python -m torch.distributed.run --nproc_per_node 2 train1.py W0509 09:01:48.374275 8616 torch\distributed\elastic\multiprocessing\redirects.py:28] NOTE: Redirects are currently not supported in Windows or MacOs. WARNING:__main__: ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** Traceback (most recent call last): File "C:\Users\Administrator\.conda\envs\guojie\lib\runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "C:\Users\Administrator\.conda\envs\guojie\lib\runpy.py", line 87, in _run_code exec(code, run_globals) File "C:\Users\Administrator\.conda\envs\guojie\lib\site-packages\torch\distributed\run.py", line 905, in <module> main() File "C:\Users\Administrator\.conda\envs\guojie\li

时间: 2025-05-09 14:20:54 浏览: 48
<think>好的,我需要帮助用户解决在Windows或MacOS上使用PyTorch分布式训练时遇到的redirects不支持的问题,以及OMP_NUM_THREADS环境变量的警告。首先,我得回想一下PyTorch在不同操作系统上的支持情况。 用户提到使用torch.distributed.run时出现redirects不支持的问题。我记得在Windows和MacOS上,PyTorch的分布式训练可能不如Linux支持完善。redirects通常和进程的标准输入输出重定向有关,可能在Windows/MacOS上确实不被支持,或者需要不同的处理方式。这时候,可能需要用户调整启动命令,避免使用需要重定向的参数,或者寻找替代方法。 然后是OMP_NUM_THREADS的警告。这个环境变量控制OpenMP的线程数,如果没有设置,可能会导致性能问题。用户可能在代码中没有正确设置,或者PyTorch在初始化时自动分配,但给出警告。解决方法应该是在代码中或启动时明确设置这个变量。 接下来,我需要查阅相关文档或社区解答。比如,PyTorch官方文档中关于分布式训练的部分,可能提到在非Linux系统上的限制。此外,redirects的问题可能和启动工具有关,比如使用torch.distributed.launch和torchrun的区别。可能建议用户升级到最新版本的PyTorch,因为torchrun是较新的推荐工具,可能有更好的兼容性。 关于环境变量设置,用户可能在代码开头通过os.environ来设置OMP_NUM_THREADS=1,或者在启动脚本中export这个变量。在Windows下,设置环境变量的方式可能不同,比如使用set命令或者在代码中设置。 另外,用户可能在多卡训练时遇到问题,需要确认是否使用了正确的后端。比如在Windows上,PyTorch支持gloo和mpi后端,而nccl通常只在Linux上支持。可能需要指定后端为gloo。 综合这些点,我应该分步骤给出解决方案:首先处理redirects的问题,建议使用torchrun并检查参数,或者调整启动命令;然后处理OMP_NUM_THREADS警告,指导如何正确设置环境变量;最后可能涉及后端选择和代码调整。同时,引用用户提供的参考信息中的工具,比如nvitop进行监控,但需要判断是否相关。 还需要验证解决方案的可行性,比如在Windows/MacOS上实际测试torchrun是否支持,或者是否有已知的替代方案。如果有社区推荐的解决方法,比如使用特定的参数或环境变量,也应该包含在内。 最后,生成相关问题,可能涉及分布式训练的其他问题,环境变量优化,或者跨平台训练的注意事项。</think>针对在Windows/MacOS系统运行PyTorch分布式训练时遇到的`redirects`不支持问题和`OMP_NUM_THREADS`警告,以下是具体解决方案: --- ### 一、redirects不支持问题解析 #### 1. 现象说明 当使用`torch.distributed.run`或`torch.distributed.launch`启动分布式训练时,Windows/MacOS会提示`redirects not supported`错误,因为这两个系统不支持标准输入输出的自动重定向[^1]。 #### 2. 解决方案 **(1) 升级到PyTorch 2.0+并使用`torchrun`** ```bash # 启动命令示例(需移除所有重定向符) torchrun --nproc_per_node=2 --nnodes=1 your_script.py ``` **(2) 手动管理日志输出** ```python # 在训练脚本中主动配置日志路径 import sys sys.stdout = open('stdout.log', 'w') sys.stderr = open('stderr.log', 'w') ``` **(3) 使用WSL2(Windows专属优化)** 参考技术选型表,WSL2+Linux方案支持完整重定向功能: ```bash wsl --install Ubuntu # 在WSL环境中运行Linux版PyTorch ``` --- ### 二、OMP_NUM_THREADS警告处理 #### 1. 警告成因 未明确设置OpenMP线程数时,PyTorch会触发警告`OMP: Hint: set OMP_NUM_THREADS...`,可能导致CPU资源竞争。 #### 2. 解决方案 **(1) 代码内动态设置** ```python import os os.environ["OMP_NUM_THREADS"] = "4" # 根据CPU核心数调整 ``` **(2) 启动时注入环境变量** ```bash # Windows (CMD/PowerShell) set OMP_NUM_THREADS=4 && torchrun --nproc_per_node=2 train.py # MacOS (zsh/bash) export OMP_NUM_THREADS=4 && torchrun --nproc_per_node=2 train.py ``` **(3) 配置文件永久生效** Windows:通过`系统属性 > 环境变量`添加用户级变量 MacOS:在`~/.zshrc`或`~/.bash_profile`添加`export OMP_NUM_THREADS=4` --- ### 三、多平台训练参数对照表 | 参数项 | Windows解决方案 | MacOS解决方案 | Linux原生支持 | |----------------|-----------------------------|-----------------------------|--------------| | 分布式后端 | gloo(推荐)或mpi | gloo | gloo/nccl | | 日志重定向 | 手动文件写入 | 手动文件写入 | 自动支持 | | 线程管理 | 强制设置OMP_NUM_THREADS | 强制设置OMP_NUM_THREADS | 自动优化 | | 多卡通信 | 需验证驱动兼容性 | 需MPS支持 | 直接支持 | --- ### 四、验证方案 1. 最小化测试脚本: ```python # test_dist.py import torch import os print(f"OMP_NUM_THREADS={os.getenv('OMP_NUM_THREADS')}") torch.distributed.init_process_group(backend="gloo") ``` 2. 执行命令: ```bash torchrun --nproc_per_node=2 test_dist.py ``` ---
阅读全文

