线性探测法在计算等概率情况下查找失败计算公式是什么

时间: 2023-11-29 17:05:01 浏览: 276
线性探测法在计算等概率情况下查找失败时的平均查找长度,可以使用以下公式: (表长 / 2) * (1 / (1 - α)^2) 其中,表长为散列表的长度,α为填装因子,即已经插入的关键字数目与散列表长度的比值。 这个公式的推导比较复杂,但是可以通过假设每个关键字在散列表中出现的位置是等概率的,并且每个关键字的探测长度也是等概率的来进行推导。最终得到的结果是一个二次函数,与填装因子的平方成正比,这就意味着填装因子越大,查找失败时平均查找长度会增加得更快。
相关问题

设哈希函数h(k)=3 k mod 11,哈希地址空间为0~10,对关键字序列(32,13,49,24,38,21,4,12),按下述两种解决冲突的方法构造哈希表,并分别求出等概率下查找成功时和查找失败时的平均查找长度aslsucc和aslunsucc。 ① 线性探测法; ② 链地址法。

### 回答1: 1. 线性探测法:当哈希函数给出的地址已被占用时,向后依次探测下一个地址是否为空,直到找到空地址或者遍历完整个哈希表。 如果找到空地址,就将该键值存储到该地址;如果遍历完整个哈希表还未找到空地址,则需要重新开始从哈希表的头部开始探测空地址。 2. 链地址法:将哈希表的每个地址看做一个链表,将哈希函数映射到的同一个地址的键值都存储在同一个链表中。当哈希函数给出的地址已被占用时,将新的键值插入到该地址对应的链表尾部即可。 在构造哈希表时,需要根据给定的关键字序列以及哈希函数(h(k)=3k mod 11),依次将关键字映射到哈希表中。对于给定的关键字序列(32,13,49,24,38,21,4,12),可以得到以下哈希表: 0: 1:13,38 2:49 3:21 4:4 5: 6:12,24 7: 8:32 9: 10: 平均查找长度ASL(Average Search Length)指的是在哈希表中查找某个关键字所需要的平均探测次数,ASL可以通过以下公式计算: ASL = (查找成功时所有关键字探测次数之和 + 查找失败时所有可能查找的探测次数之和) / 关键字总数 对于以上哈希表,ASL为(1 + 2 + 1 + 1 + 1 + 1 + 1 + 2) / 8 = 1.5。 在查找某个关键字时,需要根据哈希函数找到该关键字在哈希表中对应的地址,然后在该地址对应的链表中查找该关键字。如果在链表中找到了该关键字,则查找成功;否则查找失败。 其中,查找成功时的平均查找长度ASLsucc指的是在哈希表中查找已经存在的关键字所需要的平均探测次数;查找失败时的平均查找长度ASLunsucc指的是在哈希表中查找不存在的关键字(即查找失败)时,需要经过平均多少个哈希地址才能找到一个空闲地址。一个成功的查找操作的概率为P,一个查找失败的概率为1-P,平均查找长度可以通过以下公式计算: ASLsucc = (所有成功的查找操作中所有关键字探测次数之和) / 所有成功的查找次数 ASLunsucc = (所有查找失败的操作中所有可能查找的探测次数之和) / 所有查找失败的次数 其中,一个成功的操作的概率可以通过该关键字在哈希表中出现的频率计算得出,即P=k/n,其中k表示哈希表中该关键字出现的次数,n表示哈希表中关键字的总数。一个失败的操作的概率为1-P。 ### 回答2: 哈希表是一种非常常用的数据结构,可用于高效地进行数据的插入、查找和删除等操作。在实际应用中,哈希函数的选取以及冲突解决方式的选择都会对哈希表的性能产生重要影响。 对于给定的哈希函数h(k)=3k mod 11,哈希地址空间为0~10,关键字序列为32、13、49、24、38、21、4、12,我们可以采用两种不同的冲突解决方法来构造哈希表,分别是线性探测法和链地址法。 1. 线性探测法 在线性探测法中,当哈希函数h(k)计算出冲突位置i时,若该位置已被占用,则沿着哈希表依次往后探测,直到找到一个空闲位置j(j≠i)为止。若整张哈希表已被占满,则返回原位置i。 对于给定的关键字序列,我们可以按照如下步骤构造哈希表: 1) 初始化一个大小为11的哈希表,全部赋值为空。 2) 依次插入关键字序列中的每个元素。 3) 对于经过哈希函数h(k)计算出的位置i,若该位置已被占用,则沿着哈希表依次往后探测,直到找到一个空闲位置j(j≠i)为止。若整张哈希表已被占满,则返回原位置i。 根据上述步骤,我们可以得到如下的哈希表: 0 1 2 3 4 5 6 7 8 9 10 13 32 49 21 4 12 24 38 为了求出等概率下查找成功时的平均查找长度aslsucc,我们可以从哈希表中查找每个元素,并求出平均查找长度。由于哈希函数h(k)是等概率的,因此每个元素在哈希表中的等概率位置也是等概率的。因此,对于一个元素,它在哈希表中的查找长度可以看作是一个二项分布的随机变量,平均查找长度aslsucc可以按照如下公式计算: aslsucc = Σi=1n (成功查找到关键字i的次数 × 成功查找到关键字i时的查找长度) / n 其中,n为关键字序列中元素的数量。根据上述公式,我们可以得到如下计算过程: aslsucc = (1/8×1+1/8×2+1/8×1+1/8×3+1/8×2+1/8×1+1/8×1+1/8×2) = 1.75 即在线性探测法构造的哈希表中,查找成功时平均需要查找1.75个位置。 为了求出等概率下查找失败时的平均查找长度aslunsucc,我们可以从哈希表中查找一些不存在的元素,并求出平均查找长度。由于在线性探测法中,查找失败时需要一直沿着哈希表探测直到找到空位置为止,因此在查找失败时,平均查找长度始终为哈希表中的空闲位置数量。因此,在此例中,查找失败时平均需要查找3个位置。 2. 链地址法 在链地址法中,哈希表中的每个位置都是一个链表的头结点,当哈希函数计算出冲突位置i时,将新元素插入到链表头结点i的后面即可。 对于给定的关键字序列,我们可以按照如下步骤构造哈希表: 1) 初始化一个大小为11的哈希表,全部赋值为空。 2) 依次插入关键字序列中的每个元素,插入时将其添加到哈希表中对应位置的链表中。 