None) INFO 07-06 22:09:39 model_runner.py:1110] Starting to load model /home/user/Desktop/DeepSeek-R1-Distill-Qwen-32B... (VllmWorkerProcess pid=10542) INFO 07-06 22:09:39 model_runner.py:1110] Starting to load model /home/user/Desktop/DeepSeek-R1-Distill-Qwen-32B... ERROR 07-06 22:09:39 engine.py:400] CUDA out of memory. Tried to allocate 136.00 MiB. GPU 0 has a total capacity of 21.49 GiB of which 43.50 MiB is free. Including non-PyTorch memory, this process has 21.44 GiB memory in use. Of the allocated memory 21.19 GiB is allocated by PyTorch, and 20.25 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ERROR 07-06 22:09:39 engine.py:400] Traceback (most recent call last): ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/engine/multiprocessing/engine.py", line 391, in run_mp_engine ERROR 07-06 22:09:39 engine.py:400] engine = MQLLMEngine.from_engine_args(engine_args=engine_args, ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/engine/multiprocessing/engine.py", line 124, in from_engine_args ERROR 07-06 22:09:39 engine.py:400] return cls(ipc_path=ipc_path, ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/engine/multiprocessing/engine.py", line 76, in __init__ ERROR 07-06 22:09:39 engine.py:400] self.engine = LLMEngine(*args, **kwargs) ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/engine/llm_engine.py", line 273, in __init__ ERROR 07-06 22:09:39 engine.py:400] self.model_executor = executor_class(vllm_config=vllm_config, ) ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/executor/executor_base.py", line 271, in __init__ ERROR 07-06 22:09:39 engine.py:400] super().__init__(*args, **kwargs) ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/executor/executor_base.py", line 52, in __init__ ERROR 07-06 22:09:39 engine.py:400] self._init_executor() ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/executor/mp_distributed_executor.py", line 125, in _init_executor ERROR 07-06 22:09:39 engine.py:400] self._run_workers("load_model", ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/executor/mp_distributed_executor.py", line 185, in _run_workers ERROR 07-06 22:09:39 engine.py:400] driver_worker_output = run_method(self.driver_worker, sent_method, ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/utils.py", line 2196, in run_method ERROR 07-06 22:09:39 engine.py:400] return func(*args, **kwargs) ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/worker/worker.py", line 183, in load_model ERROR 07-06 22:09:39 engine.py:400] self.model_runner.load_model() ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/worker/model_runner.py", line 1112, in load_model ERROR 07-06 22:09:39 engine.py:400] self.model = get_model(vllm_config=self.vllm_config) ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/model_loader/__init__.py", line 14, in get_model ERROR 07-06 22:09:39 engine.py:400] return loader.load_model(vllm_config=vllm_config) ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/model_loader/loader.py", line 406, in load_model ERROR 07-06 22:09:39 engine.py:400] model = _initialize_model(vllm_config=vllm_config) ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/model_loader/loader.py", line 125, in _initialize_model ERROR 07-06 22:09:39 engine.py:400] return model_class(vllm_config=vllm_config, prefix=prefix) ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/models/qwen2.py", line 453, in __init__ ERROR 07-06 22:09:39 engine.py:400] self.model = Qwen2Model(vllm_config=vllm_config, ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/compilation/decorators.py", line 151, in __init__ ERROR 07-06 22:09:39 engine.py:400] old_init(self, vllm_config=vllm_config, prefix=prefix, **kwargs) ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/models/qwen2.py", line 307, in __init__ ERROR 07-06 22:09:39 engine.py:400] self.start_layer, self.end_layer, self.layers = make_layers( ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/models/utils.py", line 557, in make_layers ERROR 07-06 22:09:39 engine.py:400] [PPMissingLayer() for _ in range(start_layer)] + [ ERROR 07-06 22:09:39 engine.py:400] ^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/models/utils.py", line 558, in ERROR 07-06 22:09:39 engine.py:400] maybe_offload_to_cpu(layer_fn(prefix=f"{prefix}.{idx}")) ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/models/qwen2.py", line 309, in <lambda> ERROR 07-06 22:09:39 engine.py:400] lambda prefix: Qwen2DecoderLayer(config=config, ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/models/qwen2.py", line 220, in __init__ ERROR 07-06 22:09:39 engine.py:400] self.mlp = Qwen2MLP( ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/models/qwen2.py", line 82, in __init__ ERROR 07-06 22:09:39 engine.py:400] self.down_proj = RowParallelLinear( ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/layers/linear.py", line 1062, in __init__ ERROR 07-06 22:09:39 engine.py:400] self.quant_method.create_weights( ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/layers/linear.py", line 129, in create_weights ERROR 07-06 22:09:39 engine.py:400] weight = Parameter(torch.empty(sum(output_partition_sizes), ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/torch/utils/_device.py", line 106, in __torch_function__ ERROR 07-06 22:09:39 engine.py:400] return func(*args, **kwargs) ERROR 07-06 22:09:39 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^ ERROR 07-06 22:09:39 engine.py:400] torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 136.00 MiB. GPU 0 has a total capacity of 21.49 GiB of which 43.50 MiB is free. Including non-PyTorch memory, this process has 21.44 GiB memory in use. Of the allocated memory 21.19 GiB is allocated by PyTorch, and 20.25 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) Process SpawnProcess-1: INFO 07-06 22:09:39 multiproc_worker_utils.py:128] Killing local vLLM worker processes Traceback (most recent call last): File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/engine/multiprocessing/engine.py", line 402, in run_mp_engine raise e File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/engine/multiprocessing/engine.py", line 391, in run_mp_engine engine = MQLLMEngine.from_engine_args(engine_args=engine_args, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/engine/multiprocessing/engine.py", line 124, in from_engine_args return cls(ipc_path=ipc_path, ^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/engine/multiprocessing/engine.py", line 76, in __init__ self.engine = LLMEngine(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/engine/llm_engine.py", line 273, in __init__ self.model_executor = executor_class(vllm_config=vllm_config, ) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/executor/executor_base.py", line 271, in __init__ super().