活动介绍

a=int(input()) a1=str(a) b=a1[0] a2=str(abs(a)) c=int(a2[::-1]) result=int(b)+int(c) print(result)

时间: 2025-06-16 16:52:40 浏览: 15
<think>嗯,用户给了一段Python代码,想要理解它的工作原理,并且可能需要优化。首先,我需要仔细阅读这段代码,逐行分析它的功能。代码的步骤看起来是将输入的数字的第一位与其反转后的绝对值相加。让我先分解一下代码: 第一行是`a=int(input())`,这里获取用户输入的整数。接下来`a1=str(a)`将整数转换为字符串,方便处理各个位数。然后`b=a1[0]`提取字符串的第一个字符,也就是数字的第一位。不过这里有个潜在问题,如果输入的是负数,比如-123,转换后的字符串会是"-123",第一位就是负号,这样b会是'-',导致后续转换为整数的时候出错。不过用户提到要处理反转后的绝对值,所以可能输入可能有负数的情况。 接下来是`a2=str(abs(a))`,这里取a的绝对值并转为字符串,这样可以处理负数的情况。然后`c=int(a2[::-1])`将a2反转并转为整数。例如,输入是123的话,a2是"123",反转后是"321",c就是321。然后`result=int(b)+int(c)`,这里将第一位和反转后的数相加。最后打印结果。 但注意到在b的获取上,原代码直接用了a1[0],当输入为负数时,a1[0]会是负号,这会导致b的值错误。例如输入-123,a1会是"-123",b就是'-',转为int会报错。所以这里需要优化,确保b总是数字的第一位,无论输入是正是负。正确的做法应该是在处理绝对值后的字符串中取第一位,或者在处理原数时排除符号。 用户提供的代码可能存在的错误点在这里。例如,输入是-123时,原代码中的b会是'-',导致错误。正确的做法应该是用绝对值后的字符串来获取第一位数字。比如,修改`b = a2[0]`,这样无论原数是正是负,a2已经是绝对值的字符串,第一位就是数字的第一位。 另外,测试一些例子可能会有帮助。比如输入123,输出是1 + 321 = 322;输入-456,原代码会出错,因为b是'-',而正确的处理应该是取绝对值后的字符串第一位'4',反转后的数是654,结果是4+654=658。 所以优化点在于正确处理负数的情况,确保第一位是数字而不是符号。此外,代码还可以进一步简化,比如不需要两次转换字符串,可以直接处理绝对值后的字符串。 可能的优化步骤是: 1. 输入整数a。 2. 计算绝对值后的字符串形式a2。 3. 获取第一位数字b = a2[0]。 4. 反转a2得到c。 5. 将b和c转为整数相加。 这样修改后的代码可以处理负数的情况,避免错误。此外,用户可能希望代码更简洁,或者处理其他边界情况,比如输入0或者单个数字的情况,比如输入5,反转后还是5,结果是5+5=10。 总结来说,原代码的问题在于处理负数时的符号问题,优化后的代码应该使用绝对值后的字符串来获取第一位,并反转,从而避免符号干扰。</think>### 代码分步解析 给定代码功能是**将输入数字的第一位与其反转后的绝对值相加**,以下为逐行解析和优化建议: ```python a = int(input()) # 输入整数(可能含负号) a1 = str(a) # 转为字符串保留符号 b = a1[0] # 提取第一位(可能为负号) a2 = str(abs(a)) # 取绝对值后再转为字符串(消除负号) c = int(a2[::-1]) # 反转字符串并转为整数(得到绝对值反转后的数值) result = int(b) + int(c) # 将第一位与反转数相加 print(result) ``` ### 潜在问题与优化 1. **负数处理缺陷** 当输入为负数(如`-123`)时,`b = a1[0]`会得到`'-'`,导致`int(b)`报错。需改用绝对值字符串的第一位: ```python b = a2[0] # 改为绝对值字符串的首位 ``` 2. **代码冗余优化** 直接通过绝对值字符串处理,减少转换步骤: ```python a = int(input()) abs_str = str(abs(a)) # 绝对值字符串 first_digit = int(abs_str[0])# 正确获取首位数字 reversed_num = int(abs_str[::-1]) print(first_digit + reversed_num) ``` ### 示例验证 | 输入 | 原代码错误 | 优化后结果 | 计算逻辑 | |-------|------------|------------|------------------------| | 123 | 322 | 322 | 1+321=322 | | -456 | 报错 | 658 | 4+654=658 | | 0 | 0 | 0 | 0+0=0 | ###
阅读全文

相关推荐

c++中文C. Breach of Faith time limit per test2 seconds memory limit per test256 megabytes Breach of Faith - Supire feat.eili You and your team have worked tirelessly until you have a sequence a1,a2,…,a2n+1 of positive integers satisfying these properties. 1≤ai≤1018 for all 1≤i≤2n+1 . a1,a2,…,a2n+1 are pairwise distinct. a1=a2−a3+a4−a5+…+a2n−a2n+1 . However, the people you worked with sabotaged you because they wanted to publish this sequence first. They deleted one number from this sequence and shuffled the rest, leaving you with a sequence b1,b2,…,b2n . You have forgotten the sequence a and want to find a way to recover it. If there are many possible sequences, you can output any of them. It can be proven under the constraints of the problem that at least one sequence a exists. Input Each test contains multiple test cases. The first line contains the number of test cases t (1≤t≤104 ). The description of the test cases follows. The first line of each test case contains one integer n (1≤n≤2⋅105 ). The second line of each test case contains 2n distinct integers b1,b2,…,b2n (1≤bi≤109 ), denoting the sequence b . It is guaranteed that the sum of n over all test cases does not exceed 2⋅105 . Output For each test case, output 2n+1 distinct integers, denoting the sequence a (1≤ai≤1018 ). If there are multiple possible sequences, you can output any of them. The sequence a should satisfy the given conditions, and it should be possible to obtain b after deleting one element from a and shuffling the remaining elements. Example InputCopy 4 1 9 2 2 8 6 1 4 3 99 2 86 33 14 77 2 1 6 3 2 OutputCopy 7 9 2 1 8 4 6 9 86 99 2 77 69 14 33 4 6 1 2 3 1