根据上述步骤,我们可以得到如下的哈希表: 0 -> 1 -> 13 -> 21 -> 2 -> 3 -> 32 -> 4 -> 4 -> 24 -> 5 -> 38 -> 6 -> 7 -> 8 -> 9 -> 10-> 49 -> 12 -> 为了求出等概率下查找成功时的平均查找长度aslsucc,我们只需要在哈希表中查找每个元素,并求出平均查找长度。由于链地址法可以避免冲突,每个元素在哈希表中只有一个可能位置,因此查找成功时的平均查找长度与哈希表的填装因子有关。在此例中,哈希表的填装因子为8/11。因此,查找成功时平均需要查找1.818个位置。 为了求出等概率下查找失败时的平均查找长度aslunsucc,在链地址法中查找失败时总是查找到链表的末尾,因此平均查找长度为哈希表中每个位置链表的平均长度。在此例中,哈希表中链表的平均长度为8/11,因此查找失败时平均需要查找0.727个位置。 综上所述,对于本文提到的哈希函数h(k)=3k mod 11,哈希地址空间为0~10,关键字序列为32、13、49、24、38、21、4、12,线性探测法和链地址法的查找成功/失败时平均查找长度如下表所示: | 线性探测法 | 链地址法 | ----|-------------|-----------| 成功 | 1.75 | 1.818 | 失败 | 3 | 0.727 | ### 回答3: 线性探测法的哈希表构造过程如下: 1. 初始化哈希表,将每个位置都设为“空”。 2. 将第一个关键字32插入哈希表中,根据哈希函数h(32)=3*32 mod 11=10,将其直接插入哈希表中的10位置。 3. 将第二个关键字13插入哈希表中,根据哈希函数h(13)=3*13 mod 11=6,将其插入哈希表中的6位置。 4. 将第三个关键字49插入哈希表中,根据哈希函数h(49)=3*49 mod 11=5,该位置已经有关键字13,发生了冲突。由于哈希地址空间为0~10,因此使用“线性探测法”从下一个位置开始查找。 5. 查找下一个位置,即h(49)+1=6+1=7,发现该位置为空,将49插入该位置。 6. 将第四个关键字24插入哈希表中,根据哈希函数h(24)=3*24 mod 11=9,将其直接插入哈希表中的9位置。 7. 将第五个关键字38插入哈希表中,根据哈希函数h(38)=3*38 mod 11=4,该位置已经有关键字13和49,发生了冲突。从下一个位置h(38)+1=5开始查找,发现位置5已经被关键字49占用,继续查找下一个位置h(38)+2=6,发现位置6已经被关键字13占用,继续查找下一个位置h(38)+3=7,发现该位置为空,将38插入该位置。 8. 将第六个关键字21插入哈希表中,根据哈希函数h(21)=3*21 mod 11=8,将其插入哈希表中的8位置。 9. 将第七个关键字4插入哈希表中,根据哈希函数h(4)=3*4 mod 11=1,将其直接插入哈希表中的1位置。 10. 将最后一个关键字12插入哈希表中,根据哈希函数h(12)=3*12 mod 11=3,将其直接插入哈希表中的3位置。 线性探测法的哈希表如下: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10| |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| | | 4 | |12 |38 |49 |13 |21 |32 |24 | | 等概率下查找成功时的平均查找长度asl_succ计算方法如下: asl_succ=Σ(di+1)/n 其中,di为第i个关键字所需查找的次数。n为关键字个数。 查找关键字21的过程如下: 1. 根据哈希函数h(21)=3*21 mod 11=8,查找哈希表的第8个位置,发现关键字21就在该位置。 2. 所需查找次数为1。 由于共有8个关键字,因此asl_succ=(1+1+4+1+3+1+2+1)/8=1.875。 等概率下查找失败时的平均查找长度asl_unsucc计算方法如下: asl_unsucc=Σ(di+1)/n 其中,di为第i个关键字所需查找的次数。n为哈希地址空间的大小。 根据哈希函数h(k),可以发现同一关键字在哈希表中可能出现的位置数最多为哈希地址空间的大小n。因此,当查找失败时,最多需要查找n次。因此,asl_unsucc=(0+1+2+3+4+5+6+7+8+9+10)/11=5。 链地址法的哈希表构造过程如下: 1. 初始化哈希表,将每个位置都设为“空”。 2. 将第一个关键字32插入哈希表中,根据哈希函数h(32)=3*32 mod 11=10,将其插入哈希表中的第10个位置。 3. 将第二个关键字13插入哈希表中,根据哈希函数h(13)=3*13 mod 11=6,将其插入哈希表中的第6个位置。 4. 将第三个关键字49插入哈希表中,根据哈希函数h(49)=3*49 mod 11=5,将其插入哈希表中的第5个位置。 5. 将第四个关键字24插入哈希表中,根据哈希函数h(24)=3*24 mod 11=9,将其插入哈希表中的第9个位置。 6. 将第五个关键字38插入哈希表中,根据哈希函数h(38)=3*38 mod 11=4,将其插入哈希表中的第4个位置。 7. 将第六个关键字21插入哈希表中,根据哈希函数h(21)=3*21 mod 11=8,将其插入哈希表中的第8个位置。 8. 将第七个关键字4插入哈希表中,根据哈希函数h(4)=3*4 mod 11=1,将其插入哈希表中的第1个位置。 9. 将最后一个关键字12插入哈希表中,根据哈希函数h(12)=3*12 mod 11=3,将其插入哈希表中的第3个位置。 链地址法的哈希表如下: | 0 | | | 1 | | 5 | 6 | 8 |10 | 9 | | |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| | | |12 | 4 | |38 |13 |21 |32 |24 |49 | 等概率下查找成功时的平均查找长度asl_succ计算方法如下: 使用链地址法查找关键字21的过程如下: 1. 根据哈希函数h(21)=3*21 mod 11=8,查找哈希表中第8个位置对应的链表,发现关键字21在该链表中。 2. 所需查找次数为1。 由于共有8个关键字,因此asl_succ=(1+1+2+1+1+1+1+1)/8=1.25。 等概率下查找失败时的平均查找长度asl_unsucc计算方法与线性探测法相同,因此为5。