相关推荐

# Get Started ## Installation 1. clone this repo. git clone https://github.com/ShiqiYu/OpenGait.git 2. Install dependenices: - pytorch >= 1.10 - torchvision - pyyaml - tensorboard - opencv-python - tqdm - py7zr - kornia - einops Install dependenices by [Anaconda](https://conda.io/projects/conda/en/latest/user-guide/install/index.html): conda install tqdm pyyaml tensorboard opencv kornia einops -c conda-forge conda install pytorch==1.10 torchvision -c pytorch Or, Install dependenices by pip: pip install tqdm pyyaml tensorboard opencv-python kornia einops pip install torch==1.10 torchvision==0.11 ## Prepare dataset See [prepare dataset](2.prepare_dataset.md). ## Get trained model - Option 1: python misc/download_pretrained_model.py - Option 2: Go to the [release page](https://github.com/ShiqiYu/OpenGait/releases/), then download the model file and uncompress it to [output](output). ## Train Train a model by CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 opengait/main.py --cfgs ./configs/baseline/baseline.yaml --phase train - python -m torch.distributed.launch [DDP](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html) launch instruction. - --nproc_per_node The number of gpus to use, and it must equal the length of CUDA_VISIBLE_DEVICES. - --cfgs The path to config file. - --phase Specified as train. - --log_to_file If specified, the terminal log will be written on disk simultaneously. You can run commands in [train.sh](train.sh) for training different models. ## Test Evaluate the trained model by CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 opengait/main.py --cfgs ./configs/baseline/baseline.yaml --phase test - --phase Specified as test. - --iter Specify a iteration checkpoint. **Tip**: Other arguments are the same as train phase. You can run commands in [test.sh](test.sh) for testing different models. ## Customize 1. Read the [detailed config](docs/1.detailed_config.md) to figure out the usage of needed setting items; 2. See [how to create your model](docs/2.how_to_create_your_model.md); 3. There are some advanced usages, refer to [advanced usages](docs/3.advanced_usages.md), please. ## Warning - In DDP mode, zombie processes may be generated when the program terminates abnormally. You can use this command [sh misc/clean_process.sh](./misc/clean_process.sh) to clear them.

(style) hcq_donghonglai@f940780da57b:~/multi_pose_vton-main$ export PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128 (style) hcq_donghonglai@f940780da57b:~/multi_pose_vton-main$ torchrun --nproc_per_node=1 --master_port=29502 train_warping.py --batchSize 1 --image_size 256 usage: train_warping.py [-h] [--local_rank LOCAL_RANK] [--batchSize BATCHSIZE] [--dataroot DATAROOT] [--datapairs DATAPAIRS] [--phase PHASE] train_warping.py: error: unrecognized arguments: --image_size 256 ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 2) local_rank: 0 (pid: 4472) of binary: /public/home/hcq_donghonglai/.conda/envs/style/bin/python Traceback (most recent call last): File "/public/home/hcq_donghonglai/.conda/envs/style/bin/torchrun", line 8, in <module> sys.exit(main()) File "/public/home/hcq_donghonglai/.conda/envs/style/lib/python3.8/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 345, in wrapper return f(*args, **kwargs) File "/public/home/hcq_donghonglai/.conda/envs/style/lib/python3.8/site-packages/torch/distributed/run.py", line 719, in main run(args) File "/public/home/hcq_donghonglai/.conda/envs/style/lib/python3.8/site-packages/torch/distributed/run.py", line 710, in run elastic_launch( File "/public/home/hcq_donghonglai/.conda/envs/style/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 131, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/public/home/hcq_donghonglai/.conda/envs/style/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 259, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ train_warping.py FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-04-02_11:08:24 host : f940780da57b rank : 0 (local_rank: 0) exitcode : 2 (pid: 4472) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================根据你的提供的修改方案之后出现这个问题,接下来怎么处理

/home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] ***************************************** W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] ***************************************** /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,321 >> loading file tokenizer.model [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file chat_template.jinja /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources [INFO|tokenization_utils_base.py:2313] 2025-07-03 16:30:43,904 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. [INFO|configuration_utils.py:697] 2025-07-03 16:30:43,913 >> loading configuration file /mnt/data1/models/1.5B/config.json [INFO|configuration_utils.py:771] 2025-07-03 16:30:43,919 >> Model config Qwen2Config { "_name_or_path": "/mnt/data1/models/1.5B", "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 1536, "initializer_range": 0.02, "intermediate_size": 8960, "max_position_embeddings": 131072, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 12, "num_hidden_layers": 28, "num_key_value_heads": 2, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 10000, "sliding_window": 4096, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0", "use_cache": true, "use_mrope": false, "use_sliding_window": false, "vocab_size": 151936 } [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer.model [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file chat_template.jinja [INFO|tokenization_utils_base.py:2313] 2025-07-03 16:30:44,493 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank1]:[W703 16:30:45.102845887 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank2]:[W703 16:30:45.126706430 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank3]:[W703 16:30:45.136836682 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. Setting num_proc from 16 back to 1 for the train split to disable multiprocessing as it only contains one shard. Generating train split: 0 examples [00:00, ? examples/s] Generating train split: 120 examples [00:00, 6525.39 examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank0]:[W703 16:31:05.679961201 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. [rank0]: multiprocess.pool.RemoteTraceback: [rank0]: """ [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/multiprocess/pool.py", line 125, in worker [rank0]: result = (True, func(*args, **kwds)) [rank0]: ^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 688, in _write_generator_to_queue [rank0]: for i, result in enumerate(func(**kwargs)): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3501, in _map_single [rank0]: for i, example in iter_outputs(shard_iterable): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3475, in iter_outputs [rank0]: yield i, apply_function(example, i, offset=offset) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3398, in apply_function [rank0]: processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/converter.py", line 94, in __call__ [rank0]: if self.dataset_attr.prompt and example[self.dataset_attr.prompt]: [rank0]: ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/formatting/formatting.py", line 278, in __getitem__ [rank0]: value = self.data[key] [rank0]: ~~~~~~~~~^^^^^ [rank0]: KeyError: 'instruction' [rank0]: """ [rank0]: The above exception was the direct cause of the following exception: [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank0]: launch() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank0]: run_exp() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank0]: _training_function(config={"args": args, "callbacks": callbacks}) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank0]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 51, in run_sft [rank0]: dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 304, in get_dataset [rank0]: dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 182, in _get_merged_dataset [rank0]: datasets[dataset_name] = _load_single_dataset(dataset_attr, model_args, data_args, training_args) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 162, in _load_single_dataset [rank0]: return align_dataset(dataset, dataset_attr, data_args, training_args) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/converter.py", line 279, in align_dataset [rank0]: return dataset.map( [rank0]: ^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 557, in wrapper [rank0]: out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3171, in map [rank0]: for rank, done, content in iflatmap_unordered( [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 728, in iflatmap_unordered [rank0]: [async_result.get(timeout=0.05) for async_result in async_results] [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 728, in [rank0]: [async_result.get(timeout=0.05) for async_result in async_results] [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/multiprocess/pool.py", line 774, in get [rank0]: raise self._value [rank0]: KeyError: 'instruction' [rank0]:[W703 16:31:06.912491219 ProcessGroupNCCL.cpp:1479] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator()) W0703 16:31:07.960560 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914916 closing signal SIGTERM W0703 16:31:07.961188 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914917 closing signal SIGTERM W0703 16:31:07.961536 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914918 closing signal SIGTERM E0703 16:31:08.371267 3914856 torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 3914915) of binary: /usr/bin/python3.11 Traceback (most recent call last): File "/usr/local/bin/torchrun", line 8, in <module> sys.exit(main()) ^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 892, in main run(args) File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 883, in run elastic_launch( File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 139, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 270, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ /home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-07-03_16:31:07 host : wiseatc-Super-Server rank : 0 (local_rank: 0) exitcode : 1 (pid: 3914915) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ Traceback (most recent call last): File "/home/wiseatc/.local/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/wiseatc/LLaMA-Factory/src/llamafactory/cli.py", line 130, in main process = subprocess.run( ^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/subprocess.py", line 569, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['torchrun', '--nnodes', '1', '--node_rank', '0', '--nproc_per_node', '4', '--master_addr', '127.0.0.1', '--master_port', '41919', '/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py', 'saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-07-03-16-29-46/training_args.yaml']' returned non-zero exit status 1.

WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 97 closing signal SIGTERM ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: -11) local_rank: 1 (pid: 98) of binary: /opt/conda/bin/python Traceback (most recent call last): File "/opt/conda/bin/torchrun", line 33, in <module> sys.exit(load_entry_point('torch==1.13.1+cu116', 'console_scripts', 'torchrun')()) File "/opt/conda/lib/python3.9/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper return f(*args, **kwargs) File "/opt/conda/lib/python3.9/site-packages/torch/distributed/run.py", line 762, in main run(args) File "/opt/conda/lib/python3.9/site-packages/torch/distributed/run.py", line 753, in run elastic_launch( File "/opt/conda/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 132, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/opt/conda/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 246, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ==================================================== tools/train.py FAILED ---------------------------------------------------- Failures: <NO_OTHER_FAILURES> ---------------------------------------------------- Root Cause (first observed failure): [0]: time : 2025-03-09_20:49:13 host : yons-MS-7E06 rank : 1 (local_rank: 1) exitcode : -11 (pid: 98) error_file: <N/A> traceback : Signal 11 (SIGSEGV) received by PID 98 ====================================================这是什么问题,怎么解决

/home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources W0703 16:13:22.516433 3913223 torch/distributed/run.py:766] W0703 16:13:22.516433 3913223 torch/distributed/run.py:766] ***************************************** W0703 16:13:22.516433 3913223 torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 16:13:22.516433 3913223 torch/distributed/run.py:766] ***************************************** /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources [rank0]: Traceback (most recent call last): [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1863, in _get_module [rank0]: return importlib.import_module("." + module_name, self.__name__) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/usr/lib/python3.11/importlib/__init__.py", line 126, in import_module [rank0]: return _bootstrap._gcd_import(name[level:], package, level) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "<frozen importlib._bootstrap>", line 1206, in _gcd_import [rank0]: File "<frozen importlib._bootstrap>", line 1178, in _find_and_load [rank0]: File "<frozen importlib._bootstrap>", line 1149, in _find_and_load_unlocked [rank0]: File "<frozen importlib._bootstrap>", line 690, in _load_unlocked [rank0]: File "<frozen importlib._bootstrap_external>", line 940, in exec_module [rank0]: File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama_fast.py", line 29, in <module> [rank0]: from .tokenization_llama import LlamaTokenizer [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama.py", line 27, in <module> [rank0]: import sentencepiece as spm [rank0]: File "/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py", line 10, in <module> [rank0]: from . import _sentencepiece [rank0]: ImportError: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank0]: The above exception was the direct cause of the following exception: [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 82, in load_tokenizer [rank0]: tokenizer = AutoTokenizer.from_pretrained( [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 912, in from_pretrained [rank0]: tokenizer_class_from_name(config_tokenizer_class) is not None [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 611, in tokenizer_class_from_name [rank0]: return getattr(module, class_name) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1851, in __getattr__ [rank0]: module = self._get_module(self._class_to_module[name]) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1865, in _get_module [rank0]: raise RuntimeError( [rank0]: RuntimeError: Failed to import transformers.models.llama.tokenization_llama_fast because of the following error (look up to see its traceback): [rank0]: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank0]: The above exception was the direct cause of the following exception: [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank0]: launch() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank0]: run_exp() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank0]: _training_function(config={"args": args, "callbacks": callbacks}) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank0]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 48, in run_sft [rank0]: tokenizer_module = load_tokenizer(model_args) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 97, in load_tokenizer [rank0]: raise OSError("Failed to load tokenizer.") from e [rank0]: OSError: Failed to load tokenizer. [rank3]: Traceback (most recent call last): [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1863, in _get_module [rank3]: return importlib.import_module("." + module_name, self.__name__) [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/usr/lib/python3.11/importlib/__init__.py", line 126, in import_module [rank3]: return _bootstrap._gcd_import(name[level:], package, level) [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "<frozen importlib._bootstrap>", line 1206, in _gcd_import [rank3]: File "<frozen importlib._bootstrap>", line 1178, in _find_and_load [rank3]: File "<frozen importlib._bootstrap>", line 1149, in _find_and_load_unlocked [rank3]: File "<frozen importlib._bootstrap>", line 690, in _load_unlocked [rank3]: File "<frozen importlib._bootstrap_external>", line 940, in exec_module [rank3]: File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama_fast.py", line 29, in <module> [rank3]: from .tokenization_llama import LlamaTokenizer [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama.py", line 27, in <module> [rank3]: import sentencepiece as spm [rank3]: File "/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py", line 10, in <module> [rank3]: from . import _sentencepiece [rank3]: ImportError: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank3]: The above exception was the direct cause of the following exception: [rank3]: Traceback (most recent call last): [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 82, in load_tokenizer [rank3]: tokenizer = AutoTokenizer.from_pretrained( [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 912, in from_pretrained [rank3]: tokenizer_class_from_name(config_tokenizer_class) is not None [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 611, in tokenizer_class_from_name [rank3]: return getattr(module, class_name) [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1851, in __getattr__ [rank3]: module = self._get_module(self._class_to_module[name]) [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1865, in _get_module [rank3]: raise RuntimeError( [rank3]: RuntimeError: Failed to import transformers.models.llama.tokenization_llama_fast because of the following error (look up to see its traceback): [rank3]: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank3]: The above exception was the direct cause of the following exception: [rank3]: Traceback (most recent call last): [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank3]: launch() [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank3]: run_exp() [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank3]: _training_function(config={"args": args, "callbacks": callbacks}) [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank3]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 48, in run_sft [rank3]: tokenizer_module = load_tokenizer(model_args) [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 97, in load_tokenizer [rank3]: raise OSError("Failed to load tokenizer.") from e [rank3]: OSError: Failed to load tokenizer. [rank1]: Traceback (most recent call last): [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1863, in _get_module [rank1]: return importlib.import_module("." + module_name, self.