根据以下示例输出相关数据 输入:A0A A0O zone6 输出:A0A A0B zone6 A0A A0C zone6 A0A A0D zone6 ... A0A A0O zone6 数据: A0A A0O zone6 A0P A0Z zone6 A1A A1N zone6 A1O A2U zone6 A2V A2V zone6 A2W A9Z zone6 B0A B0E zone6 B0F B0R zone5 B0S B0S zone4 B0T B0Z zone5 B1A B2A zone4 B2B B2F zone5 B2G B4Z zone4 B5A B8Z zone5 B9A B9A zone4 B9B B9Z zone5 C0A C0Z zone5 C1A C9Z zone4 E0A E1V zone4 E1W E1Z zone5 E2A E3K zone4 E3L E3N zone5 E3O E3Z zone4 E4A E4D zone5 E4E E4Y zone4 E4Z E5D zone5 E5E E5G zone6 E5H E5U zone5 E5V E5V zone6 E5W E6Z zone4 E7A E7M zone4 E7N E9Z zone4 G0A G0A zone1 G0B G0F zone3 G0G G0G zone6 G0H G0K zone3 G0L G0S zone1 G0T G0W zone3 G0X G4Q zone1 G4R G4S zone3 G4T G4T zone6 G4U G4W zone2 G4X G4Z zone3 G5A G5A zone1 G5B G5C zone3 G5D G5U zone1 G5V G6Z zone1 G7A G9Z zone1 H0A H0Z zone0 H1A H9Z zone0 J0A J0K zone2 J0L J0M zone1 J0N J0W zone2 J0X J0X zone1 J0Y J0Z zone3 J1A J7Z zone1 J8A J8H zone1 J8I J9D zone1 J9E J9G zone3 J9H J9J zone1 J9K J9Z zone3 K0A K0J zone2 K0K K0Z zone2 K1A K9Z zone1 L0A L3Q zone2 L3R L4C zone2 L4D L4I zone2 L4J L4O zone2 L4P L4S zone2 L4T L5Z zone2 L6A L6G zone2 L6H L6Z zone2 L7A L9Z zone2 M0A M0Z zone2 M1A M9Z zone2 N0A N0A zone2 N0B N0B zone2 N0C N0F zone3 N0G N0G zone2 N0H N0Z zone3 N1A N9Z zone2 P0A P0S zone5 P0T P0Z zone6 P1A P1G zone4 P1H P2Z zone5 P3A P3K zone4 P3L P4M zone5 P4N P4Z zone6 P5A P5Z zone5 P6A P9Z zone6 R0A R0A zone5 R0B R0B zone6 R0C R0Z zone5 R1A R6W zone5 R6X R7M zone5 R7N R9Z zone6 S0A S3M zone6 S3N S3N zone5 S3O S4G zone6 S4H S4Z zone5 S5A S6G zone6 S6H S6J zone5 S6K S6U zone6 S6V S7Z zone5 S8A S9U zone6 S9V S9V zone6 S9W S9Z zone6 T0A T0I zone6 T0J T0K zone6 T0L T0M zone5 T0N T0Z zone6 T1A T1Z zone5 T2A T2X zone5 T2Y T2Y zone5 T2Z T3L zone5 T3M T3M zone5 T3N T3O zone5 T3P T3P zone5 T3Q T3Y zone5 T3Z T6Z zone5 T7A T7Z zone6 T8A T8D zone5 T8E T8G zone6 T8H T8U zone5 T8V T8Z zone6 T9A T9F zone5 T9G T9G zone6 T9H T9R zone6 T9S T9U zone6 T9V T9V zone5 T9W T9Z zone6 V0A V0B zone6 V0C V0C zone6 V0D V0H zone6 V0I V0M zone6 V0N V0N zone6 V0O V0Z zone6 V1A V1C zone6 V1D V1J zone6 V1K V1R zone6 V1S V2O zone6 V2P V4S zone6 V4T V4V zone6 V4W V7Z zone6 V8A V8F zone6 V8G V8J zone6 V8K V9Z zone6 X0A Y9Z zone6 不需要代码,直接将结果数据输出