已知有长度为9的表 (16, 29, 32, 5, 89,41, 14, 65, 34),它们存储在一个哈希表中,利用线性探测再散列法,要求它在等概率情况下查找成功的平均查找长度不超过了。 口(1)该哈希表的长度m应设计成多大? 口 (2)设计相应的哈希函数 口(3) 将数据填入到哈希表中 口(4) 计算查找成功时的平均查找长度

(1) 根据装填因子α=9/m,我们希望平均查找长度不超过5,则根据公式: E(n) = (1 + 1/(1-α))/2 <= 5 解得 m >= 14.25,因此哈希表的长度至少应该为15。 (2) 一个简单的哈希函数可以是取模函数,即 h(k) = k mod m,其中k为关键字,m为哈希表长度。 (3) 将数据填入哈希表中,可以按照以下步骤进行: - 初始化哈希表,将所有位置都赋初值为空。 - 对于表中的每个元素,计算其哈希值h(k),并将其插入哈希表中。 - 如果哈希表中h(k)位置已经被占用,则使用线性探测再散列法,查找下一个空位插入元素。 根据取模函数,可以将表中的元素插入到哈希表中的位置: h(16) = 1, h(29) = 14, h(32) = 2, h(5) = 5, h(89) = 14, h(41) = 11, h(14) = 14, h(65) = 5, h(34) = 4 由于哈希表长度为15,因此哈希值相同的元素需要使用线性探测再散列法插入到下一个空位。 (4) 计算查找成功时的平均查找长度,可以使用公式: ASL = Σ(di+1)/n 其中di为查找成功时需要查找的次数。我们可以使用线性探测的方法来查找元素,因此di最大为哈希表长度m,平均查找长度ASL不超过5,则可得到以下不等式: Σ(m+1)/9 <= 5 解得 m >= 52.5,因此哈希表的长度至少应该为53。 将表中的元素插入到哈希表中后,可以计算出查找成功时的平均查找长度: ASL = (1+2+1+1+3+1+1+2+1)/9 = 1.44 因此,在等概率情况下,查找成功的平均查找长度不超过1.44。
阅读全文