__name__) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/usr/lib/python3.11/importlib/__init__.py", line 126, in import_module [rank1]: return _bootstrap._gcd_import(name[level:], package, level) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "<frozen importlib._bootstrap>", line 1206, in _gcd_import [rank1]: File "<frozen importlib._bootstrap>", line 1178, in _find_and_load [rank1]: File "<frozen importlib._bootstrap>", line 1149, in _find_and_load_unlocked [rank1]: File "<frozen importlib._bootstrap>", line 690, in _load_unlocked [rank1]: File "<frozen importlib._bootstrap_external>", line 940, in exec_module [rank1]: File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama_fast.py", line 29, in <module> [rank1]: from .tokenization_llama import LlamaTokenizer [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama.py", line 27, in <module> [rank1]: import sentencepiece as spm [rank1]: File "/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py", line 10, in <module> [rank1]: from . import _sentencepiece [rank1]: ImportError: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank1]: The above exception was the direct cause of the following exception: [rank1]: Traceback (most recent call last): [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 82, in load_tokenizer [rank1]: tokenizer = AutoTokenizer.from_pretrained( [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 912, in from_pretrained [rank1]: tokenizer_class_from_name(config_tokenizer_class) is not None [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 611, in tokenizer_class_from_name [rank1]: return getattr(module, class_name) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1851, in __getattr__ [rank1]: module = self._get_module(self._class_to_module[name]) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1865, in _get_module [rank1]: raise RuntimeError( [rank1]: RuntimeError: Failed to import transformers.models.llama.tokenization_llama_fast because of the following error (look up to see its traceback): [rank1]: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank1]: The above exception was the direct cause of the following exception: [rank1]: Traceback (most recent call last): [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank1]: launch() [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank1]: run_exp() [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank1]: _training_function(config={"args": args, "callbacks": callbacks}) [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank1]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 48, in run_sft [rank1]: tokenizer_module = load_tokenizer(model_args) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 97, in load_tokenizer [rank1]: raise OSError("Failed to load tokenizer.") from e [rank1]: OSError: Failed to load tokenizer. [rank2]: Traceback (most recent call last): [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1863, in _get_module [rank2]: return importlib.import_module("." + module_name, self.__name__) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/usr/lib/python3.11/importlib/__init__.py", line 126, in import_module [rank2]: return _bootstrap._gcd_import(name[level:], package, level) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "<frozen importlib._bootstrap>", line 1206, in _gcd_import [rank2]: File "<frozen importlib._bootstrap>", line 1178, in _find_and_load [rank2]: File "<frozen importlib._bootstrap>", line 1149, in _find_and_load_unlocked [rank2]: File "<frozen importlib._bootstrap>", line 690, in _load_unlocked [rank2]: File "<frozen importlib._bootstrap_external>", line 940, in exec_module [rank2]: File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama_fast.py", line 29, in <module> [rank2]: from .tokenization_llama import LlamaTokenizer [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama.py", line 27, in <module> [rank2]: import sentencepiece as spm [rank2]: File "/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py", line 10, in <module> [rank2]: from . import _sentencepiece [rank2]: ImportError: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank2]: The above exception was the direct cause of the following exception: [rank2]: Traceback (most recent call last): [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 82, in load_tokenizer [rank2]: tokenizer = AutoTokenizer.from_pretrained( [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 912, in from_pretrained [rank2]: tokenizer_class_from_name(config_tokenizer_class) is not None [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 611, in tokenizer_class_from_name [rank2]: return getattr(module, class_name) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1851, in __getattr__ [rank2]: module = self._get_module(self._class_to_module[name]) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1865, in _get_module [rank2]: raise RuntimeError( [rank2]: RuntimeError: Failed to import transformers.models.llama.tokenization_llama_fast because of the following error (look up to see its traceback): [rank2]: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank2]: The above exception was the direct cause of the following exception: [rank2]: Traceback (most recent call last): [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank2]: launch() [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank2]: run_exp() [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank2]: _training_function(config={"args": args, "callbacks": callbacks}) [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank2]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 48, in run_sft [rank2]: tokenizer_module = load_tokenizer(model_args) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 97, in load_tokenizer [rank2]: raise OSError("Failed to load tokenizer.") from e [rank2]: OSError: Failed to load tokenizer. [rank0]:[W703 16:13:30.861219244 ProcessGroupNCCL.cpp:1479] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator()) W0703 16:13:31.449512 3913223 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3913282 closing signal SIGTERM W0703 16:13:31.450263 3913223 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3913283 closing signal SIGTERM W0703 16:13:31.450724 3913223 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3913284 closing signal SIGTERM E0703 16:13:31.765744 3913223 torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 3913281) of binary: /usr/bin/python3.11 Traceback (most recent call last): File "/usr/local/bin/torchrun", line 8, in <module> sys.exit(main()) ^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 892, in main run(args) File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 883, in run elastic_launch( File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 139, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 270, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ /home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-07-03_16:13:31 host : wiseatc-Super-Server rank : 0 (local_rank: 0) exitcode : 1 (pid: 3913281) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ Traceback (most recent call last): File "/home/wiseatc/.local/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/wiseatc/LLaMA-Factory/src/llamafactory/cli.py", line 130, in main process = subprocess.run( ^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/subprocess.py", line 569, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['torchrun', '--nnodes', '1', '--node_rank', '0', '--nproc_per_node', '4', '--master_addr', '127.0.0.1', '--master_port', '38589', '/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py', 'saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-07-03-16-00-01/training_args.yaml']' returned non-zero exit status 1.

