帮我完成一份用TensorFlow框架实现对梵高画作风格的图像风格迁移算法,给出完整代码包括运行主函数,注意让输入模型结构和预期结构相匹配,要求计算损失,不用全连接层和softmax层,最后输出损失,内容图像、风格图像和风格转换后的结果图像
时间: 2025-01-27 21:14:44 浏览: 43
好的,下面是一个使用TensorFlow框架实现梵高画作风格的图像风格迁移算法的完整代码。这个代码包括输入模型结构、计算损失、输出损失、内容图像、风格图像和风格转换后的结果图像。
```python
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import tensorflow.keras.backend as K
from tensorflow.keras.applications import vgg19
from tensorflow.keras.preprocessing import image
# 加载预训练的VGG19模型,不包括全连接层和softmax层
def load_vgg19_model():
model = vgg19.VGG19(weights='imagenet', include_top=False)
model.trainable = False
return model
# 计算内容损失
def content_loss(content, combination):
return K.sum(K.square(combination - content))
# 计算风格损失
def gram_matrix(x):
features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
gram = K.dot(features, K.transpose(features))
return gram
def style_loss(style, combination):
S = gram_matrix(style)
C = gram_matrix(combination)
channels = 3
size = img_nrows * img_ncols
return K.sum(K.square(S - C)) / (4.0 * (channels ** 2) * (size ** 2))
# 计算总变差损失
def total_variation_loss(x):
a = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, 1:, :img_ncols - 1, :])
b = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, :img_nrows - 1, 1:, :])
return K.sum(K.pow(a + b, 1.25))
# 风格迁移模型
def style_transfer_model(content_image_path, style_image_path, iterations=10, content_weight=0.025, style_weight=1.0, total_variation_weight=1e-4):
# 加载内容图像和风格图像
content_image = image.load_img(content_image_path)
style_image = image.load_img(style_image_path)
img_nrows, img_ncols = content_image.size[1], content_image.size[0]
# 预处理图像
content_image = vgg19.preprocess_input(np.expand_dims(image.img_to_array(content_image), axis=0))
style_image = vgg19.preprocess_input(np.expand_dims(image.img_to_array(style_image), axis=0))
combination_image = K.variable(content_image)
# 加载VGG19模型
model = load_vgg19_model()
# 计算损失
loss = K.variable(0.0)
layer_features = model.get_layer('block5_conv2').output
content_image_features = layer_features
combination_features = layer_features
loss += content_weight * content_loss(content_image_features, combination_features)
feature_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1']
for layer_name in feature_layers:
layer_features = model.get_layer(layer_name).output
style_features = layer_features
combination_features = layer_features
sl = style_loss(style_features, combination_features)
loss += (style_weight / len(feature_layers)) * sl
loss += total_variation_weight * total_variation_loss(combination_image)
# 定义梯度下降优化器
grads = K.gradients(loss, combination_image)[0]
fetch_loss_and_grads = K.function([combination_image], [loss, grads])
# 梯度下降优化
for i in range(iterations):
loss_value, grads_value = fetch_loss_and_grads([combination_image])
combination_image.assign_sub(grads_value * 0.001)
print('Iteration {}: loss {}'.format(i, loss_value))
# 输出结果图像
combination_image = combination_image.numpy()[0]
combination_image = vgg19.deprocess_input(combination_image)
combination_image = np.clip(combination_image, 0, 255).astype('uint8')
plt.imshow(combination_image)
plt.show()
return combination_image
# 运行主函数
if __name__ == '__main__':
content_image_path = 'path/to/content/image.jpg'
style_image_path = 'path/to/style/image.jpg'
style_transfer_model(content_image_path, style_image_path)
```
阅读全文
相关推荐



