相关推荐

静态链表示意图:2.2 顺序表与链表的比较存储密度比较:顺序表:只存储数据元素、预分配存储空间链表:指针的结构性开销、链表中的元素个数没有限制按位查找:顺序表:O(1),随机存取链表:O(n),顺序存取插入和删除:顺序表:O(n),平均移动表长一半的元素链表:不用移动元素,合适位置的指针——O(1)时间复杂度:顺序表:若线性表频繁查找却很少进行插入和删除操作链表:若线性表需频繁插入和删除时空间复杂度:顺序表:知道线性表的大致长度,空间效率会更高链表:若线性表中元素个数变化较大或者未知2.3 栈        定义:限定仅在一端(栈顶)进行插入和删除操作的线性表,后进先出。栈示意图:        时间复杂度(插入与删除):顺序栈与链栈均为O(1)        空间复杂度:链栈多一个指针域,结构性开销较大,使用过程中元素个数变化较大时,用链栈;反之顺序栈。        出栈元素不同排列的个数:   (卡特兰数)        共享栈: 两个栈共享一片内存空间, 两个栈从两边往中间增长。卡特兰数的应用:存储结构:顺序栈初始化:top=-1链栈初始化:top=NULL栈的应用:        1) 括号匹配        2) 递归        3) 中缀表达式 转 后缀表达式        4) 中缀表达式:设两个栈(数据栈和运算符栈),根据运算符栈的优先级进行运算。2.4 队列        定义: 只允许在一端插入, 在另一端删除。具有先进先出的特点。队列示意图:        时间复杂度:均为O(1)        空间复杂度:链队列多一个指针域,结构性开销较大;循环队列存在浪费空间和溢出问题。使用过程中元素个数变化较大时,用链队列;反之循环队列。        双端队列: 只允许从两端插入、两端删除的线性表。双端队列示意图: 存储结构:        链队列:队头指针指向队头元素的前一个位置,队尾指针指向队尾元素,先进先出。        循环队列:                1)队空:front=rear                2)队满:(rear+1)%QueueSize=front                3)队列元素个数:(队尾-队头+队长)%队长==(rear-front+QueueSize)%QueueSize队列的应用:        1) 树的层次遍历        2) 图的广度优先遍历2.4 数组与特殊矩阵一维数组的存储结构:二维数组的存储结构: 对称矩阵的压缩(行优先):下三角矩阵的压缩(行优先):  上三角(行优先):三对角矩阵的压缩(行优先):稀疏矩阵压缩:十字链表法压缩稀疏矩阵:2.5 串        串,即字符串(String)是由零个或多个字符组成的有限序列。串是一种特殊的线性表,数据元素之间呈线性关系。字符串模式匹配:        1)朴素模式匹配算法        2)KMP算法手算KMP的next数组示意图:求next[2] :求next[3]: 求next[4]: 求next[5]: C语言求KMP的next数组代码示例:void Createnext(char *sub, int *next){ assert(sub != NULL && next != NULL); int j = 2; //模式串的next指针 int k = 0; //next数组的回溯值,初始化为next[1]=0 int lenSub = strlen(sub); assert(lenSub != 0); next[0] = -1; next[1] = 0; while (j < lenSub){ if (sub[j-1] == sub[k]){ next[j] = ++k; j++; } else{ k = next[k]; if (k == -1){ k = 0; next[j] = k; j++; } } }}求nextValue:void nextValue(char *sub, int *next) { int lenSub = strlen(sub); for(int j=2;j<lensub; j++){ if(sub[j]==sub[next[j]]) next[j]=next[next[j]] }}备注:         1) 实现next有多种不同方式, 对应不同的next数组使用        2) 根据实现方式不同, next数组整体+1不影响KMP算法。第三章 树和二叉树3.1 树和森林        定义(树):n(n≥0)个结点(数据元素)的有限集合,当 n=0 时,称为空树。3.1.1 树的基本术语        结点的度:结点所拥有的子树的个数。        叶子结点:度为 0 的结点,也称为终端结点。        分支结点:度不为 0 的结点,也称为非终端结点。        孩子:树中某结点子树的根结点称为这个结点的孩子结点。        双亲:这个结点称为它孩子结点的双亲结点。        兄弟:具有同一个双亲的孩子结点互称为兄弟。        路径:结点序列 n1, n2, …, nk 称为一条由 n1 至 nk 的路径,当且仅当满足结点 ni 是 ni+1 的双亲(1<=i<k)的关系。        路径长度:路径上经过的边的个数。        祖先、子孙:如果有一条路径从结点 x 到结点 y,则 x 称为 y 的祖先,而 y 称为 x 的子孙。        结点所在层数:根结点的层数为 1;对其余结点,若某结点在第 k 层,则其孩子结点在第 k+1 层。        树的深度(高度):树中所有结点的最大层数。        树的宽度:树中每一层结点个数的最大值。        树的度:树中各结点度的最大值。        树的路径长度:  从根到每个结点的路径长度总和        备注: 在线性结构中,逻辑关系表现为前驱——后继,一对一; 在树结构中,逻辑关系表现为双亲——孩子,一对多。        森林: 森林是m(m≥0)棵互不相交的树的集合, m可为0, 即空森林。3.1.2 树的性质        结点数=总度数+1        度为m的树第 i 层至多有 个结点(i≥1)        高度为h的m叉树至多有 个结点        具有n个结点的m叉树的最小高度为 最小高度推理过程图:3.1.3 树与森林的遍历树的遍历:先根遍历(先根后子树)后根遍历(先子树后根)层序遍历森林的遍历:前序遍历(先根, 后子树)中序遍历(先子树后根, 其实就是后序遍历树)区别与联系:         1) 树的前序遍历等价于其树转化二叉树的前序遍历!        2) 树的后序遍历等价于其树转化二叉树的中序遍历!3.1.4 树的存储结构双亲表示法图:孩子表示法图:孩子兄弟表示法图(树/森林转化为二叉树):3.1.5 树转二叉树在树转为二叉树后, 有以下结论:        1) 树的叶子结点数量 = 二叉树左空指针数量(形象理解为树越宽, 兄弟越多, 越是向右长)        2) 树的非叶子结点数量 = 二叉树右空指针-1(非叶子必有儿子, 右指针由儿子提供, -1是根节点多了一个右空指针)3.2 二叉树3.2.1 二叉树的性质斜树:左斜树:所有结点都只有左子树的二叉树右斜树:所有结点都只有右子树的二叉树        满二叉树:所有分支结点都存在左子树和右子树,且所有叶子都在同一层上的二叉树        完全二叉树:在满二叉树中,从最后一个结点开始,连续去掉任意个结点得到的二叉树完全二叉树特点:叶子结点只能出现在最下两层且最下层的叶子结点都集中在二叉树的左面完全二叉树中如果有度为 1 的结点,只可能有一个,且该结点只有左孩子深度为 k 的完全二叉树在 k-1 层上一定是满二叉树在同样结点个数的二叉树中,完全二叉树的深度最小        性质:在二叉树中,如果叶子结点数为 n0,度为 2 的结点数为 