2025-06-26 16:12:03,164 - mmdet - INFO - Saving checkpoint at 12 epochs [ ] 0/81, elapsed: 0s, ETA:/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/_tensor.py:575: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at ../aten/src/ATen/native/BinaryOps.cpp:467.) return torch.floor_divide(self, other) [ ] 1/81, 0.3 task/s, elapsed: 3s, ETA: 273s/media/wangbaihui/1ecf654b-afad-4dab-af7b-e34b00dda87a/mmdetection3d/VAD/projects/mmdet3d_plugin/core/bbox/coders/fut_nms_free_coder.py:78: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). self.post_center_range = torch.tensor( /media/wangbaihui/1ecf654b-afad-4dab-af7b-e34b00dda87a/mmdetection3d/VAD/projects/mmdet3d_plugin/core/bbox/coders/map_nms_free_coder.py:82: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). self.post_center_range = torch.tensor( [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 81/81, 4.5 task/s, elapsed: 18s, ETA: 0s Traceback (most recent call last): File "tools/train.py", line 266, in <module> main() File "tools/train.py", line 255, in main custom_train_model( File "/media/wangbaihui/1ecf654b-afad-4dab-af7b-e34b00dda87a/mmdetection3d/VAD/projects/mmdet3d_plugin/VAD/apis/train.py", line 21, in custom_train_model custom_train_detector( File "/media/wangbaihui/1ecf654b-afad-4dab-af7b-e34b00dda87a/mmdetection3d/VAD/projects/mmdet3d_plugin/VAD/apis/mmdet_train.py", line 194, in custom_train_detector runner.run(data_loaders, cfg.workflow) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/mmcv/runner/epoch_based_runner.py", line 127, in run epoch_runner(data_loaders[i], **kwargs) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/mmcv/runner/epoch_based_runner.py", line 54, in train self.call_hook('after_train_epoch') File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/mmcv/runner/base_runner.py", line 307, in call_hook getattr(hook, fn_name)(self) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/mmcv/runner/hooks/evaluation.py", line 267, in after_train_epoch self._do_evaluate(runner) File "/media/wangbaihui/1ecf654b-afad-4dab-af7b-e34b00dda87a/mmdetection3d/VAD/projects/mmdet3d_plugin/core/evaluation/eval_hooks.py", line 88, in _do_evaluate key_score = self.evaluate(runner, results) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/mmcv/runner/hooks/evaluation.py", line 361, in evaluate eval_res = self.dataloader.dataset.evaluate( File "/media/wangbaihui/1ecf654b-afad-4dab-af7b-e34b00dda87a/mmdetection3d/VAD/projects/mmdet3d_plugin/datasets/nuscenes_vad_dataset.py", line 1781, in evaluate all_metric_dict[key] += results[i]['metric_results'][key] KeyError: 0 ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 2522198) of binary: /home/wangbaihui/anaconda3/envs/vad/bin/python /home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py:367: UserWarning: ********************************************************************** CHILD PROCESS FAILED WITH NO ERROR_FILE ********************************************************************** CHILD PROCESS FAILED WITH NO ERROR_FILE Child process 2522198 (local_rank 0) FAILED (exitcode 1) Error msg: Process failed with exitcode 1 Without writing an error file to <N/A>. While this DOES NOT affect the correctness of your application, no trace information about the error will be available for inspection. Consider decorating your top level entrypoint function with torch.distributed.elastic.multiprocessing.errors.record. Example: from torch.distributed.elastic.multiprocessing.errors import record @record def trainer_main(args): # do train ********************************************************************** warnings.warn(_no_error_file_warning_msg(rank, failure)) Traceback (most recent call last): File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/distributed/run.py", line 702, in <module> main() File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 361, in wrapper return f(*args, **kwargs) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/distributed/run.py", line 698, in main run(args) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/distributed/run.py", line 689, in run elastic_launch( File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 116, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 244, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: *************************************** tools/train.py FAILED ======================================= Root Cause: [0]: time: 2025-06-26_16:12:28 rank: 0 (local_rank: 0) exitcode: 1 (pid: 2522198) error_file: <N/A> msg: "Process failed with exitcode 1" ======================================= Other Failures: <NO_OTHER_FAILURES> ***********2025-06-26 16:12:03,164 - mmdet - INFO - Saving checkpoint at 12 epochs [ ] 0/81, elapsed: 0s, ETA:/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/_tensor.py:575: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at ../aten/src/ATen/native/BinaryOps.cpp:467.) return torch.floor_divide(self, other) [ ] 1/81, 0.3 task/s, elapsed: 3s, ETA: 273s/media/wangbaihui/1ecf654b-afad-4dab-af7b-e34b00dda87a/mmdetection3d/VAD/projects/mmdet3d_plugin/core/bbox/coders/fut_nms_free_coder.py:78: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). self.post_center_range = torch.tensor( /media/wangbaihui/1ecf654b-afad-4dab-af7b-e34b00dda87a/mmdetection3d/VAD/projects/mmdet3d_plugin/core/bbox/coders/map_nms_free_coder.py:82: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). self.post_center_range = torch.tensor( [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 81/81, 4.5 task/s, elapsed: 18s, ETA: 0s Traceback (most recent call last): File "tools/train.py", line 266, in <module> main() File "tools/train.py", line 255, in main custom_train_model( File "/media/wangbaihui/1ecf654b-afad-4dab-af7b-e34b00dda87a/mmdetection3d/VAD/projects/mmdet3d_plugin/VAD/apis/train.py", line 21, in custom_train_model custom_train_detector( File "/media/wangbaihui/1ecf654b-afad-4dab-af7b-e34b00dda87a/mmdetection3d/VAD/projects/mmdet3d_plugin/VAD/apis/mmdet_train.py", line 194, in custom_train_detector runner.run(data_loaders, cfg.workflow) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/mmcv/runner/epoch_based_runner.py", line 127, in run epoch_runner(data_loaders[i], **kwargs) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/mmcv/runner/epoch_based_runner.py", line 54, in train self.call_hook('after_train_epoch') File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/mmcv/runner/base_runner.py", line 307, in call_hook getattr(hook, fn_name)(self) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/mmcv/runner/hooks/evaluation.py", line 267, in after_train_epoch self._do_evaluate(runner) File "/media/wangbaihui/1ecf654b-afad-4dab-af7b-e34b00dda87a/mmdetection3d/VAD/projects/mmdet3d_plugin/core/evaluation/eval_hooks.py", line 88, in _do_evaluate key_score = self.evaluate(runner, results) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/mmcv/runner/hooks/evaluation.py", line 361, in evaluate eval_res = self.dataloader.dataset.evaluate( File "/media/wangbaihui/1ecf654b-afad-4dab-af7b-e34b00dda87a/mmdetection3d/VAD/projects/mmdet3d_plugin/datasets/nuscenes_vad_dataset.py", line 1781, in evaluate all_metric_dict[key] += results[i]['metric_results'][key] KeyError: 0 ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 2522198) of binary: /home/wangbaihui/anaconda3/envs/vad/bin/python /home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py:367: UserWarning: ********************************************************************** CHILD PROCESS FAILED WITH NO ERROR_FILE ********************************************************************** CHILD PROCESS FAILED WITH NO ERROR_FILE Child process 2522198 (local_rank 0) FAILED (exitcode 1) Error msg: Process failed with exitcode 1 Without writing an error file to <N/A>. While this DOES NOT affect the correctness of your application, no trace information about the error will be available for inspection. Consider decorating your top level entrypoint function with torch.distributed.elastic.multiprocessing.errors.record. Example: from torch.distributed.elastic.multiprocessing.errors import record @record def trainer_main(args): # do train ********************************************************************** warnings.warn(_no_error_file_warning_msg(rank, failure)) Traceback (most recent call last): File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/distributed/run.py", line 702, in <module> main() File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 361, in wrapper return f(*args, **kwargs) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/distributed/run.py", line 698, in main run(args) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/distributed/run.py", line 689, in run elastic_launch( File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 116, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/wangbaihui/anaconda3/envs/vad/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 244, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: *************************************** tools/train.py FAILED ======================================= Root Cause: [0]: time: 2025-06-26_16:12:28 rank: 0 (local_rank: 0) exitcode: 1 (pid: 2522198) error_file: <N/A> msg: "Process failed with exitcode 1" ======================================= Other Failures: <NO_OTHER_FAILURES> ***********