发现yaw的值在一定时间后会被锁死(oled屏幕上数字不发生改变),查找原因,查找原因修正 empty.c #include <math.h> // 添加数学库用于fabs函数 #include "board.h" #include "my_key.h" #include "my_time.h" #include "ti_msp_dl_config.h" #include "oled.h" void BUZZY_OFF(void) { DL_GPIO_setPins(BUZZY_PORT, BUZZY_PIN_PIN); } void BUZZY_ON(void) { DL_GPIO_clearPins(BUZZY_PORT, BUZZY_PIN_PIN); } void refresh_oled(void); void key(void); void go_straight(int dis); void go_arc_ccd(hsu_time_t); void go_brc_ccd(hsu_time_t); void turn_in_place(float angle); void sound_light_alert(void); void show_task_now(void); u8 Car_Mode = Diff_Car; int Motor_Left, Motor_Right; // 电机PWM变量 应是Motor的 u8 PID_Send; // 延时和调参相关变量 float RC_Velocity = 200, RC_Turn_Velocity, Move_X, Move_Y, Move_Z, PS2_ON_Flag; // 遥控控制的速度 float Velocity_Left, Velocity_Right; // 车轮速度(mm/s) u16 test_num, show_cnt; float Voltage = 0; extern float Yaw; // 声明外部YAW角度变量 int64_t left_encoder = 0, right_encoder = 0; void SysTick_Handler(void) { hsu_time_systick_handler(); } typedef enum { BEGIN, T1, T2, T3, T4 } TaskState; typedef enum { STOP, GO_STRAIGHT, GO_CCD, TURN_IN_PLACE, WAIT_ALERT } DoingWhat; typedef struct __TASK_NAMESPACE { uint8_t is; uint8_t is_running; uint8_t finish; uint8_t sub_finish; uint8_t running_state; // 0: 停止, 1: 运行中 TaskState state; DoingWhat doing_what; float target; float vx; float vz; // 用于复杂任务 uint8_t sub_task_stage; // 子任务阶段 uint8_t lap_count; // 圈数计数 int64_t start_encoder; // 起始编码器值 uint32_t alert_start_time; // 声光提示开始时间 float start_yaw; // 起始YAW角度 float target_yaw_diff; // 目标YAW角度差 hsu_time_t ccd_end_time; } TaskNamespace; void reset_task_namespace(TaskNamespace *t) { t->is_running = 0; t->finish = 0; t->sub_finish = 0; t->state = BEGIN; t->doing_what = STOP; t->vx = 0; t->vz = 0; t->sub_task_stage = 0; t->lap_count = 0; t->start_encoder = left_encoder; t->alert_start_time = 0; t->start_yaw = 0; t->target_yaw_diff = 0; t->running_state = 0; // 明确重置运行状态为0 t->ccd_end_time = 0; t->is = 0; } void next_state(TaskNamespace *t) { TaskState last_state = t->state; reset_task_namespace(t); if (last_state < T4) { t->state = last_state + 1; } } TaskNamespace task_namespace; void show_task_now(void) { //OLED_ShowString(0, 0, "Task Now:"); switch (task_namespace.state) { case BEGIN: OLED_ShowString(1, 10,"0"); break; case T1: OLED_ShowString(1, 10,"1"); break; case T2: OLED_ShowString(1, 10,"2"); break; case T3: OLED_ShowString(1, 10,"3"); break; case T4: OLED_ShowString(1, 10,"4"); break; default: break; } } void main_task(void); int main(void) { // 系统初始化 SYSCFG_DL_init(); // 初始化系统配置 hsu_time_init(); // 时间 // 清除所有外设的中断挂起状态 NVIC_ClearPendingIRQ(ENCODERA_INT_IRQN); // 编码器A中断 NVIC_ClearPendingIRQ(ENCODERB_INT_IRQN); // 编码器B中断 NVIC_ClearPendingIRQ(UART_0_INST_INT_IRQN); // UART0串口中断 // 使能各外设的中断 NVIC_EnableIRQ(ENCODERA_INT_IRQN); // 开启编码器A中断 NVIC_EnableIRQ(ENCODERB_INT_IRQN); // 开启编码器B中断 NVIC_EnableIRQ(UART_0_INST_INT_IRQN); // 开启UART0中断 reset_task_namespace(&task_namespace); task_namespace.state = BEGIN; // 明确设置初始状态 // 定时器和ADC相关中断配置 NVIC_ClearPendingIRQ(TIMER_0_INST_INT_IRQN); // 清除定时器0中断挂起 NVIC_EnableIRQ(TIMER_0_INST_INT_IRQN); // 开启定时器0中断 NVIC_EnableIRQ(ADC12_VOLTAGE_INST_INT_IRQN); NVIC_EnableIRQ(ADC12_CCD_INST_INT_IRQN); OLED_Init(); // 初始化OLED显示屏 OLED_ShowString(1, 1, "Task Now:"); OLED_ShowString(2, 1, "state:"); OLED_ShowString(3, 1, "yaw:"); MPU6050_initialize(); DMP_Init(); BUZZY_ON(); // 主循环 // printf("Test delay 500us\n"); // hsu_time_delay_us(500); // printf("Test delay 500us end\n"); uint8_t main_task_timer = hsu_time_timer_create(10, true, main_task); hsu_time_timer_start(main_task_timer); uint8_t refresh_oled_timer = hsu_time_timer_create(5, true, refresh_oled); hsu_time_timer_start(refresh_oled_timer); uint8_t key_timer = hsu_time_timer_create(2, true, key); hsu_time_timer_start(key_timer); while (1) { hsu_time_timer_process(); RD_TSL(); // 读取CCD数据 Find_CCD_Median(); // 计算CCD数据中值 Read_DMP(); show_task_now(); char yaw_str[10]; // 存储格式化后的字符串 snprintf(yaw_str, sizeof(yaw_str), "%.1f", Yaw); // 格式化为带一位小数的字符串 OLED_ShowString(3, 6, yaw_str); // 在指定位置显示YAW值 //DL_GPIO_togglePins(LED_PORT, LED_led_PIN); // printf("L=%lld R=%lld YAW=%.1f\n", left_encoder, right_encoder, Yaw); } } void task_no(void); void task_1(void); void task_2(void); void task_3(void); void task_4(void); void main_task(void) { if (!(task_namespace.is)) return; printf("main task\n"); switch (task_namespace.state) { case BEGIN: task_no(); break; case T1: task_1(); break; case T2: task_2(); break; case T3: task_3(); break; case T4: task_4(); break; default: break; } switch (task_namespace.doing_what) { case STOP: Get_Target_Encoder(0, 0); break; case GO_STRAIGHT: if ((left_encoder * 1.f) < task_namespace.target) { Get_Target_Encoder(0.3, 0); // 提高速度到300mm/s } else { Get_Target_Encoder(0, 0); task_namespace.doing_what = STOP; task_namespace.finish = 1; } break; case GO_CCD: if (task_namespace.ccd_end_time < hsu_time_get_ms()) { Get_Target_Encoder(0, 0); task_namespace.doing_what = STOP; task_namespace.finish = 1; } else { CCD_Mode(); } break; case TURN_IN_PLACE: // 原地转向控制 if (task_namespace.target_yaw_diff != 0) { float current_yaw_diff = Yaw - task_namespace.start_yaw; // 处理角度跨越±180度的情况 if (current_yaw_diff > 180) { current_yaw_diff -= 360; } else if (current_yaw_diff < -180) { current_yaw_diff += 360; } printf("Turn: Start=%.1f Current=%.1f Diff=%.1f Target=%.1f\n", task_namespace.start_yaw, Yaw, current_yaw_diff, task_namespace.target_yaw_diff); // 检查是否达到目标角度 if ((task_namespace.target_yaw_diff > 0 && current_yaw_diff >= task_namespace.target_yaw_diff) || (task_namespace.target_yaw_diff < 0 && current_yaw_diff <= task_namespace.target_yaw_diff)) { Get_Target_Encoder(0, 0); // 停止转向 task_namespace.doing_what = STOP; task_namespace.finish = 1; } else { // 继续转向 float turn_speed = (task_namespace.target_yaw_diff > 0) ? 0.1 : -0.1; Get_Target_Encoder(0, turn_speed); } } break; case WAIT_ALERT: Get_Target_Encoder(0, 0); // 停车 if (hsu_time_get_ms() - task_namespace.alert_start_time > 1000) { // 声光提示1秒 task_namespace.doing_what = STOP; task_namespace.finish = 1; } break; default: break; } } void task_no(void) { return; } // 任务1:A点到B点直线行驶 void task_1(void) { if (!task_namespace.is_running) { task_namespace.is_running = 1; task_namespace.sub_task_stage = 0; task_namespace.finish = 1; return; } if (task_namespace.finish) { switch (task_namespace.sub_task_stage) { case 0: // 开始第一阶段:A到B go_straight(300); break; case 1: // A到B完成,开始B到C DL_GPIO_togglePins(LED_PORT, LED_led_PIN); break; case 2: //任务结束 reset_task_namespace(&task_namespace); task_namespace.running_state = 0; // 重置为停止状态 break; } task_namespace.finish = 0; task_namespace.sub_task_stage++; } return; } // 任务2:A->B->C->D->A循环 void task_2(void) { if (!task_namespace.is_running) { task_namespace.is_running = 1; task_namespace.sub_task_stage = 0; task_namespace.finish = 1; return; } if (task_namespace.finish) { switch (task_namespace.sub_task_stage) { case 0: // 开始第一阶段:A到B go_straight(3300); break; case 1: //DL_GPIO_togglePins(LED_PORT, LED_led_PIN); go_straight(2000); break; case 2: // B到C弧线完成,开始C到D直线 sound_light_alert(); //turn_in_place(-17.0f); go_straight(2980); break; case 3: // C到D完成,开始D到A弧线 sound_light_alert(); go_arc_ccd(3530); break; case 4: // D到A弧线完成,任务结束 sound_light_alert(); reset_task_namespace(&task_namespace); break; } task_namespace.finish = 0; task_namespace.sub_task_stage++; } return; } // 任务3:A->C->B->D->A循环 void task_3(void) { if (!task_namespace.is_running) { task_namespace.is_running = 1; task_namespace.sub_task_stage = 0; task_namespace.finish = 1; return; } if (task_namespace.finish) { switch (task_namespace.sub_task_stage) { case 0: turn_in_place(-31.0f); break; case 1: go_straight(4060); break; case 2: turn_in_place(30.0f); break; case 3: // 开始C到B弧线 sound_light_alert(); //go_straight(40); go_brc_ccd(3550); break; case 4: turn_in_place(36.0f); break; case 5: sound_light_alert(); go_straight(3985); break; case 6: turn_in_place(-40.0f); break; case 7: // 开始C到B弧线 sound_light_alert(); go_arc_ccd(3600); break; case 8: // D到A弧线完成,任务结束 sound_light_alert(); reset_task_namespace(&task_namespace); break; } task_namespace.finish = 0; task_namespace.sub_task_stage++; } return; } // 任务4:重复任务3路径4圈 void task_4(void) { if (!task_namespace.is_running) { task_namespace.is_running = 1; task_namespace.sub_task_stage = 0; task_namespace.finish = 1; return; } if (task_namespace.finish) { switch (task_namespace.sub_task_stage) { case 0: turn_in_place(-30.0f); break; case 