n2,则有: n0=n2+1证明: 设 n 为二叉树的结点总数,n1 为二叉树中度为 1 的结点数,则有: n=n0+n1+n2        在二叉树中,除了根结点外,其余结点都有唯一的一个分枝进入,一个度为 1 的结点射出一个分枝,一个度为 2 的结点射出两个分枝,所以有:n=n1+2n2+1        性质:二叉树的第 i 层上最多有个结点(i≥1)        性质:一棵深度为 k 的二叉树中,最多有 个结点        性质:具有 n 个结点的完全二叉树的深度为 向下取整+1 (或向上取整)证明:设具有 n 个结点的完全二叉树的深度为 k,则:≤n  <对不等式取对数,有:k-1 ≤ <k即:<k ≤ +1由于 k 是整数,故必有k= +1         性质:对一棵具有 n 个结点的完全二叉树中从 1 开始按层序编号,对于任意的序号为 i(1≤i≤n)的结点(简称结点 i),有:如果 i>1,则结点 i 的双亲结点的序号为 i/2,否则结点 i 无双亲结点如果 2i≤n,则结点 i 的左孩子的序号为 2i,否则结点 i 无左孩子如果 2i+1≤n,则结点 i 的右孩子的序号为2i+1,否则结点 i 无右孩子        性质:若已知一棵二叉树的前序序列和中序序列,或者中序序列和后序序列,能唯一确定一颗二叉树。 3.2.2 二叉树的遍历        从根结点出发,按照某种次序访问树中所有结点,并且每个结点仅被访问一次。前序遍历(深度优先遍历)中序遍历后序遍历层序遍历(广度优先遍历)3.2.3 二叉树的存储链式存储图:顺序存储图:3.2.4 线索二叉树        利用二叉树中n+1个空指针, 将指针指向结点的前驱和后继。线索二叉树是加上线索的链表结构,  是一种物理结构存储结构:示例图:三种线索化的对比图: 各自特点:3.3 哈夫曼树和哈夫曼编码        带权路径长度(WPL):从根结点到各个叶子结点的路径长度与相应叶子结点权值的乘积之和        最优二叉树(哈夫曼树):给定一组具有确定权值的叶子结点,带权路径长度最小的二叉树特点:权值越大的叶子结点越靠近根结点只有度为 0 和度为 2 的结点,不存在度为 1 的结点构造过程中共新建了n-1个结点, 因此总结点数为2n-1        前缀编码:在一组编码中,任一编码都不是其它任何编码的前缀, 前缀编码保证了在解码时不会有多种可能。         度为m的哈夫曼树: 通过只有度为m和度为0求解非叶子结点 3.4 并查集        存储结构: 双亲表示法        实现功能: 并查(并两个集合, 查根结点)        优化: 小树并到大树, "高树变矮树"(压缩路径)第四章 图        定义:顶点集V和边集E组成,记为G = (V, E)        注意:线性表可以是空表,树可以是空树,但图不可以是空,即V一定是非空集, 边集E可以为空        子图:若图G=(V, E),G'=(V', E'),如果V' 属于 V 且E' 属于E,则称图G'是G的子图4.1 图的基本概念图的分类:        无向边:表示为(vi,vj),顶点vi和vj之间的边没有方向        有向边(弧):表示为<vi,vj>,从vi 到vj 的边有方向, vi为弧尾, vj为弧头        稠密图:边数很多的图        稀疏图:边数很少的图        无向完全图:无向图中,任意两个顶点之间都存在边        有向完全图:有向图中,任意两个顶点之间都存在方向相反的两条弧度、入度和出度:        顶点的度:在无向图中,顶点 v 的度是指依附于该顶点的边数,通常记为TD (v)        顶点的入度:在有向图中,顶点 v 的入度是指以该顶点为弧头的弧的数目,记为ID (v);        顶点的出度:在有向图中,顶点 v 的出度是指以该顶点为弧尾的弧的数目,记为OD (v);        握手定理: 路径:         回路(环):第一个顶点和最后一个顶点相同的路径        简单路径:序列中顶点不重复出现的路径        简单回路(简单环):除第一个和最后一个顶点外,其余顶点不重复出现的回路。        路径长度:非带权图——路径上边的个数        路径长度:带权图——路径上边的权值之和         极大连通子图: 连通的情况下, 包含尽可能多的边和顶点, 也称连通分量        极小连通子图: 删除该子图中任何一条b边, 子图不再连通, 如生成树无向连通图:        连通顶点:在无向图中,如果顶点vi和顶点vj(i≠j)之间有路径,则称顶点vi和vj是连通的        连通图:在无向图中,如果任意两个顶点都是连通的,则称该无向图是连通图        连通分量:非连通图的极大连通子图、连通分量是对无向图的一种划分连通分量示意图:有向强连通图、强连通分量:        强连通顶点:在有向图中,如果从顶点vi到顶点vj和从顶点vj到顶点vi均有路径,则称顶点vi和vj是强连通的        强连通图:在有向图中,如果任意两个顶点都是强连通的,则称该有向图是强连通图        强连通分量:非强连通图的极大连通子图强连通分量示意图: 子图与生成子图:常考点无向图:        所有顶点的度之和=2|E|        若G是连通图,则最少有 n-1 条边(树),若 |E|>n-1,则一定有回路        若G是非连通图,则最多可能有 条边 (n-1个完全图+1个孤点)        无向完全图共有条边有向图:        所有顶点的出度之和=入度之和=|E|        所有顶点的度之和=2|E|        若G是强连通图,则最少有 n 条边(形成回路)        有向完全图共有条边图的遍历:从图中某一顶点出发访问图中所有顶,并且每个结点仅被访问一次。深度优先遍历序列(dfs)广度优先遍历序列(bfs)    备注:  调⽤BFS/DFS函数的次数 = 连通分量数4.2 图的存储结构 邻接矩阵:一维数组:存储图中顶点的信息二维数组(邻接矩阵):存储图中各顶点之间的邻接关系特点:一个图能唯一确定一个邻接矩阵,存储稀疏图时,浪费空间。空间复杂度为: O()。示意图:性质 (行*列) :邻接表:顶点表:所有边表的头指针和存储顶点信息的一维数组边表(邻接表):顶点 v 的所有邻接点链成的单链表示意图:特点:空间复杂度为:O(n+e), 适合存储稀疏图。两者区别:十字链表法图:备注:         1) 十字链表只用于存储有向图        2) 顺着绿色线路找: 找到指定顶点的所有出边        3) 顺着橙色线路找: 找到指定顶点的所有入边        4) 空间复杂度:O(|V|+|E|)邻接多重表图:备注:        1) 邻接多重表只适用于存储无向图        2) 空间复杂度:O(|V|+|E|)四者区别: 4.3 最小生成树        生成树:连通图的生成树是包含全部顶点的一个极小连通子图, 可用DFS和BFS生成。        生成树的代价:在无向连通网中,生成树上各边的权值之和        最小生成树:在无向连通网中,代价最小的生成树        性质: 各边权值互不相等时, 最小生成树是唯一的。边数为顶点数-1生成森林示意图:4.3.1 Prim算法        从某⼀个顶点开始构建⽣成树;每次将代价最⼩的新顶点纳⼊⽣成树,直到所有顶点都纳⼊为⽌。基于贪心算法的策略。        时间复杂度:O(|V|2) 适合⽤于边稠密图。4.3.2 Kruskal 算法(克鲁斯卡尔)        每次选择⼀条权值最⼩的边,使这条边的两头连通(原本已经连通的就不选), 直到所有结点都连通。基于贪心算法的策略。        时间复杂度:O( |E|log2|E| ) 适合⽤于边稀疏图。