__init__(*args, **kwargs) File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/executor/executor_base.py", line 52, in __init__ self._init_executor() File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/executor/mp_distributed_executor.py", line 125, in _init_executor self._run_workers("load_model", File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/executor/mp_distributed_executor.py", line 185, in _run_workers driver_worker_output = run_method(self.driver_worker, sent_method, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/utils.py", line 2196, in run_method return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/worker/worker.py", line 183, in load_model self.model_runner.load_model() File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/worker/model_runner.py", line 1112, in load_model self.model = get_model(vllm_config=self.vllm_config) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/model_loader/__init__.py", line 14, in get_model return loader.load_model(vllm_config=vllm_config) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/model_loader/loader.py", line 406, in load_model model = _initialize_model(vllm_config=vllm_config) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/model_loader/loader.py", line 125, in _initialize_model return model_class(vllm_config=vllm_config, prefix=prefix) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/models/qwen2.py", line 453, in __init__ self.model = Qwen2Model(vllm_config=vllm_config, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/compilation/decorators.py", line 151, in __init__ old_init(self, vllm_config=vllm_config, prefix=prefix, **kwargs) File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/models/qwen2.py", line 307, in __init__ self.start_layer, self.end_layer, self.layers = make_layers( ^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/models/utils.py", line 557, in make_layers [PPMissingLayer() for _ in range(start_layer)] + [ ^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/models/utils.py", line 558, in maybe_offload_to_cpu(layer_fn(prefix=f"{prefix}.{idx}")) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/models/qwen2.py", line 309, in <lambda> lambda prefix: Qwen2DecoderLayer(config=config, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/models/qwen2.py", line 220, in __init__ self.mlp = Qwen2MLP( ^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/models/qwen2.py", line 82, in __init__ self.down_proj = RowParallelLinear( ^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/layers/linear.py", line 1062, in __init__ self.quant_method.create_weights( File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/model_executor/layers/linear.py", line 129, in create_weights weight = Parameter(torch.empty(sum(output_partition_sizes), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/torch/utils/_device.py", line 106, in __torch_function__ return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 136.00 MiB. GPU 0 has a total capacity of 21.49 GiB of which 43.50 MiB is free. Including non-PyTorch memory, this process has 21.44 GiB memory in use. Of the allocated memory 21.19 GiB is allocated by PyTorch, and 20.25 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) [rank0]:[W706 22:09:40.345098611 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) Traceback (most recent call last): File "/root/miniconda3/envs/deepseek_vllm/bin/vllm", line 8, in <module> sys.exit(main()) ^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/entrypoints/cli/main.py", line 73, in main args.dispatch_function(args) File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/entrypoints/cli/serve.py", line 34, in cmd uvloop.run(run_server(args)) File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/uvloop/__init__.py", line 105, in run return runner.run(wrapper()) ^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/asyncio/runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/uvloop/__init__.py", line 61, in wrapper return await main ^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/entrypoints/openai/api_server.py", line 947, in run_server async with build_async_engine_client(args) as engine_client: File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/contextlib.py", line 210, in __aenter__ return await anext(self.gen) ^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/entrypoints/openai/api_server.py", line 139, in build_async_engine_client async with build_async_engine_client_from_engine_args( File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/contextlib.py", line 210, in __aenter__ return await anext(self.gen) ^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/deepseek_vllm/lib/python3.11/site-packages/vllm/entrypoints/openai/api_server.py", line 233, in build_async_engine_client_from_engine_args raise RuntimeError( RuntimeError: Engine process failed to start. See stack trace for the root cause. (deepseek_vllm) root@user-X99:/home/user/Desktop# /root/miniconda3/envs/deepseek_vllm/lib/python3.11/multiprocessing/resource_tracker.py:254: UserWarning: resource_tracker: There appear to be 1 leaked shared_memory objects to clean up at shutdown warnings.warn('resource_tracker: There appear to be %d ' (deepseek_vllm) root@user-X99:/home/user/Desktop#