1: go_straight(4045); break; case 2: turn_in_place(29.0f); break; case 3: // 开始C到B弧线 sound_light_alert(); //go_straight(40); go_brc_ccd(5000); break; case 4: turn_in_place(34.0f); break; case 5: sound_light_alert(); go_straight(4035); break; case 6: turn_in_place(-33.0f); break; case 7: // 开始C到B弧线 sound_light_alert(); go_arc_ccd(5000); break; case 8: // D到A弧线完成,任务结束 sound_light_alert(); reset_task_namespace(&task_namespace); break; } task_namespace.finish = 0; task_namespace.sub_task_stage++; } } void TIMER_0_INST_IRQHandler(void) { if (DL_TimerA_getPendingInterrupt(TIMER_0_INST)) { if (DL_TIMER_IIDX_ZERO) { Get_Velocity_From_Encoder(Get_Encoder_countA, Get_Encoder_countB); Get_Encoder_countA = Get_Encoder_countB = 0; MotorA.Motor_Pwm = Incremental_PI_Left(MotorA.Current_Encoder, MotorA.Target_Encoder); MotorB.Motor_Pwm = Incremental_PI_Right(MotorB.Current_Encoder, MotorB.Target_Encoder); if (!Flag_Stop) { Set_PWM(-MotorA.Motor_Pwm, -MotorB.Motor_Pwm); } else { Set_PWM(0, 0); } } } } uint32_t gpio_interrup1, gpio_interrup2; int64_t B1, B2, B3, B4; int64_t A1, A2, A3, A4; void GROUP1_IRQHandler(void) { // 获取中断信号 gpio_interrup1 = DL_GPIO_getEnabledInterruptStatus(ENCODERA_PORT, ENCODERA_E1A_PIN | ENCODERA_E1B_PIN); gpio_interrup2 = DL_GPIO_getEnabledInterruptStatus(ENCODERB_PORT, ENCODERB_E2A_PIN | ENCODERB_E2B_PIN); // encoderB if ((gpio_interrup1 & ENCODERA_E1A_PIN) == ENCODERA_E1A_PIN) { if (!DL_GPIO_readPins(ENCODERA_PORT, ENCODERA_E1B_PIN)) { right_encoder--; Get_Encoder_countB--; } else { right_encoder++; Get_Encoder_countB++; } } else if ((gpio_interrup1 & ENCODERA_E1B_PIN) == ENCODERA_E1B_PIN) { if (!DL_GPIO_readPins(ENCODERA_PORT, ENCODERA_E1A_PIN)) { right_encoder++; Get_Encoder_countB++; } else { right_encoder--; Get_Encoder_countB--; } } // encoderA if ((gpio_interrup2 & ENCODERB_E2A_PIN) == ENCODERB_E2A_PIN) { if (!DL_GPIO_readPins(ENCODERB_PORT, ENCODERB_E2B_PIN)) { left_encoder++; Get_Encoder_countA--; } else { left_encoder--; Get_Encoder_countA++; } } else if ((gpio_interrup2 & ENCODERB_E2B_PIN) == ENCODERB_E2B_PIN) { if (!DL_GPIO_readPins(ENCODERB_PORT, ENCODERB_E2A_PIN)) { left_encoder--; Get_Encoder_countA++; } else { left_encoder++; Get_Encoder_countA--; } } DL_GPIO_clearInterruptStatus(ENCODERA_PORT, ENCODERA_E1A_PIN | ENCODERA_E1B_PIN); DL_GPIO_clearInterruptStatus(ENCODERB_PORT, ENCODERB_E2A_PIN | ENCODERB_E2B_PIN); } // 直线行驶函数 void go_straight(int dis) { task_namespace.doing_what = GO_STRAIGHT; task_namespace.target = left_encoder + dis; task_namespace.finish = 0; } // 原地转向函数 void turn_in_place(float angle) { task_namespace.doing_what = TURN_IN_PLACE; task_namespace.start_yaw = Yaw; task_namespace.target_yaw_diff = angle; // 正值右转,负值左转 task_namespace.finish = 0; } // CCD巡线函数(需要外部条件结束) void go_ccd_line(void) { task_namespace.doing_what = GO_CCD; task_namespace.start_encoder = left_encoder; task_namespace.finish = 0; // 设置一个安全的最大距离,防止无限巡线 // 可以根据实际场地调整这个值 static uint32_t ccd_end_time = 0; if (ccd_end_time == 0) { ccd_end_time = hsu_time_get_ms(); } // 如果巡线时间超过10秒或距离超过2000mm,强制结束 if (hsu_time_get_ms() - ccd_end_time > 10000 || (left_encoder * 1.f - task_namespace.start_encoder) > 2000) { task_namespace.finish = 1; ccd_end_time = 0; } } // 弧线CCD巡线函数 void go_arc_ccd(hsu_time_t time) { task_namespace.doing_what = GO_CCD; task_namespace.start_encoder = left_encoder; task_namespace.ccd_end_time = hsu_time_get_ms() + time; } void go_brc_ccd(hsu_time_t time) { task_namespace.doing_what = GO_CCD; task_namespace.start_encoder = right_encoder; task_namespace.ccd_end_time = hsu_time_get_ms() + time; } // 声光提示函数 void sound_light_alert(void) { DL_GPIO_togglePins(LED_PORT, LED_led_PIN); DL_GPIO_setPins(BUZZY_PORT, BUZZY_PIN_PIN); uint32_t start_time = hsu_time_get_ms(); while (hsu_time_get_ms() - start_time < 1000) { // 空循环等待1秒 } //hsu_time_delay_ms(200); DL_GPIO_togglePins(LED_PORT, LED_led_PIN); DL_GPIO_clearPins(BUZZY_PORT, BUZZY_PIN_PIN); } // callback void refresh_oled(void) { show_task_now(); OLED_ShowString(2, 1, "state:"); if (task_namespace.running_state) { OLED_ShowString(2, 7, "1"); // 运行中 } else { OLED_ShowString(2, 7, "0"); // 停止 } } uint32_t key_get_tick_ms(void) { return hsu_time_get_ms(); } void key(void) { key_event_t event = key_scan(); //uint8_t key_value = key_read_pin(); // 获取按键状态 //S1 switch (event) { case KEY_EVENT_SINGLE_CLICK: next_state(&task_namespace); break; case KEY_EVENT_DOUBLE_CLICK: task_namespace.is = 1; task_namespace.running_state = 1; task_namespace.is_running = 0; // 重置任务运行标志 break; } } MPU6050.c #include "MPU6050.h" #include <stdio.h> #include "inv_mpu.h" // #include "IOI2C.h" // #include "usart.h" #define PRINT_ACCEL (0x01) #define PRINT_GYRO (0x02) #define PRINT_QUAT (0x04) #define ACCEL_ON (0x01) #define GYRO_ON (0x02) #define MOTION (0) #define NO_MOTION (1) #define DEFAULT_MPU_HZ (200) #define FLASH_SIZE (512) #define FLASH_MEM_START ((void *)0x1800) #define q30 1073741824.0f short gyro[3], accel[3], sensors; float Roll, Pitch, Yaw; float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f; static signed char gyro_orientation[9] = {-1, 0, 0, 0, -1, 0, 0, 0, 1}; Imu_t mpu6050 = {0}; Imu_t RegOri_mpu6050 = {0}; // iic转接 #include "bsp_siic.h" static pIICInterface_t siic = &User_sIICDev; uint8_t IICwriteBits(uint8_t addr, uint8_t reg, uint8_t bitStart, uint8_t length, uint8_t data) { uint8_t b; if (siic->read_reg(addr << 1, reg, &b, 1, 200) == IIC_OK) { uint8_t mask = (0xFF << (bitStart + 1)) | (0xFF >> ((8 - bitStart) + length - 1)); data <<= (8 - length); data >>= (7 - bitStart); b &= mask; b |= data; return siic->write_reg(addr << 1, reg, &b, 1, 200); } return 1; } uint8_t IICwriteBit(uint8_t dev, uint8_t reg, uint8_t bitNum, uint8_t data) { uint8_t b; siic->read_reg(dev << 1, reg, &b, 1, 200); b = (data != 0) ? (b | (1 << bitNum)) : (b & ~(1 << bitNum)); return siic->write_reg(dev << 1, reg, &b, 1, 200); } uint8_t IICreadBytes(uint8_t dev, uint8_t reg, uint8_t length, uint8_t *data) { return siic->read_reg(dev << 1, reg, data, length, 200); } int i2cRead(uint8_t addr, uint8_t reg, uint8_t len, uint8_t *buf) { return siic->read_reg(addr << 1, reg, buf, len, 200); } unsigned char I2C_ReadOneByte(unsigned char I2C_Addr, unsigned char addr) { uint8_t b = 0; siic->read_reg(I2C_Addr << 1, addr, &b, 1, 200); return b; } static unsigned short inv_row_2_scale(const signed char *row) { unsigned short b; if (row[0] > 0) b = 0; else if (row[0] < 0) b = 4; else if (row[1] > 0) b = 1; else if (row[1] < 0) b = 5; else if (row[2] > 0) b = 2; else if (row[2] < 0) b = 6; else b = 7; // error return b; } static unsigned short inv_orientation_matrix_to_scalar(const signed char *mtx) { unsigned short scalar; scalar = inv_row_2_scale(mtx); scalar |= inv_row_2_scale(mtx + 3) << 3; scalar |= inv_row_2_scale(mtx + 6) << 6; return scalar; } static void run_self_test(void) { int result; long gyro[3], accel[3]; result = mpu_run_self_test(gyro, accel); if (result == 0x7) { /* Test passed. We can trust the gyro data here, so let's push it down * to the DMP. */ float sens; unsigned short accel_sens; mpu_get_gyro_sens(&sens); gyro[0] = (long)(gyro[0] * sens); gyro[1] = (long)(gyro[1] * sens); gyro[2] = (long)(gyro[2] * sens); dmp_set_gyro_bias(gyro); mpu_get_accel_sens(&accel_sens); accel[0] *= accel_sens; accel[1] *= accel_sens; accel[2] *= accel_sens; dmp_set_accel_bias(accel); // printf("setting bias succesfully ......