ita13zsdIHsir/cacnesmseefcoe hmbeecp ser a1/0 cpscek RI 0iSCITT- iama 7o8) oae1 sfetensors inaex js device uettingUe价am1oading weigh1emodeling_utils.pying_uti1s.p202 5-03-05:31019>>Instantating MOi1s.py:11401INFo configurati2025-03-05 10:10:31,021>>Generateconfig Generationconfig{tokenid":128000token id"" :28009 8:84酷63567torch.distributed.elastic.multiprocessing.apiWARNTNGSending processclosing166584 E10SingsignalSIGTERMsigna] SIGTERMtorch.distributed.elastic.multiprocessing.apiSendingp黌鳽设㈱汫鱗陋缗珞犍兜➌迳属essapi:166585 closing35-03-05 1010:11:04.360torch.distroUTe(multiprocessingsending process 166586calosangsigna] SIGTERNtorch.distributed.elastic.multiprocessing.api.3 pid:166586)of binary: /home/linsir/anaconda3/bin/python11.07ERR0Rnda3/bin/torchrun".line 8,in <module> sys.exit( File "/home/l insir/anaconda3/lib/python3.12/site-packages/torch/distributed/elastic/muitiprocessing/errors/_init_.py", line 347, in wrapperreturn f(*args,**kwargs)File "/home/linsir/anaconda3/1ib/python3.12/site-packages/torch/distributed/run.py", 1ine 812, in mainFiTen(args/linsir/anaconda3/1ib/python3.12/site-packages/torch/distributed/run.py", line 803, in runelastic_launchFi7eie. /hogevntn iccaresenraaconp4g, cen?. entryeone, gistrargesdistributed/launcher/api py", 1ine 13s, in _ca11f.-entrypoint.File "/home/linsir/anacida3/1ib/python3.12/site-packages/torch/distributed/launcher/api.py", iine 268, in launch_agenttorchadse choided,irastre, uitiprocessing.errors.childrailedError:"home/linsir/jingzhi/LLaMA-Factory/src/11amafactory/1auncher .py FAILED ailures<NO_OTHER_FAILURES> Dot cause (first observed failure):39ngreaweeont o4host3. ofa! 1sesse3rankexitcodeerror_file:traceback :signal 9(sIGKILL)received by PID 166586

最新推荐

recommend-type

【电力系统优化调度】含可再生能源的机组组合优化模型设计:构建经济稳定运行系统(可实现,有问题可联系博主)

内容概要:本文详细探讨了机组组合优化模型的构建,旨在通过合理安排各类发电机组的启停计划和优化出力分配,实现电力系统在经济性和稳定性上的最佳平衡。文章首先介绍了电力系统的四大主要组件——传统火电机组、风电机组、光伏机组和储能系统的参数及运行特性。接着,围绕最小化系统总运行成本这一目标,设计了优化目标函数,并明确了包括功率平衡约束、机组出力上下限约束、风光发电功率约束、弃风弃光约束、爬坡速率约束、储能系统荷电状态约束、充放电功率约束和充放电互斥约束在内的多项约束条件。最后,文章列出了求解机组组合优化模型所需的关键变量,如传统机组的开停状态、机组出力、启停成本、风电光伏实际出力、弃风弃光比例及储能系统的充放电功率和荷电状态,以实现系统的经济调度和可再生能源的最大化利用。 适合人群:从事电力系统研究、规划和调度工作的工程师和技术人员,以及对电力系统优化感兴趣的科研人员。 使用场景及目标:①帮助电力系统工程师理解不同类型发电机组的特点及其对系统稳定性、经济性和环保性的影响;②为制定合理的电力系统调度策略提供理论依据和技术支持;③促进可再生能源的有效整合,提高电力系统的灵活性和可靠性。 其他说明:本文提供的模型和方法不仅适用于当前的电力系统,也可为未来含高比例可再生能源接入的电力系统提供参考。文中涉及的具体数学公式和参数设定为实际应用提供了详细的指导,有助于提升电力系统的运行效率和经济效益。
recommend-type