A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.1 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "D:\pythonProject1\python.py", line 5, in <module> from torchvision import datasets, transforms File "C:\Users\Administrator\.conda\envs\pytorch\lib\site-packages\torchvision\__init__.py", line 5, in <module> from torchvision import datasets, io, models, ops, transforms, utils File "C:\Users\Administrator\.conda\envs\pytorch\lib\site-packages\torchvision\models\__init__.py", line 17, in <module> from . import detection, optical_flow, quantization, segmentation, video File "C:\Users\Administrator\.conda\envs\pytorch\lib\site-packages\torchvision\models\detection\__init__.py", line 1, in <module> from .faster_rcnn import * File "C:\Users\Administrator\.conda\envs\pytorch\lib\site-packages\torchvision\models\detection\faster_rcnn.py", line 16, in <module> from .anchor_utils import AnchorGenerator File "C:\Users\Administrator\.conda\envs\pytorch\lib\site-packages\torchvision\models\detection\anchor_utils.py", line 10, in <module> class AnchorGenerator(nn.Module): File "C:\Users\Administrator\.conda\envs\pytorch\lib\site-packages\torchvision\models\detection\anchor_utils.py", line 63, in AnchorGenerator device: torch.device = torch.device("cpu"), C:\Users\Administrator\.conda\envs\pytorch\lib\site-packages\torchvision\models\detection\anchor_utils.py:63: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at C:\cb\pytorch_1000000000000\work\torch\csrc\utils\tensor_numpy.cpp:77.) device: torch.device = torch.device("cpu"), Traceback (most recent call last): File "D:\pythonProject1\python.py", line 55, in <module> for images, labels in train_loader: File "C:\Users\Administrator\.conda\envs\pytorch\lib\site-packages\torch\utils\data\dataloader.py", line 628, in __next__ data = self._next_data() File "C:\Users\Administrator\.conda\envs\pytorch\lib\site-packages\torch\utils\data\dataloader.py", line 671, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "C:\Users\Administrator\.conda\envs\pytorch\lib\site-packages\torch\utils\data\_utils\fetch.py", line 58, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "C:\Users\Administrator\.conda\envs\pytorch\lib\site-packages\torch\utils\data\_utils\fetch.py", line 58, in data = [self.dataset[idx] for idx in possibly_batched_index] File "C:\Users\Administrator\.conda\envs\pytorch\lib\site-packages\torchvision\datasets\mnist.py", line 142, in __getitem__ img = Image.fromarray(img.numpy(), mode="L") RuntimeError: Numpy is not available