\r\n"); } } uint8_t buffer[14]; int16_t MPU6050_FIFO[6][11]; int16_t Gx_offset = 0, Gy_offset = 0, Gz_offset = 0; /************************************************************************** Function: The new ADC data is updated to FIFO array for filtering Input : ax,ay,az:x,y, z-axis acceleration data;gx,gy,gz:x. Y, z-axis angular acceleration data Output : none 函数功能:将新的ADC数据更新到 FIFO数组,进行滤波处理 入口参数:ax,ay,az:x,y,z轴加速度数据;gx,gy,gz:x,y,z轴角加速度数据 返回 值:无 **************************************************************************/ void MPU6050_newValues(int16_t ax, int16_t ay, int16_t az, int16_t gx, int16_t gy, int16_t gz) { unsigned char i; int32_t sum = 0; for (i = 1; i < 10; i++) { // FIFO 操作 MPU6050_FIFO[0][i - 1] = MPU6050_FIFO[0][i]; MPU6050_FIFO[1][i - 1] = MPU6050_FIFO[1][i]; MPU6050_FIFO[2][i - 1] = MPU6050_FIFO[2][i]; MPU6050_FIFO[3][i - 1] = MPU6050_FIFO[3][i]; MPU6050_FIFO[4][i - 1] = MPU6050_FIFO[4][i]; MPU6050_FIFO[5][i - 1] = MPU6050_FIFO[5][i]; } MPU6050_FIFO[0][9] = ax; // 将新的数据放置到 数据的最后面 MPU6050_FIFO[1][9] = ay; MPU6050_FIFO[2][9] = az; MPU6050_FIFO[3][9] = gx; MPU6050_FIFO[4][9] = gy; MPU6050_FIFO[5][9] = gz; sum = 0; for (i = 0; i < 10; i++) { // 求当前数组的合,再取平均值 sum += MPU6050_FIFO[0][i]; } MPU6050_FIFO[0][10] = sum / 10; sum = 0; for (i = 0; i < 10; i++) { sum += MPU6050_FIFO[1][i]; } MPU6050_FIFO[1][10] = sum / 10; sum = 0; for (i = 0; i < 10; i++) { sum += MPU6050_FIFO[2][i]; } MPU6050_FIFO[2][10] = sum / 10; sum = 0; for (i = 0; i < 10; i++) { sum += MPU6050_FIFO[3][i]; } MPU6050_FIFO[3][10] = sum / 10; sum = 0; for (i = 0; i < 10; i++) { sum += MPU6050_FIFO[4][i]; } MPU6050_FIFO[4][10] = sum / 10; sum = 0; for (i = 0; i < 10; i++) { sum += MPU6050_FIFO[5][i]; } MPU6050_FIFO[5][10] = sum / 10; } /************************************************************************** Function: Setting the clock source of mpu6050 Input : source:Clock source number Output : none 函数功能:设置 MPU6050 的时钟源 入口参数:source:时钟源编号 返回 值:无 * CLK_SEL | Clock Source * --------+-------------------------------------- * 0 | Internal oscillator * 1 | PLL with X Gyro reference * 2 | PLL with Y Gyro reference * 3 | PLL with Z Gyro reference * 4 | PLL with external 32.768kHz reference * 5 | PLL with external 19.2MHz reference * 6 | Reserved * 7 | Stops the clock and keeps the timing generator in reset **************************************************************************/ void MPU6050_setClockSource(uint8_t source) { IICwriteBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source); } /** Set full-scale gyroscope range. * @param range New full-scale gyroscope range value * @see getFullScaleRange() * @see MPU6050_GYRO_FS_250 * @see MPU6050_RA_GYRO_CONFIG * @see MPU6050_GCONFIG_FS_SEL_BIT * @see MPU6050_GCONFIG_FS_SEL_LENGTH */ void MPU6050_setFullScaleGyroRange(uint8_t range) { IICwriteBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range); } /************************************************************************** Function: Setting the maximum range of mpu6050 accelerometer Input : range:Acceleration maximum range number Output : none 函数功能:设置 MPU6050 加速度计的最大量程 入口参数:range:加速度最大量程编号 返回 值:无 **************************************************************************/ // #define MPU6050_ACCEL_FS_2 0x00 //===最大量程+-2G // #define MPU6050_ACCEL_FS_4 0x01 //===最大量程+-4G // #define MPU6050_ACCEL_FS_8 0x02 //===最大量程+-8G // #define MPU6050_ACCEL_FS_16 0x03 //===最大量程+-16G void MPU6050_setFullScaleAccelRange(uint8_t range) { IICwriteBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range); } /************************************************************************** Function: Set mpu6050 to sleep mode or not Input : enable:1,sleep;0,work; Output : none 函数功能:设置 MPU6050 是否进入睡眠模式 入口参数:enable:1,睡觉;0,工作; 返回 值:无 **************************************************************************/ void MPU6050_setSleepEnabled(uint8_t enabled) { IICwriteBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled); } /************************************************************************** Function: Read identity Input : none Output : 0x68 函数功能:读取 MPU6050 WHO_AM_I 标识 入口参数:无 返回 值:0x68 **************************************************************************/ uint8_t MPU6050_getDeviceID(void) { IICreadBytes(devAddr, MPU6050_RA_WHO_AM_I, 1, buffer); return buffer[0]; } /************************************************************************** Function: Check whether mpu6050 is connected Input : none Output : 1:Connected;0:Not connected 函数功能:检测MPU6050 是否已经连接 入口参数:无 返回 值:1:已连接;0:未连接 **************************************************************************/ uint8_t MPU6050_testConnection(void) { if (MPU6050_getDeviceID() == 0x68) // 0b01101000; return 1; else return 0; } /************************************************************************** Function: Setting whether mpu6050 is the host of aux I2C cable Input : enable:1,yes;0;not Output : none 函数功能:设置 MPU6050 是否为AUX I2C线的主机 入口参数:enable:1,是;0:否 返回 值:无 **************************************************************************/ void MPU6050_setI2CMasterModeEnabled(uint8_t enabled) { IICwriteBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled); } /************************************************************************** Function: Setting whether mpu6050 is the host of aux I2C cable Input : enable:1,yes;0;not Output : none 函数功能:设置 MPU6050 是否为AUX I2C线的主机 入口参数:enable:1,是;0:否 返回 值:无 **************************************************************************/ void MPU6050_setI2CBypassEnabled(uint8_t enabled) { IICwriteBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled); } /************************************************************************** Function: initialization Mpu6050 to enter the available state Input : none Output : none 函数功能:初始化 MPU6050 以进入可用状态 入口参数:无 返回 值:无 **************************************************************************/ void MPU6050_initialize(void) { // 未识别陀螺仪,复位 if (MPU6050_getDeviceID() != 0x68) DL_SYSCTL_resetDevice(DL_SYSCTL_RESET_POR); MPU6050_setClockSource(MPU6050_CLOCK_PLL_YGYRO); // 设置时钟 MPU6050_setFullScaleGyroRange(MPU6050_GYRO_FS_2000); // 陀螺仪量程设置 MPU6050_setFullScaleAccelRange(MPU6050_ACCEL_FS_2); // 加速度度最大量程 +-2G MPU6050_setSleepEnabled(0); // 进入工作状态 MPU6050_setI2CMasterModeEnabled(0); // 不让MPU6050 控制AUXI2C MPU6050_setI2CBypassEnabled(0); // 主控制器的I2C与 MPU6050的AUXI2C 直通关闭 } /************************************************************************** Function: Initialization of DMP in mpu6050 Input : none Output : none 函数功能:MPU6050内置DMP的初始化 入口参数:无 返回 值:无 **************************************************************************/ void DMP_Init(void) { uint8_t resetflag = 0; uint8_t temp[1] = {0}; i2cRead(0x68, 0x75, 1, temp); printf("mpu_set_sensor complete ......\r\n"); if (temp[0] != 0x68) DL_SYSCTL_resetDevice(DL_SYSCTL_RESET_POR); if (!mpu_init()) { if (!mpu_set_sensors(INV_XYZ_GYRO | INV_XYZ_ACCEL)) printf("mpu_set_sensor complete ......\r\n"); else resetflag = 1; if (!mpu_configure_fifo(INV_XYZ_GYRO | INV_XYZ_ACCEL)) printf("mpu_configure_fifo complete ......\r\n"); else resetflag = 1; if (!mpu_set_sample_rate(DEFAULT_MPU_HZ)) printf("mpu_set_sample_rate complete ......\r\n"); else resetflag = 1; if (!dmp_load_motion_driver_firmware()) printf("dmp_load_motion_driver_firmware complete ......\r\n"); else resetflag = 1; if (!dmp_set_orientation(inv_orientation_matrix_to_scalar(gyro_orientation))) printf("dmp_set_orientation complete ......\r\n"); else resetflag = 1; if (!dmp_enable_feature(DMP_FEATURE_6X_LP_QUAT | DMP_FEATURE_TAP | DMP_FEATURE_ANDROID_ORIENT | DMP_FEATURE_SEND_RAW_ACCEL | DMP_FEATURE_SEND_CAL_GYRO | DMP_FEATURE_GYRO_CAL)) printf("dmp_enable_feature complete ......\r\n"); else resetflag = 1; if (!dmp_set_fifo_rate(DEFAULT_MPU_HZ)) printf("dmp_set_fifo_rate complete ......\r\n"); else resetflag = 1; run_self_test(); if (!mpu_set_dmp_state(1)) printf("mpu_set_dmp_state complete ......\r\n"); } else { DL_SYSCTL_resetDevice(DL_SYSCTL_RESET_POR); } if (resetflag) { mpu6050_i2c_sda_unlock(); DL_SYSCTL_resetDevice(DL_SYSCTL_RESET_POR); } } /************************************************************************** Function: Read the attitude information of DMP in mpu6050 Input : none Output : none 函数功能:读取MPU6050内置DMP的姿态信息 入口参数:无 返回 值:无 **************************************************************************/ void Read_DMP(void) { unsigned long sensor_timestamp; unsigned char more; long quat[4]; dmp_read_fifo(gyro, accel, quat, &sensor_timestamp, &sensors, &more); // 读取DMP数据 if (sensors & INV_WXYZ_QUAT) { q0 = quat[0] / q30; q1 = quat[1] / q30; q2 = quat[2] / q30; q3 = quat[3] / q30; // 四元数 Roll = asin(-2 * q1 * q3 + 2 * q0 * q2) * 57.3; // 计算出横滚角 Pitch = atan2(2 * q2 * q3 + 2 * q0 * q1, -2 * q1 * q1 - 2 * q2 * q2 + 1) * 57.3; // 计算出俯仰角 Yaw = atan2(2 * (q1 * q2 + q0 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) * 57.3; // 计算出偏航角 } } /************************************************************************** Function: Read mpu6050 built-in temperature sensor data Input : none Output : Centigrade temperature 函数功能:读取MPU6050内置温度传感器数据 入口参数:无 返回 值:摄氏温度 **************************************************************************/ int Read_Temperature(void) { float Temp; Temp = (I2C_ReadOneByte(devAddr, MPU6050_RA_TEMP_OUT_H) << 8) + I2C_ReadOneByte(devAddr, MPU6050_RA_TEMP_OUT_L); if (Temp > 32768) Temp -= 65536; // 数据类型转换 Temp = (36.53 + Temp / 340) * 10; // 温度放大十倍存放 return (int)Temp; } //------------------End of File----------------------------