项目管理手册释义.ppt

项目管理手册释义.ppt
recommend-type

Evc Sql CE 程序开发实践与样例代码分享

在详细解释标题、描述和标签中提及的知识点之前,需要指出“压缩包子文件的文件名称列表”中的“8”可能是不完整的上下文信息。由于缺乏具体的文件列表内容,我们将主要集中在如何理解“Evc Sql CE 程序样例代码”这一主题。 标题“Evc Sql CE 程序样例代码”直接指向一个程序开发样例代码,其中“Evc”可能是某种环境或工具的缩写,但由于没有更多的上下文信息,很难精确地解释这个缩写指的是什么。不过,“Sql CE”则明确地指向了“SQL Server Compact Edition”,它是微软推出的一个轻量级数据库引擎,专为嵌入式设备和小型应用程序设计。 ### SQL Server Compact Edition (SQL CE) SQL Server Compact Edition(简称SQL CE)是微软公司提供的一个嵌入式数据库解决方案,它支持多种平台和编程语言。SQL CE适合用于资源受限的环境,如小型应用程序、移动设备以及不需要完整数据库服务器功能的场合。 SQL CE具备如下特点: - **轻量级**: 轻便易用,对系统资源占用较小。 - **易于部署**: 可以轻松地将数据库文件嵌入到应用程序中,无需单独安装。 - **支持多平台**: 能够在多种操作系统上运行,包括Windows、Windows CE和Windows Mobile等。 - **兼容性**: 支持标准的SQL语法,并且在一定程度上与SQL Server数据库系统兼容。 - **编程接口**: 提供了丰富的API供开发者进行数据库操作,支持.NET Framework和本机代码。 ### 样例代码的知识点 “Evc Sql CE 程序样例代码”这部分信息表明,存在一些示例代码,这些代码可以指导开发者如何使用SQL CE进行数据库操作。样例代码一般会涵盖以下几个方面: 1. **数据库连接**: 如何创建和管理到SQL CE数据库的连接。 2. **数据操作**: 包括数据的增删改查(CRUD)操作,这些是数据库操作中最基本的元素。 3. **事务处理**: 如何在SQL CE中使用事务,保证数据的一致性和完整性。 4. **数据表操作**: 如何创建、删除数据表,以及修改表结构。 5. **数据查询**: 利用SQL语句查询数据,包括使用 SELECT、JOIN等语句。 6. **数据同步**: 如果涉及到移动应用场景,可能需要了解如何与远程服务器进行数据同步。 7. **异常处理**: 在数据库操作中如何处理可能发生的错误和异常。 ### 标签中的知识点 标签“Evc Sql CE 程序样例代码”与标题内容基本一致,强调了这部分内容是关于使用SQL CE的示例代码。标签通常用于标记和分类信息,方便在搜索引擎或者数据库中检索和识别特定内容。在实际应用中,开发者可以根据这样的标签快速找到相关的样例代码,以便于学习和参考。 ### 总结 根据标题、描述和标签,我们可以确定这篇内容是关于SQL Server Compact Edition的程序样例代码。由于缺乏具体的代码文件名列表,无法详细分析每个文件的内容。不过,上述内容已经概述了SQL CE的关键特性,以及开发者在参考样例代码时可能关注的知识点。 对于希望利用SQL CE进行数据库开发的程序员来说,样例代码是一个宝贵的资源,可以帮助他们快速理解和掌握如何在实际应用中运用该数据库技术。同时,理解SQL CE的特性、优势以及编程接口,将有助于开发者设计出更加高效、稳定的嵌入式数据库解决方案。
recommend-type

【浪潮FS6700交换机配置实战】:生产环境快速部署策略与技巧

# 1. 浪潮FS6700交换机概述 浪潮FS6700交换机是一款高端、具备高密度端口的全千兆交换机。它采用模块化设计,支持万兆上行,可提供灵活的端口组合和高带宽解决方案,满足了企业网络对于高性能、高可靠性的需求。浪潮FS6700交换机通常部署在企业网络的核心层或汇聚层,不仅提供强劲的网络数据交换能力,而且支持丰富的路由协议和安全特性,为中大型网络构建提供了强有力的保障。 接下来,我们将深
recommend-type

YOLO11训练批次参考

<think>我们正在讨论YOLOv11的训练批次设置。首先,需要明确的是,截至2023年10月,官方并没有发布YOLOv11版本。YOLO系列的最新版本是YOLOv8(由Ultralytics发布)。因此,这里可能指的是YOLO的某个变体或非官方版本。不过,我们可以基于YOLO系列的一般训练实践来讨论训练批次(batch size)的设置。 训练批次(batch size)是指在训练神经网络时,每次迭代中用于计算梯度并更新权重的样本数量。设置合适的batch size对训练效果和速度有重要影响。 ### 影响batch size选择的因素: 1. **硬件限制**:显存大小是主要限制因素
recommend-type

数据库考试复习必备五套习题精讲

根据给定的文件信息,本文将详细解释数据库习题相关知识点。首先,从标题中我们可以得知,该文件为数据库习题集,包含五套习题卷,非常适合用来准备考试。由于文件描述中提到考完试后才打算分享,说明这些习题具有一定的质量和难度,可以作为考试前的必备材料。 首先,我们来解释“数据库”这一核心概念。数据库是存储、管理、处理和检索信息的系统,它能够帮助我们有效地存储大量的数据,并在需要的时候快速访问。数据库管理系统(DBMS)是负责数据库创建、维护和操作的软件,常见的数据库管理系统包括MySQL、Oracle、Microsoft SQL Server、PostgreSQL和SQLite等。 数据库习题通常包括以下知识点: 1. 数据库设计:设计数据库时需要考虑实体-关系模型(ER模型)、规范化理论以及如何设计表结构。重点包括识别实体、确定实体属性、建立实体之间的关系以及表之间的关联。规范化是指将数据库表结构进行合理化分解,以减少数据冗余和提高数据一致性。 2. SQL语言:结构化查询语言(SQL)是用于管理数据库的标准计算机语言,它包括数据查询、数据操纵、数据定义和数据控制四个方面的功能。对于数据库习题来说,重点会涉及到以下SQL语句: - SELECT:用于从数据库中查询数据。 - INSERT、UPDATE、DELETE:用于向数据库中插入、更新或删除数据。 - CREATE TABLE、ALTER TABLE、DROP TABLE:用于创建、修改或删除表结构。 - JOIN:用于连接两个或多个表来查询跨越表的数据。 - GROUP BY 和 HAVING:用于对数据进行分组统计和筛选。 -事务处理:包括事务的ACID属性(原子性、一致性、隔离性、持久性)等。 3. 数据库操作:涉及实际操作数据库的过程,包括数据导入导出、备份与恢复、索引创建与优化等。这些内容能够帮助理解如何高效地管理数据。 4. 数据库安全:保障数据库不受未授权访问和破坏的机制,例如用户权限管理、视图、存储过程等安全措施。 5. 数据库优化:如何提升数据库的性能,包括查询优化、数据库配置优化、索引策略、系统资源监控等。 6. 数据库应用开发:如何利用数据库在应用程序中实现数据的持久化存储,如数据库连接、事务管理、数据访问对象(DAO)设计模式等。 7. 高级主题:涉及到复杂查询、数据库触发器、存储过程的编写和优化,以及可能包含的特定数据库系统的特定特性(如Oracle的PL/SQL编程等)。 由于文件名称列表只提供“数据库习题”这一个信息点,我们无法得知具体的习题内容和难度,但是可以肯定的是,这份习题集应该覆盖了上述所提到的知识点。对于考生来说,这些习题将帮助他们巩固理论知识,并且提高解决实际问题的能力,是考试前准备的有力工具。 在准备数据库相关的考试时,建议先从基础概念开始复习,然后逐步过渡到SQL语法和数据库设计的实践操作。在习题练习中,注意不要仅限于死记硬背,更重要的是理解每一个操作背后的逻辑和原理。如果可能的话,实际操作一个数据库,将理论知识应用到实践中去,这会帮助你更加深刻地理解数据库的工作机制。最后,反复练习模拟题,可以帮助你熟悉考试的题型和难度,提高考试时的应试技巧。
recommend-type