大家在看

recommend-type

ADC_AD7173.zip

ADC_AD7173之官方C语言驱动程序
recommend-type

vindr-cxr:VinDr-CXR

VinDr-CXR:带有放射科医生注释的胸部 X 射线开放数据集 VinDr-CXR 是一个大型公开可用的胸片数据集,带有用于常见胸肺疾病分类和关键发现定位的放射学注释。 它由 Vingroup 大数据研究所 (VinBigdata) 创建。 该数据集包含 2018 年至 2020 年从越南两家主要医院收集的超过 18,000 次 CXR 扫描。这些图像被标记为存在 28 种不同的放射学发现和诊断。 训练集中的每次扫描都由一组三名放射科医生进行注释。 对于测试集,五位经验丰富的放射科医生参与了标记过程,并根据他们的共识来建立测试标记的最佳参考标准。 要下载数据集,用户需要注册并接受我们网页上描述的数据使用协议 (DUA)。 通过接受 DUA,用户同意他们不会共享数据,并且数据集只能用于科学研究和教育目的。 代码 该存储库旨在支持使用 VinDr-CXR 数据。 我们提供了用于从 DICO
recommend-type

微信聊天记录导出- MemoTrace 留痕 2.0.6(WeChatMsg)

解锁Windows本地数据库 还原微信聊天界面: 文本 图片 拍一拍等系统消息 导出数据: 批量导出数据 导出联系人 sqlite数据库 HTML(文本、图片、视频、表情包、语音、文件、系统消息) CSV文档 TXT文档 Word文档 使用步骤: 登录要导出数据的微信(不支持微信多开,不支持部分老版本微信); 点击获取信息之后,正常情况下所有信息均会自动填充,这时候就直接点击开始启动就行了; 如果微信路径获取失败,就手动设置为微信中文件管理路径下的wxid_xxx文件夹,该wxid必须和前面获取的wxid一致,否则的话会显示密钥错误; 点击开始启动; 成功后新的数据库会存储在 WeChatMsg 软件目录下的 app/DataBase/Msg文件夹中; 最后重新启动WeChatMsg即可。
recommend-type

中科大版苏淳概率论答案

本资料是中科大版本 苏淳编著的概率论答案,此为本书前半部分答案,其中包含书中部分习题,系老师所布置的重点习题答案。包含初等概率论,随机变量,随机向量,数字特征与特征函数极限定理几章的内容
recommend-type

北邮计算机网络滑动窗口实验报告(附页包含源程序)