时间限制: 1.0 秒 空间限制: 512 MiB 相关文件: 题目目录 题目背景 传说每当月光遍布西西艾弗岛,总有一道身影默默守护着居民们的美梦。 题目描述 梦境中的西西艾弗岛由 n + 1 n+1 个区域组成。梦境巡查员顿顿每天都会从梦之源( 0 0 号区域)出发,顺次巡查 1 , 2 , ⋯ , n 1,2,⋯,n 号区域,最后从 n n 号区域返回梦之源。 在梦境中穿梭需要消耗美梦能量: 从梦之源出发时,顿顿会携带若干初始能量; 从第 i i 号区域前往下一区域( 0 ≤ i ≤ n 0≤i≤n)需要消耗 a i a i ​ 单位能量,因此从第 i i 号区域出发时,顿顿剩余的美梦能量需要大于或等于 a i a i ​ 单位; 顺利到达第 i i 号区域( 1 ≤ i ≤ n 1≤i≤n)后,顿顿可以从当地居民的美梦中汲取 b i b i ​ 单位能量作为补给。 假设顿顿初始携带 w w 单位美梦能量,那么首先需要保证 w ≥ a 0 w≥a 0 ​ ,这样顿顿便可消耗 a 0 a 0 ​ 能量穿梭到 1 1 号区域、进而获得 b 1 b 1 ​ 单位能量补给。巡查 1 1 号区域后,顿顿剩余能量为 w − a 0 + b 1 w−a 0 ​ +b 1 ​ ,如果该数值大于或等于 a 1 a 1 ​ ,顿顿便可继续前往 2 2 号区域。依此类推,直至最后消耗 a n a n ​ 单位能量从 n n 号区域返回梦之源,便算是顺利完成整个巡查。西西艾弗岛,又迎来安宁的一夜,可喜可贺! img 作为一个成熟的梦境巡查员,顿顿已经知晓初始需要携带多少能量可以保证顺利完成巡查。但在一些意外状况下,比如学生们受期末季的困扰而无法安眠,顿顿可能在某些区域无法采集足够的美梦能量。此时,便需要增加初始携带量以备万全。 具体来说,考虑一个简单的情况:在 1 1 到 n n 号区域中,有且仅有一个区域发生意外,顿顿无法从该区域获得能量补给。 如果第 i i 号区域( 1 ≤ i ≤ n 1≤i≤n)发生意外(即 b i b i ​ 变为 0 0),则此时为顺利完成巡查,顿顿从梦之源出发所携带的最少初始能量记作 w ( i ) w(i)。 试帮助顿顿计算 w ( 1 ) , w ( 2 ) , ⋯ , w ( n ) w(1),w(2),⋯,w(n) 的值。 输入格式 从标准输入读入数据。 输入共三行。 输入的第一行包含一个整数 n n。 输入的第二行包含 n + 1 n+1 个整数 a 0 , a 1 , a 2 , ⋯ , a n a 0 ​ ,a 1 ​ ,a 2 ​ ,⋯,a n ​ 。 输入的第三行包含 n n 个整数 b 1 , b 2 , ⋯ , b n b 1 ​ ,b 2 ​ ,⋯,b n ​ 。 输出格式 输出到标准输出。 输出仅一行,包含空格分隔的 n n 个整数 w ( 1 ) , w ( 2 ) , ⋯ , w ( n ) w(1),w(2),⋯,w(n)。 样例1输入 3 5 5 5 5 0 100 0 样例1输出 10 20 10 样例1解释 1 1 和 3 3 号区域本身便没有补给,需要携带 10 10 单位初始能量抵达 2 2 号区域,获得 2 2 号区域的大量补给后便可顺利完成巡查; 2 2 号区域发生意外,则全程没有补给,初始需携带 20 20 单位能量。 样例2输入 3 9 4 6 2 9 4 6 样例2输出 15 10 9 子任务 80 80 的测试数据保证 0 < n ≤ 1000 0<n≤1000; 全部测试数据保证 0 < n ≤ 1 0 5 0<n≤10 5 且 0 ≤ a i , b i ≤ 1000 0≤a i ​ ,b i ​ ≤1000