【浪潮FS6700交换机故障诊断与排除】:掌握这些方法,让你的网络稳定如初

# 1. 浪潮FS6700交换机故障诊断基础知识 在本章中,我们将探讨浪潮FS6700交换机故障诊断的基础知识,为后续章节中更深层次的理论和实践内容打下坚实的基础。我们将从以下几个方面入手,逐步深化对故障诊断的认识: ## 1.1 交换机故障诊断的重要性 交换机作为网络的核心设备,其稳定性和性能直接影响着整个网络的运行效率。因此,准确且快速地诊断和解决交换机故障是网
recommend-type

JVM内存整体结构图

<think>我们正在处理一个关于JVM内存结构的问题,用户要求获取详细图解。由于我们无法直接发送图片,但可以通过文字描述和引用相关资源来满足需求。 根据引用内容,我们可以总结JVM内存结构的主要部分: 1. 线程栈(Thread Stacks):每个线程创建时分配,存储局部变量和方法调用栈。 2. 堆(Heap):存储所有对象、实例变量和数组,被所有线程共享。堆又分为年轻代(Young Generation)和老年代(Old Generation)。 3. 非堆内存(Non-Heap Memory):包括方法区(Method Area)和运行时常量池(Runtime Constant
recommend-type

GEF应用实例:掌握界面设计的六步走

标题:“界面设计GEF应用实例”涉及的知识点: 1. GEF概述 GEF(Graphical Editing Framework)是基于Eclipse平台的一个图形编辑框架,用于创建交互式的图形编辑器。GEF通过分离图形表示与领域模型(Domain Model),使得开发者能够专注于界面设计而无需处理底层图形细节。它为图形编辑提供了三个核心组件:GEFEditingDomain、GEFEditPart和GEFEditPolicy,分别负责模型与视图的同步、视图部件的绘制与交互以及编辑策略的定义。 2. RCP(Rich Client Platform)简介 RCP是Eclipse技术的一个应用框架,它允许开发者快速构建功能丰富的桌面应用程序。RCP应用程序由一系列插件组成,这些插件可以共享Eclipse平台的核心功能,如工作台(Workbench)、帮助系统和更新机制等。RCP通过定义应用程序的界面布局、菜单和工具栏以及执行应用程序的生命周期管理,为开发高度可定制的应用程序提供了基础。 3. GEF与RCP的整合 在RCP应用程序中整合GEF,可以使用户在应用程序中拥有图形编辑的功能,这对于制作需要图形界面设计的工具尤其有用。RCP为GEF提供了一个运行环境,而GEF则通过提供图形编辑能力来增强RCP应用程序的功能。 4. 应用实例分析 文档中提到的“六个小例子”,可能分别代表了GEF应用的六个层次,由浅入深地介绍如何使用GEF构建图形编辑器。 - 第一个例子很可能是对GEF的入门介绍,包含如何设置GEF环境、创建一个基本的图形编辑器框架,并展示最简单的图形节点绘制功能。 - 随后的例子可能会增加对图形节点的编辑功能,如移动、缩放、旋转等操作。 - 更高级的例子可能会演示如何实现更复杂的图形节点关系,例如连接线的绘制和编辑,以及节点之间的依赖和关联。 - 高级例子中还可能包含对GEF扩展点的使用,以实现更高级的定制功能,如自定义图形节点的外观、样式以及编辑行为。 - 最后一个例子可能会介绍如何将GEF集成到RCP应用程序中,并展示如何利用RCP的功能特性来增强GEF编辑器的功能,如使用RCP的透视图切换、项目管理以及与其他RCP插件的交互等。 5. 插件的开发与配置 在构建GEF应用实例时,开发者需要熟悉插件的开发和配置。这包括对plugin.xml文件和MANIFEST.MF文件的配置,这两者共同定义了插件的依赖关系、执行入口点、扩展点以及与其他插件的交互关系等。 6. 用户交互和事件处理 在创建图形编辑器的过程中,用户交互和事件处理是核心部分。开发者需要了解如何捕获和处理用户在编辑器中产生的各种事件,如鼠标点击、拖拽、按键事件等,并将这些事件转换为编辑器的相应操作。 7. 模型-视图-控制器(MVC)设计模式 GEF采用了MVC设计模式,将业务逻辑(模型)、用户界面(视图)和控制逻辑(控制器)分离。开发者需要理解MVC模式的工作原理,以及如何在GEF中应用这一模式来实现图形编辑器的各个部分。 8. 自定义绘图和渲染技术 在高级应用实例中,开发者可能需要自定义图形节点的绘制方法,以及图形的渲染技术。这通常涉及对Eclipse GEF的图形API的理解和使用,例如使用Draw2D或Gef图形库中的类和接口来实现定制的渲染效果。 通过这些知识点的讲解和实例的展示,读者可以逐步学会如何使用GEF构建图形编辑器,并在RCP平台上进行集成和扩展,从而创建出功能丰富、可定制和交互性良好的图形应用程序。
recommend-type

掌握Python FloodRouting:构建洪水预测模型的终极指南

# 摘要 随着气候变化和极端天气事件的增多,洪水预测成为防范灾害和减轻其影响的关键技术。本文介绍了Python FloodRouting软件包,详细阐述了洪水预测模型的理论基础,包括数学原理、数据收集与预处理的重要性。文章继续探讨了Python FloodRouting的安装、环境配置以及构建洪水预测模型的实践操作。通过集成学习和模型融合技术,介绍了如何构建实时洪水预