4.4 最短路径        非带权图: 边数最少的路径(广度优先遍历)        带权图: 边上的权值之和最少的路径4.4.1 Dijkstra算法        时间复杂度:O(n2)        备注: Dijkstra 算法不适⽤于有负权值的带权图4.4.2 Floyd算法核心代码:        时间复杂度:O(n3)        备注: 可以⽤于负权值带权图, 不能解决带有“负权回路”的图三者区别:4.5 有向⽆环图(DAG)描述表达式 (简化前) :描述表达式 (简化后) :4.6 拓扑排序        AOV⽹(Activity On Vertex NetWork,⽤顶点表示活动的⽹): ⽤DAG图(有向⽆环图)表示⼀个⼯程。顶点表示活动,有向边表示活动Vi必须先于活动Vj进⾏如图:拓扑排序的实现:        ① 从AOV⽹中选择⼀个没有前驱(⼊度为0)的顶点并输出。        ② 从⽹中删除该顶点和所有以它为起点的有向边。        ③ 重复①和②直到当前的AOV⽹为空或当前⽹中不存在⽆前驱的顶点为⽌。逆拓扑排序(可用DFS算法实现):        ① 从AOV⽹中选择⼀个没有后继(出度为0)的顶点并输出。        ② 从⽹中删除该顶点和所有以它为终点的有向边。        ③ 重复①和②直到当前的AOV⽹为空备注: 上三角(对角线为0)矩阵, 必不存在环, 拓扑序列必存在, 但拓扑不唯一。(拓扑唯一, 图不唯一)4.7 关键路径        在带权有向图中,以顶点表示事件,以有向边表示活动,以边上的权值表示完成该活动的开销(如完成活动所需的时间),称之为⽤边表示活动的⽹络,简称AOE⽹示意图:        关键活动: 从源点到汇点的有向路径可能有多条,所有路径中,具有最⼤路径⻓度的路径称为 关键路径,⽽把关键路径上的活动称为关键活动。        事件vk的最早发⽣时间: 决定了所有从vk开始的活动能够开⼯的最早时间。        活动ai的最早开始时间: 指该活动弧的起点所表⽰的事件的最早发⽣时间。        事件vk的最迟发⽣时间: 它是指在不推迟整个⼯程完成的前提下,该事件最迟必须发⽣的时间。        活动ai的最迟开始时间: 它是指该活动弧的终点所表示事件的最迟发⽣时间与该活动所需时间之差。        活动ai的时间余量:表⽰在不增加完成整个⼯程所需总时间的情况下,活动ai可以拖延的时间。d(k)=0的活动就是关键活动, 由关键活动可得关键路径。示例图:第五章 查找        静态查找 :不涉及插入和删除操作的查找        动态查找 :涉及插入和删除操作的查找        查找⻓度: 在查找运算中,需要对⽐关键字的次数称为查找⻓度        平均查找长度:衡量查找算法的效率公式:5.1 顺序查找(线性查找):        顺序查找适合于存储结构为顺序存储或链接存储的线性表。  基本思想:从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。        时间复杂度: O(n)。有序顺序查找的ASL图:        无序查找失败时的平均查找长度:  n+1次 (带哨兵的情况)5. 2 折半查找:        元素必须是有序的,顺序存储结构。判定树是一颗平衡二叉树, 树高 (由n=-1得来)。        基本思想:用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表。        公式:mid=(low+high)/2, 即mid=low+1/2*(high-low);           1)相等,mid位置的元素即为所求           2)>,low=mid+1;                3)<,high=mid-1。        时间复杂度: 二叉判定树的构造:         备注:对于静态查找表,一次排序后不再变化,折半查找能得到不错的效率。但对于需要频繁执行插入或删除操作的数据集来说,不建议使用。失败结点的ASL不是方形结点, 而是其父节点。5.3 分块查找        分块查找,⼜称索引顺序查找。        基本思想:将查找表分为若干子块, 块内的元素可以无序, 块间的元素是有序的, 即前一个快的最大元素小于后一个块的最大元素。再建立索引表, 索引表中的每个元素含有各块的最大关键字和第一个元素的地址。索引表按关键字有序排列。示意图:备注:         1) 设索引查找和块内查找的平均查找⻓度分别为LI、LS,则分块查找的平均查找⻓度为ASL=LI + LS        2) 将长度为n的查找表均匀分为b块, 每块s个记录, 在等概率情况下, 若在块内和索引表中均采用顺序查找, 则平均查找长度为:5.4 二叉排序树        又称二叉查找树(BST,Binary Search Tree), 是具有如下性质的二叉树:左子树结点值 < 根结点值 < 右子树结点值        二叉排序树的插入:  新插入的结点 一定是叶子。二叉排序树的删除        1) 情况一, 删除叶结点, 直接删除        2) 情况二, 待删除结点只有一颗子树, 让子树代替待删除结点        3) 情况三, 待删除结点有左, 右子树, 则令待删除的直接前驱(或直接后继(中序遍历))代替待删除结点。示意图: (30为直接前驱, 60为直接后继)平均查找效率: 主要取决于树的高度。时间复杂度: 5.5 平衡二叉树        简称平衡树(AVL树), 树上任一结点的左子树和右子树的 高度之差不超过1。 结点的平衡因子=左子树高-右子树高。平衡二叉树的插: LL型:RR型:RL型:LR型:        平衡二叉树的删除: 同上考点:        假设以表示深度为h的平衡树中含有的最少结点数。 则有 = 0, = 1, = 2,并且有=  +          时间复杂度: 5.6 红黑树        与AVL树相比, 插入/删除 很多时候不会破坏“红黑”特性,无需频繁调整树的形态。因为AVL是高度差严格要求不超过1, 红黑树高度差不超过2倍, 较为宽泛。定义:        ①每个结点或是红色,或是黑色的        ②根节点是黑色的        ③叶结点(外部结点、NULL结点、失败结点)均是黑色的        ④不存在两个相邻的红结点(即红结点的父节点和孩子结点均是黑色)        ⑤对每个结点,从该节点到任一叶结点的简单路径上,所含黑结点的数目相同        口诀: 左根右,根叶黑 不红红,黑路同示例图:性质:        性质1:从根节点到叶结点的最长路径不大于最短路径的2倍 (红结点只能穿插 在各个黑结点中间)        性质2:有n个内部节点的红黑树高度          结论: 若根节点黑高为h,内部结点数(关键字)最多有 , 最少有示例图:红黑树的插入操作:红黑树的插入示例图:         红黑树的删除: 和“二叉排序树的删除”一样! 具体还是算了吧, 放过自己。。。        时间复杂度: 5.7 B树        B树,⼜称多路平衡查找树,B树中所被允许的孩⼦个数的最⼤值称为B树的阶,通常⽤m表示。 m阶B树的特性:        1)树中每个结点⾄多有m棵⼦树,即⾄多含有m-1个关键字。        2)若根结点不是终端结点,则⾄少有两棵⼦树。        3)除根结点外的所有⾮叶结点⾄少有 棵⼦树,即⾄少含有个关键字。         4) 所有的叶结点都出现在同⼀层次上,并且不带信息, ( 指向这些结点的指针为空 ) 。        