北邮计算机网络实验报告,是数据链路层的滑动窗口协议,采用选择重传协议,报告中内容完整,包含结构说明,代码说明,程序流程图,结果分析(表格),探究分析,源程序等。

最新推荐

recommend-type

langchain4j-1.1.0.jar中文-英文对照文档.zip

1、压缩文件中包含: 中文-英文对照文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

计算机控制课程设计报告直流电机转速闭环控制(1).doc

计算机控制课程设计报告直流电机转速闭环控制(1).doc
recommend-type

Wamp5: 一键配置ASP/PHP/HTML服务器工具

根据提供的文件信息,以下是关于标题、描述和文件列表中所涉及知识点的详细阐述。 ### 标题知识点 标题中提到的是"PHP集成版工具wamp5.rar",这里面包含了以下几个重要知识点: 1. **PHP**: PHP是一种广泛使用的开源服务器端脚本语言,主要用于网站开发。它可以嵌入到HTML中,从而让网页具有动态内容。PHP因其开源、跨平台、面向对象、安全性高等特点,成为最流行的网站开发语言之一。 2. **集成版工具**: 集成版工具通常指的是将多个功能组合在一起的软件包,目的是为了简化安装和配置流程。在PHP开发环境中,这样的集成工具通常包括了PHP解释器、Web服务器以及数据库管理系统等关键组件。 3. **Wamp5**: Wamp5是这类集成版工具的一种,它基于Windows操作系统。Wamp5的名称来源于它包含的主要组件的首字母缩写,即Windows、Apache、MySQL和PHP。这种工具允许开发者快速搭建本地Web开发环境,无需分别安装和配置各个组件。 4. **RAR压缩文件**: RAR是一种常见的文件压缩格式,它以较小的体积存储数据,便于传输和存储。RAR文件通常需要特定的解压缩软件进行解压缩操作。 ### 描述知识点 描述中提到了工具的一个重要功能:“可以自动配置asp/php/html等的服务器, 不用辛辛苦苦的为怎么配置服务器而烦恼”。这里面涵盖了以下知识点: 1. **自动配置**: 自动配置功能意味着该工具能够简化服务器的搭建过程,用户不需要手动进行繁琐的配置步骤,如修改配置文件、启动服务等。这是集成版工具的一项重要功能,极大地降低了初学者的技术门槛。 2. **ASP/PHP/HTML**: 这三种技术是Web开发中常用的组件。ASP (Active Server Pages) 是微软开发的服务器端脚本环境;HTML (HyperText Markup Language) 是用于创建网页的标准标记语言;PHP是服务器端脚本语言。在Wamp5这类集成环境中,可以很容易地对这些技术进行测试和开发,因为它们已经预配置在一起。 3. **服务器**: 在Web开发中,服务器是一个运行Web应用程序并响应客户端请求的软件或硬件系统。常见的服务器软件包括Apache、Nginx等。集成版工具提供了一个本地服务器环境,使得开发者可以在本地测试他们的应用程序。 ### 标签知识点 标签中仅出现了“PHP”一个关键词,这意味着该工具专注于与PHP相关的开发环境配置。 ### 压缩包子文件的文件名称列表知识点 1. **wamp.exe**: 这是Wamp5集成版工具的可执行文件,用户通过运行这个文件,即可启动Wamp5环境,开始进行PHP等相关开发。 2. **使用说明文档.txt**: 通常这样的文本文件包含了软件的安装指南、功能介绍、常见问题解答以及操作教程等内容。它是用户了解和使用软件的重要辅助资料,可以帮助用户快速上手。 ### 总结 Wamp5作为一个PHP集成版工具,为PHP开发者提供了一个便捷的本地开发环境。它通过自动化配置减少了开发者在搭建环境时的麻烦,整合了Web开发的关键组件,从而使得开发者能够专注于代码的编写,而不是环境配置。此外,它还提供了详尽的使用文档,帮助用户理解和运用这一工具,有效地提高了开发效率。对于希望快速入门PHP或需要一个简单易用的本地开发环境的开发者来说,Wamp5是一个非常好的选择。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

sht20温湿度传感器使用什么将上拉电阻和滤波电容引出

<think>好的,我需要解决用户关于SHT20温湿度传感器的上拉电阻和滤波电容的引出方法问题。首先,我得回忆一下SHT20的基本特性和常见电路设计。SHT20是数字传感器,通常使用I2C接口,所以上拉电阻是必须的,用于确保数据线和时钟线的稳定。根据引用[2],SHT10是通过SCK和DATA线与单片机通信,而SHT30在引用[3]中使用I2C协议,需要上拉电阻。虽然用户问的是SHT20,但SHT系列通常设计类似,所以可以推断SHT20也需要类似的上拉电阻配置。通常I2C总线的上拉电阻值在4.7kΩ到10kΩ之间,但具体值可能取决于总线速度和电源电压。需要确认数据手册中的推荐值,但用户可能没有
recommend-type