最新推荐

recommend-type

婚纱摄影公司网络推广人员工作绩效说明.docx

婚纱摄影公司网络推广人员工作绩效说明.docx
recommend-type

VC图像编程全面资料及程序汇总

【标题】:"精通VC图像编程资料全览" 【知识点】: VC即Visual C++,是微软公司推出的一个集成开发环境(IDE),专门用于C++语言的开发。VC图像编程涉及到如何在VC++开发环境中处理和操作图像。在VC图像编程中,开发者通常会使用到Windows API中的GDI(图形设备接口)或GDI+来进行图形绘制,以及DirectX中的Direct2D或DirectDraw进行更高级的图形处理。 1. GDI(图形设备接口): - GDI是Windows操作系统提供的一套应用程序接口,它允许应用程序通过设备无关的方式绘制图形。 - 在VC图像编程中,主要使用CDC类(设备上下文类)来调用GDI函数进行绘制,比如绘制线条、填充颜色、显示文本等。 - CDC类提供了很多函数,比如`MoveTo`、`LineTo`、`Rectangle`、`Ellipse`、`Polygon`等,用于绘制基本的图形。 - 对于图像处理,可以使用`StretchBlt`、`BitBlt`、`TransparentBlt`等函数进行图像的位块传输。 2. GDI+: - GDI+是GDI的后继技术,提供了更丰富的图形处理功能。 - GDI+通过使用`Graphics`类来提供图像的绘制、文本的渲染、图像的处理和颜色管理等功能。 - GDI+引入了对矢量图形、渐变色、复杂的文本格式和坐标空间等更高级的图形处理功能。 - `Image`类是GDI+中用于图像操作的基础类,通过它可以进行图像的加载、保存、旋转、缩放等操作。 3. DirectX: - DirectX是微软推出的一系列API集合,用于在Windows平台上进行高性能多媒体编程。 - DirectX中的Direct2D是用于硬件加速的二维图形API,专门用于UI元素和简单的图形渲染。 - DirectDraw主要用于硬件加速的位图操作,比如全屏游戏开发中的画面渲染。 4. 位图操作: - 在VC图像编程中,位图操作是一个重要的部分。需要了解如何加载、保存和处理位图(BMP)文件。 - 可以使用位图文件格式的解析,来访问位图的像素数据,进行像素级别的图像处理和修改。 5. 高级图像处理技术: - 包括图像滤镜、图像转换、图像压缩和解压缩技术。 - 需要掌握一些图像处理算法,比如卷积、FFT(快速傅里叶变换)、DCT(离散余弦变换)等。 - 了解图像的色彩空间转换,比如RGB到YUV的转换,这在视频处理中非常重要。 6. 图像库的使用: - 除了直接使用API进行图像处理之外,还可以使用开源的图像处理库,如OpenCV。 - OpenCV是一个跨平台的计算机视觉和机器学习软件库,它提供了很多高级的图像处理功能。 【压缩包子文件的文件名称列表】: VC++ 文件名称列表显示为"VC++",这表明文件包中可能包含了Visual C++的项目、源代码文件、动态链接库(DLLs)、编译器设置、链接器设置等。如果要使用这些文件进行VC图像编程,需要确保Visual C++开发环境已经安装并且配置好,同时需要安装好所有依赖的库和工具。 要开始VC图像编程,开发者需要具备C++编程基础,熟悉Windows编程概念,并且对图形学有一定的了解。掌握VC图像编程技巧,对于进行桌面应用程序开发、图像处理软件开发以及游戏开发等都是至关重要的。
recommend-type

Pokemmo响应速度翻倍:多线程处理的高级技巧

# 摘要 多线程处理是提高软件并发性能和响应速度的关键技术,本文从基础概念与优势出发,深入探讨了多线程的实现机制,包括线程模型、调度算法、编程关键技术、线程安全性最佳实践、死锁预防与处理等方面。通
recommend-type

人名列表滚动抽奖

<think>嗯,用户想实现一个滚动抽奖功能,需要前端动画效果和随机选择逻辑。首先,我得考虑前端怎么实现滚动效果。可能用CSS动画或者JavaScript的requestAnimationFrame?比如,使用CSS的@keyframes来控制位移,或者用JS动态更新样式。然后,随机选择算法,可能需要确保公平性,比如用Fisher-Yates洗牌算法,或者用Math.random()来生成随机索引。然后,用户可能需要平滑的滚动动画,比如先快速滚动,然后逐渐减速,最后停在选中的人名上。这可能需要设置定时器,逐步改变位置,或者使用CSS过渡效果。另外,还要考虑性能,避免页面卡顿,可能需要使用硬件加
recommend-type

一站式JSF开发环境:即解压即用JAR包

标题:“jsf开发完整JAR包”所指的知识点: 1. JSF全称JavaServer Faces,是Java EE(现EE4J)规范之一,用于简化Java Web应用中基于组件的用户界面构建。JSF提供了一种模型-视图-控制器(MVC)架构的实现,使得开发者可以将业务逻辑与页面表示分离。 2. “开发完整包”意味着这个JAR包包含了JSF开发所需的所有类库和资源文件。通常来说,一个完整的JSF包会包含核心的JSF库,以及一些可选的扩展库,例如PrimeFaces、RichFaces等,这些扩展库提供了额外的用户界面组件。 3. 在一个项目中使用JSF,开发者无需单独添加每个必要的JAR文件到项目的构建路径中。因为打包成一个完整的JAR包后,所有这些依赖都被整合在一起,极大地方便了开发者的部署工作。 4. “解压之后就可以直接导入工程中使用”表明这个JAR包是一个可执行的归档文件,可能是一个EAR包或者一个可直接部署的Java应用包。解压后,开发者只需将其内容导入到他们的IDE(如Eclipse或IntelliJ IDEA)中,或者将其放置在Web应用服务器的正确目录下,就可以立即进行开发。 描述中所指的知识点: 1. “解压之后就可以直接导入工程中使用”说明这个JAR包是预先配置好的,它可能包含了所有必要的配置文件,例如web.xml、faces-config.xml等,这些文件是JSF项目运行所必需的。 2. 直接使用意味着减少了开发者配置环境和处理依赖的时间,有助于提高开发效率。 标签“jsf jar包”所指的知识点: 1. 标签指明了JAR包的内容是专门针对JSF框架的。因此,这个JAR包包含了JSF规范所定义的API以及可能包含的具体实现,比如Mojarra或MyFaces。 2. “jar包”是一种Java平台的归档文件格式,用于聚合多个文件到一个文件中。在JSF开发中,JAR文件经常被用来打包和分发库或应用程序。 文件名称列表“jsf”所指的知识点: 1. “jsf”文件名可能意味着这是JSF开发的核心库,它应该包含了所有核心的JavaServer Faces类文件以及资源文件。 2. 如果是使用特定版本的JSF,例如“jsf-2.2.jar”,则表明文件内包含了对应版本的JSF实现。这种情况下,开发者必须确认他们所使用的Web服务器或应用程序服务器支持该版本的JSF。 3. 文件名称也可能是“jsf-components.jar”、“jsf-impl.jar”等,表明这个JAR包是JSF的一个子模块或特定功能组件。例如,“jsf-components.jar”可能包含了一系列用于在JSF应用中使用的自定义组件。 4. 对于开发者而言,了解文件名称中所蕴含的信息非常重要,因为这将决定他们需要下载哪些JAR包来满足特定项目的需求。 综合以上信息,开发者在使用JSF进行Java Web应用开发时,会通过一个预先配置好的JAR包来快速地搭建和启动项目。这样做不仅简化了项目初始化的过程,也使得开发者能够更加聚焦于业务逻辑的实现和界面设计,而不必深究底层框架配置的细节。
recommend-type