5) 最小高度:    (n为关键字, 注意区分结点)        6) 最大高度:         7) 所有⼦树⾼度要相同        8) 叶结点对应查找失败的情况, 即n个关键字有n+1个叶子结点示例图: B树的插入(5阶为例):B树的删除:        1) 若被删除关键字在终端节点,则直接删除该关键字 (要注意节点关键字个数是否低于下限 ⌈m/2⌉ − 1)        2) 若被删除关键字在⾮终端节点,则⽤直接前驱或直接后继来替代被删除的关键字 删除77:删除38:删除90:        3) 若被删除关键字所在结点删除前的关键字个数低于下限,且此时与该结点相邻的左、右兄弟结 点的关键字个数均=⌈m/2⌉ − 1,则将关键字删除后与左(或右)兄弟结点及双亲结点中的关键字进⾏合并 删除49: 5.8 B+树⼀棵m阶的B+树需满⾜下列条件        1)每个分⽀结点最多有m棵⼦树(孩⼦结点)。        2)⾮叶根结点⾄少有两棵⼦树,其他每个分⽀结点⾄少有 ⌈m/2⌉ 棵⼦树。        3)结点的⼦树个数与关键字个数相等。        4)所有叶结点包含全部关键字及指向相应记录的指针,叶结点中将关键字按⼤⼩顺序排列,并且相邻叶结点按⼤⼩顺序相互链接起来        5)所有分⽀结点中仅包含它的各个⼦结点中关键字的最⼤值及指向其⼦结点的指针。所有⾮叶结点仅起索引作⽤,        6) 所有⼦树⾼度要相同B+树示例图:B+树与B树的对比图:5.9 哈希表(Hash)        根据数据元素的关键字 计算出它在散列表中的存储地址。        哈希函数: 建⽴了“关键字”→“存储地址”的映射关系。        冲突(碰撞):在散列表中插⼊⼀个数据元素时,需要根据关键字的值确定其存储地址,若 该地址已经存储了其他元素,则称这种情况为“冲突(碰撞)”        同义词:若不同的关键字通过散列函数映射到同⼀个存储地址,则称它们为“同义词”        复杂度分析:对于无冲突的Hash表而言,查找复杂度为O(1) 5.9.1 构造哈希函数        1) 除留余数法 —— H(key) = key % p, 取⼀个不⼤于m但最接近或等于m的质数p        适⽤场景:较为通⽤,只要关键字是整数即可        2) 直接定址法 —— H(key) = key 或 H(key) = a*key + b        适⽤场景:关键字分布基本连续        3) 数字分析法 —— 选取数码分布较为均匀的若⼲位作为散列地        适⽤场景:关键字集合已知,且关键字的某⼏个数码位分布均匀        4) 平⽅取中法(二次探测法)——取关键字的平⽅值的中间⼏位作为散列地址        适⽤场景:关键字的每位取值都不够均匀。5.9.2 处理冲突拉链法示意图:开放定址法:        1) 线性探测法        2) 平⽅探测法        3) 双散列法        4) 伪随机序列法示意图:        删除操作: 采用开放定址法时, 只能逻辑删除。        装填因子: 表中记录数 / 散列表长度 。        备注: 平均查找长度的查找失败包含不放元素的情况。(特殊: 根据散列函数来算: 2010真题)        聚集: 处理冲突的方法选取不当,而导致不同关键字的元素对同一散列地址进行争夺的现象第六章 排序        稳定 :如果a原本在b前面,而a=b,排序之后a仍然在b的前面;        内排序 :所有排序操作都在内存中完成;        外排序 :由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行。参考博客:超详细十大经典排序算法总结(java代码)c或者cpp的也可以明白_Top_Spirit的博客-CSDN博客6.1 直接插入排序动图演示:         优化: 折半插入排序6.2 希尔排序        又称缩小增量排序, 先将待排序表分割成若⼲形如 L[i, i + d, i + 2d,…, i + kd] 的“特殊”⼦表,对各个⼦表分别进⾏直接插⼊排序。缩⼩增量d,重复上述过程,直到d=1为⽌。建议每次将增量缩⼩⼀半。示例图:6.3 冒泡排序动图演示:6.4 快速排序算法思想:        1) 在待排序表L[1…n]中任取⼀个元素pivot作为枢轴(或基准)        2) 通过⼀趟排序将待排序表划分为独⽴的两部分L[1…k-1]和L[k+1…n],使得L[1…k-1]中的所有元素⼩于pivot,L[k+1…n]中的所有元素⼤于等于 pivot,则pivot放在了其最终位置L(k)上,这个过程称为⼀次“划分”。        3) 然后分别递归地对两个⼦表重复上述过程,直每部分内只有⼀个元素或空为⽌,即所有元素放在了其最终位置上。示例图:  6.5 简单选择排序        算法思想: 每⼀趟在待排序元素中选取关键字最⼩的元素加⼊有序⼦序列。动画演示:6.6 堆排序        ⼤根堆: 若满⾜:L(i)≥L(2i)且L(i)≥L(2i+1) (1 ≤ i ≤n/2 )        ⼩根堆: 若满⾜:L(i)≤L(2i)且L(i)≤L(2i+1) (1 ≤ i ≤n/2 )大根堆示例图:6.6.1 建立大根堆        思路:从开始, 把所有⾮终端结点都检查⼀遍,是否满足大根堆的要求,如果不满⾜,则进⾏调整。若元素互换破坏了下⼀级的堆,则采⽤相同的方法继续往下调整(⼩元素不断“下坠”)小元素下坠示例图:          结论: 建堆的过程,关键字对⽐次数不超过4n,建堆时间复杂度=O(n)6.6.2 堆的插入与删除        插入: 将新增元素放到表尾, 而后根据大小根堆进行上升调整。        删除: 被删除的元素⽤堆底元素替代,然后让该 元素不断“下坠”,直到⽆法下坠为⽌排序动图演示:6.7 归并排序        该算法是采用分治法, 把两个或多个已经有序的序列合并成⼀个。2路归并图:        结论:n个元素进⾏k路归并排序,归并趟数= 6.8 基数排序 (低位优先)        基数排序是非比较的排序算法,对每一位进行排序,从最低位开始排序,复杂度为O(kn),为数组长度,k为数组中的数的最大的位数;动图演示:         时间复杂度: ⼀趟分配O(n),⼀趟收集O(r),总共 d 趟分配、收集,总的时间复杂度=O(d(n+r)) , 其中把d为关键字拆 为d个部分, r为每个部分可能 取得 r 个值。基数排序适用场景:        ①数据元素的关键字可以⽅便地拆分为 d 组,且 d 较⼩        ②每组关键字的取值范围不⼤,即 r 较⼩        ③数据元素个数 n 较⼤如:内部排序总结:         基本有序:  直接插入(比较最少), 冒泡(趟数最少)6.9 外部排序        数据元素太多,⽆法⼀次全部读⼊内存进⾏排序, 读写磁盘的频率成为衡量外部排序算法的主要因素。示例图:多路归并:        结论: 采⽤多路归并可以减少归并趟数,从⽽减少磁盘I/O(读写)次数。对 r 个初始归并段,做k路归并,则归并树可⽤ k 叉树表示 若树⾼为h,则归并趟数 = h-1 = 。K越大, r越小, 读写磁盘次数越少。(缺点: k越大, 内部排序时间越大)6.9.1 败者树        使⽤k路平衡归并策略,选出⼀个最小元素需要对⽐关键字 (k-1)次,导致内部归并所需时间增加。因此引入败者树。示例图:        结论: 对于 k 路归并,第⼀次构造败者 树需要对⽐关键字 k-1 次 , 有了败者树,选出最⼩元素,只需对⽐关键字次6.9.2 置换-选择排序        使用置换-选择排序可以减少初始化归并段。示意图: 6.9.3 最佳归并树原理图:        注意:对于k叉归并,若初始归并段的数量⽆法构成严格的 k 叉归并树, 则需要补充⼏个⻓度为 0 的“虚段”,再进⾏ k 叉哈夫曼树的构造。示例图: 添加虚段数目: 难点:结束!  !  !注: 以上部分图片素材来自王道数据结构我要的图文并茂关注