Delphi仿速达财务软件导航条组件开发教程

Delphi作为一款历史悠久的集成开发环境(IDE),由Embarcadero Technologies公司开发,它使用Object Pascal语言,被广泛应用于Windows平台下的桌面应用程序开发。在Delphi中开发组件是一项核心技术,它允许开发者创建可复用的代码单元,提高开发效率和软件模块化水平。本文将详细介绍如何在Delphi环境下仿制速达财务软件中的导航条组件,这不仅涉及到组件的创建和使用,还会涉及界面设计和事件处理等技术点。 首先,需要了解Delphi组件的基本概念。在Delphi中,组件是一种特殊的对象,它们被放置在窗体(Form)上,可以响应用户操作并进行交互。组件可以是可视的,也可以是不可视的,可视组件在设计时就能在窗体上看到,如按钮、编辑框等;不可视组件则主要用于后台服务,如定时器、数据库连接等。组件的源码可以分为接口部分和实现部分,接口部分描述组件的属性和方法,实现部分包含方法的具体代码。 在开发仿速达财务软件的导航条组件时,我们需要关注以下几个方面的知识点: 1. 组件的继承体系 仿制组件首先需要确定继承体系。在Delphi中,大多数可视组件都继承自TControl或其子类,如TPanel、TButton等。导航条组件通常会继承自TPanel或者TWinControl,这取决于导航条是否需要支持子组件的放置。如果导航条只是单纯的一个显示区域,TPanel即可满足需求;如果导航条上有多个按钮或其他控件,可能需要继承自TWinControl以提供对子组件的支持。 2. 界面设计与绘制 组件的外观和交互是用户的第一印象。在Delphi中,可视组件的界面主要通过重写OnPaint事件来完成。Delphi提供了丰富的绘图工具,如Canvas对象,使用它可以绘制各种图形,如直线、矩形、椭圆等,并且可以对字体、颜色进行设置。对于导航条,可能需要绘制背景图案、分隔线条、选中状态的高亮等。 3. 事件处理 导航条组件需要响应用户的交互操作,例如鼠标点击事件。在Delphi中,可以通过重写组件的OnClick事件来响应用户的点击操作,进而实现导航条的导航功能。如果导航条上的项目较多,还可能需要考虑使用滚动条,让更多的导航项能够显示在窗体上。 4. 用户自定义属性和方法 为了使组件更加灵活和强大,开发者通常会为组件添加自定义的属性和方法。在导航条组件中,开发者可能会添加属性来定义按钮个数、按钮文本、按钮位置等;同时可能会添加方法来处理特定的事件,如自动调整按钮位置以适应不同的显示尺寸等。 5. 数据绑定和状态同步 在财务软件中,导航条往往需要与软件其他部分的状态进行同步。例如,用户当前所处的功能模块会影响导航条上相应项目的选中状态。这通常涉及到数据绑定技术,Delphi支持组件间的属性绑定,通过数据绑定可以轻松实现组件状态的同步。 6. 导航条组件的封装和发布 开发完毕后,组件需要被封装成独立的单元供其他项目使用。封装通常涉及将组件源码保存为pas文件,并在设计时能够在组件面板中找到。发布组件可能还需要编写相应的安装包和使用文档,方便其他开发者安装和使用。 7. Delphi IDE的支持 Delphi IDE提供了组件面板编辑器(Component Palette),允许开发者将开发好的组件添加到组件面板中。在组件面板编辑器中,可以自定义组件的图标和分类,使得组件在Delphi中的使用更为便捷。 通过以上的知识点梳理,可以看出Delphi仿速达导航条组件的开发涉及到的不仅仅是简单的代码编写,还涉及到用户界面设计、事件驱动编程、组件封装等多个方面。掌握这些知识点,对于一名Delphi开发者而言,是十分重要的。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为
recommend-type

常见运放电路的基本结构和基本原理

<think>首先,用户的问题是关于运算放大器电路的基本结构和工作原理。我需要根据系统级指令来构建回答。系统级指令:-所有行内数学表达式必须使用$...$格式。-独立公式必须使用$$...$$格式并单独成段。-LaTeX语法正确。-使用中文回答。-生成相关问题。-回答中引用的段落末尾自然地添加引用标识,例如[^1]。-回答结构清晰,帮助用户逐步解决问题,尽量保证回答真实可靠。参考站内引用:-引用[1]:关于运算放大器基本电路用法,特别是反相放大器电路。-引用[2]:关于uA741运算放大器电路的基本原理,包括输入级、输出级等。用户的问题:"我想了解运放电路的基本结构和工作原理请问运算放大器电路
recommend-type