Pokemmo内存优化揭秘:专家教你如何降低50%资源消耗

# 摘要 本文综述了Pokemmo游戏的内存优化方法,从内存管理基础出发,探讨内存使用效率的影响因素,并介绍了性能监控与分析工具。在内存优化实践技巧章节中,详细讨论了代码层面的优化、数据结构和算法选择对内存效率的影响,并通过案例分析展示了实际的优化过程。针对Pokemmo游戏特点,分析了内存消耗特性并提出了特定优化技术。最后,本文展望了未来内存管理技术的发展方向,以及游戏开发中面临的新挑战,为Pokemmo及类似游戏提供了优化建议。 # 关键字 内存优化;内存管理;性能监控;数据结构;算法效率;游戏开发 参考资源链接:[Pokemmo必备资源包:四种ROM与汉化补丁](https://we
recommend-type

直接访问子路由是吧

<think>我们正在使用Vue2,因此需要参考VueRouterv3的文档(因为Vue2对应VueRouterv3,Vue3对应VueRouterv4)。用户的问题是:如何配置路由以支持直接访问子路由?即,在Vue2中,我们希望直接通过URL访问嵌套的子路由(例如:/parent/child),而不仅仅是先访问父路由再导航到子路由。根据之前的回答和引用,我们已经知道:1.在父路由的配置中,使用`children`数组来定义子路由。2.子路由的`path`不能以斜杠开头(例如:'child'而不是'/child'),这样它就会基于父路由的路径进行拼接。3.在父组件的模板中放置`<router-
recommend-type

C++函数库查询辞典使用指南与功能介绍

标题中提到的“C++函数库查询辞典”指的是一个参考工具书或者是一个软件应用,专门用来查询C++编程语言中提供的标准库中的函数。C++是一种静态类型、编译式、通用编程语言,它支持多种编程范式,包括过程化、面向对象和泛型编程。C++标准库是一组包含函数、类、迭代器和模板的库,它为C++程序员提供标准算法和数据结构。 描述中提供的内容并没有给出实际的知识点,只是重复了标题的内容,并且有一串无关的字符“sdfsdfsdffffffffffffffffff”,因此这部分内容无法提供有价值的信息。 标签“C++ 函数库 查询辞典”强调了该工具的用途,即帮助开发者查询C++的标准库函数。它可能包含每个函数的详细说明、语法、使用方法、参数说明以及示例代码等,是学习和开发过程中不可或缺的参考资源。 文件名称“c++函数库查询辞典.exe”表明这是一个可执行程序。在Windows操作系统中,以“.exe”结尾的文件通常是可执行程序。这意味着用户可以通过双击或者命令行工具来运行这个程序,进而使用其中的查询功能查找C++标准库中各类函数的详细信息。 详细知识点如下: 1. C++标准库的组成: C++标准库由多个组件构成,包括输入输出流(iostream)、算法(algorithm)、容器(container)、迭代器(iterator)、字符串处理(string)、数值计算(numeric)、本地化(locale)等。 2. 输入输出流(iostream)库: 提供输入输出操作的基本功能。使用诸如iostream、fstream、sstream等头文件中的类和对象(如cin, cout, cerr等)来实现基本的输入输出操作。 3. 算法(algorithm)库: 包含对容器进行操作的大量模板函数,如排序(sort)、查找(find)、拷贝(copy)等。 4. 容器(container)库: 提供各种数据结构,如向量(vector)、列表(list)、队列(queue)、映射(map)等。 5. 迭代器(iterator): 迭代器提供了一种方法来访问容器中的元素,同时隐藏了容器的内部结构。 6. 字符串处理(string)库: C++标准库中的字符串类提供了丰富的功能用于处理字符串。 7. 数值计算(numeric)库: 提供数值计算所需的函数和类,比如对复数的支持和数值算法。 8. 本地化(locale)库: 提供本地化相关的功能,比如日期、时间的格式化显示以及字符的本地化比较。 9. 错误处理和异常: C++通过throw、try、catch关键字和标准异常类提供了一套异常处理机制。 10. 智能指针: C++11及其后续版本提供了智能指针(如unique_ptr、shared_ptr、weak_ptr)来自动管理动态分配的内存。 11. lambda表达式: 在C++11中引入,允许临时创建匿名函数对象。 12. C++11新特性: 包括范围for循环、移动语义、类内初始化器、auto类型推导等。 使用C++函数库查询辞典的用户可能需要对C++的基础知识有一定的掌握,例如变量、数据类型、控制结构、函数以及面向对象的概念等。了解C++标准库的结构和内容能够帮助程序员有效地利用库函数进行软件开发,提高编程效率并减少重复造轮子的工作。 总结来说,一个C++函数库查询辞典工具对于C++程序员来说是一个非常有用的资源,它能够提供快速查找标准库函数的能力,帮助程序员更高效地解决问题和进行学习。同时,随着C++标准的不断更新,例如C++11、C++14、C++17和C++20,函数库查询辞典也会不断地更新以包含新的特性,这对于紧跟技术发展的开发者来说尤为重要。
recommend-type

【bat脚本安全最佳实践】:保护你的系统与脚本安全的黄金法则

# 摘要 本文旨在全面阐述BAT脚本的基础知识、安全编写原则、审查与优化方法以及在企业环境中的安全应用。通过深入分析脚本安全基础、常见安全陷阱及脚本的权限管理,文章提出了安全编写的具体实践和预防措施。本文详细介绍了脚本安全审查流程、代码优化、错误处理和安全更新维护策略。在企业应用方面,探讨了企业安全政策制定、脚本审计和版本控制以及外部威胁的防范措施。通过案例分析,总结了脚本
recommend-type

IIC抽电

<think>首先,用户的问题是:“请问IIC电路供电问题”。这看起来是关于IIC(Inter-IntegratedCircuit)总线的电源供应问题。IIC是一种串行通信总线,常用于微控制器和外设之间的通信。从系统级指令:-所有行内数学表达式必须使用$...$格式。-独立公式必须使用$$...$$格式并单独成段。-使用中文回答。-生成相关问题。-回答中引用的段落末尾自然地添加引用标识。-回答结构清晰,帮助用户逐步解决问题。参考提供的引用:-引用[1]提到IIC总线注意事项,包括热插拔问题和电源干扰。-引用[2]是关于IIC原理的代码片段。-引用[3]讨论实时时钟RTC,提到PCF85063A