ASP.NET2.0初学者个人网站实例分享

标题:“ASP.NET 2.0个人网站”指向了一个网站开发项目,这个项目是使用ASP.NET 2.0框架构建的。ASP.NET 2.0是微软公司推出的一种用于Web开发的服务器端技术,它是.NET Framework的一部分。这个框架允许开发者构建动态网站、网络应用程序和网络服务。开发者可以使用C#或VB.NET等编程语言来编写应用程序。由于这被标签为“2.0”,我们可以假设这是一个较早版本的ASP.NET,相较于后来的版本,它可能没有那么先进的特性,但对于初学者来说,它提供了基础并且易于上手的工具和控件来学习Web开发。 描述:“个人练习所做,适合ASP.NET初学者参考啊,有兴趣的可以前来下载去看看,同时帮小弟我赚些积分”提供了关于该项目的背景信息。它是某个个人开发者或学习者为了实践和学习ASP.NET 2.0而创建的个人网站项目。这个项目被描述为适合初学者作为学习参考。开发者可能是为了积累积分或网络声誉,鼓励他人下载该项目。这样的描述说明了该项目可以被其他人获取,进行学习和参考,或许还能给予原作者一些社区积分或其他形式的回报。 标签:“2.0”表明这个项目专门针对ASP.NET的2.0版本,可能意味着它不是最新的项目,但是它可以帮助初学者理解早期ASP.NET版本的设计和开发模式。这个标签对于那些寻找具体版本教程或资料的人来说是有用的。 压缩包子文件的文件名称列表:“MySelf”表示在分享的压缩文件中,可能包含了与“ASP.NET 2.0个人网站”项目相关的所有文件。文件名“我的”是中文,可能是指创建者以“我”为中心构建了这个个人网站。虽然文件名本身没有提供太多的信息,但我们可以推测它包含的是网站源代码、相关资源文件、数据库文件(如果有的话)、配置文件和可能的文档说明等。 知识点总结: 1. ASP.NET 2.0是.NET Framework下的一个用于构建Web应用程序的服务器端框架。 2. 它支持使用C#和VB.NET等.NET支持的编程语言进行开发。 3. ASP.NET 2.0提供了一组丰富的控件,可帮助开发者快速构建Web表单、用户界面以及实现后台逻辑。 4. 它还提供了一种称作“Web站点”项目模板,使得初学者能够方便地开始Web开发项目。 5. ASP.NET 2.0是微软.NET历史上一个重要的里程碑,引入了许多创新特性,如成员资格和角色管理、主题和皮肤、网站导航和个性化设置等。 6. 在学习ASP.NET 2.0的过程中,初学者可以了解到如HTTP请求和响应、服务器控件、状态管理、数据绑定、缓存策略等基础概念。 7. 本项目可作为ASP.NET初学者的实践平台,帮助他们理解框架的基本结构和工作流程,从而为学习更高版本的ASP.NET打下坚实基础。 8. 个人网站项目的构建可以涵盖前端设计(HTML, CSS, JavaScript)和后端逻辑(C#或VB.NET)的综合应用。 9. 在学习过程中,初学者应该学会如何配置和使用IIS(Internet Information Services)来部署ASP.NET网站。 10. “赚取积分”可能指的是在某个在线社区、论坛或代码托管平台上,通过分享项目来获得一定的积分或奖励,这通常是用来衡量用户对社区贡献大小的一种方式。 综上所述,该“ASP.NET 2.0个人网站”项目不仅为初学者提供了一个实用的学习资源,同时体现了开发者对于开源共享精神的实践,对社区贡献出自己的力量。通过这样的实践,初学者能够更好地理解ASP.NET框架的运作,逐步建立起自己的Web开发技能。
recommend-type

【制图技术】:甘肃高质量土壤分布TIF图件的成图策略

# 摘要 本文针对甘肃土壤分布数据的TIF图件制作进行了系统研究。首先概述了甘肃土壤的分布情况,接着介绍了TIF图件的基础知识,包括其格式特点、空间数据表达以及质量控制方法。随后,文中构建了成图策略的理论框架,分析了土壤分布图的信息需求与数据处理流程,并探讨了成图原则与标准。在实践操作部分,详细阐述了制图软