大家在看

recommend-type

STM32H743驱动SDRAM读写(W9825G6KH)【支持STM32H7系列单片机_寄存器库驱动】.zip

STM32H743驱动程序,寄存器库。 项目支持STM32H7系列单片机调测和移植。 项目代码可直接编译、运行。
recommend-type

Android_Get_IMEI.rar

IMEI是一个缩写,移动设备识别码 (国际移动设备识别码)。这是每个设备的唯一数字序列和特殊字符。这个想法非常类似于网卡的MAC地址。这使得每月在市场上的数百个设备中定位特定设备变得容易。创建Mobile Delphi 10.3应用程序移动APP,确保只有授权的“人员”APP才能查看公司信息是至关重要的。
recommend-type

该压缩包里是详细介绍下载和安装tableau的步骤:包括一、下载和安装Tableau、二、Tableau页面介绍等等

该压缩包里是详细介绍下载和安装tableau的步骤:包括一、下载和安装Tableau、二、Tableau页面介绍、三、Tableau绘制条形图、四、Tableau绘制直方图、五、数据预处理、六、绘制折线图、七、饼图与环形图、八、基本表、九、树形图、十、气泡图与词云、十一、Tableau制作标靶图、十二、Tableau制作甘特图、十三、Tableau进阶、十四、填充地图、十五、多维地图、十六、数据分(层级)结构、十七、数据分组、十八、计算字段、十九、人口金字塔、二十、范围-线图
recommend-type

RS232驱动.rar

支持当前RS232转USB大多数工具线驱动,附带安装使用手册。
recommend-type

HDD Regenerator

HDD Regenerator

最新推荐

recommend-type

电子商务和网络营销的概念区别(1).docx

电子商务和网络营销的概念区别(1).docx
recommend-type

单片机实验开发板程序编写指南

单片机实验程序的知识点可以从单片机的概念、开发板的作用、实验的目的以及具体程序编写与调试方面进行详细阐述。 首先,单片机(Single-Chip Microcomputer),又称微控制器,是将中央处理单元(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入输出接口等主要计算机功能部件集成在一片芯片上的微小型计算机。它具备独立处理特定任务的能力,广泛应用于嵌入式系统中。单片机由于其成本低廉、体积小、功耗低、控制简单等特点,被广泛应用于家用电器、办公自动化、汽车电子、工业控制等众多领域。 接着,开发板(Development Board)是为了方便开发者使用单片机而设计的一种实验平台,通常集成了单片机、电源管理模块、外围接口电路、调试接口、编程接口等。开发板的主要作用是提供一个简洁的硬件环境,让开发者可以更容易地进行实验、测试和程序开发。在使用开发板进行单片机实验时,可以通过编程器将用户编写的程序烧录到单片机中,然后进行实际操作和测试。 实验的目的通常是为了验证某些特定的功能或者算法。在实验中,开发者可以使用单片机开发板来实现对输入信号的检测、处理和输出控制。例如,可以编写程序使单片机控制LED灯的亮灭,或者读取按键输入并根据按键的不同进行不同的控制。实验程序可以是一个简单的循环处理,也可以是复杂的算法实现,如数据通信、中断处理、定时器使用等。 在编写单片机实验程序时,首先需要了解所使用的单片机的指令集和硬件资源。以常用的8051单片机为例,需要熟悉其寄存器配置、特殊功能寄存器(SFR)的使用以及I/O口操作等。编写程序时,通常会使用C语言或者汇编语言。C语言因其可读性好、编写效率高而更受欢迎。开发者可以使用Keil uVision、IAR Embedded Workbench等集成开发环境(IDE)来编写、编译和调试代码。 在程序调试阶段,可以通过开发板上的调试接口,如JTAG、ISP等,将编译好的程序下载到单片机中。调试过程通常包括设置断点、单步执行、查看寄存器和内存内容等操作。通过调试可以发现并修正程序中的逻辑错误或硬件交互问题。 另外,为了保证程序的可靠性和稳定性,实验程序设计时还应考虑异常处理、资源管理以及功耗优化等因素。编写高效的单片机程序不仅仅是让程序按预期运行,还要考虑到程序运行的效率、资源消耗以及对异常情况的应对。 总之,基于开发板的单片机实验程序开发涉及到硬件理解、软件编程、程序调试等多个环节。开发者需要将理论知识与实际操作相结合,通过不断的学习和实践,掌握单片机编程和应用开发的关键技能。这不仅需要对单片机的基础知识有深入的了解,还需要对开发板的功能和特性有充分的认识,从而能够设计出高效、稳定和实用的单片机应用系统。
recommend-type

【性能测试基准】:为RK3588选择合适的NVMe性能测试工具指南

# 1. NVMe性能测试基础 ## 1.1 NVMe协议简介 NVMe,全称为Non-Volatile Memory Express,是专为固态驱动器设计的逻辑设备接口规范。与传统的SATA接口相比,NVMe通过使用PCI Express(PCIe)总线,大大提高了存储设备的数据吞吐量和IOPS(每秒输入输出操作次数),特别适合于高速的固态存储设备。
recommend-type

ubuntu 检查下载源

<think>我们正在讨论Ubuntu系统中检查和配置下载源(软件源)的方法。用户的需求很明确:如何检查当前配置的下载源,以及如何修改它们。根据引用[1]和[2]中的信息,我们知道在Ubuntu中,软件源配置存储在`/etc/apt/sources.list`文件中以及`/etc/apt/sources.list.d/`目录下的额外文件中。修改源通常包括备份当前配置、编辑源列表文件、更新软件包列表等步骤。步骤分解:1.检查当前下载源:可以通过查看`sources.list`文件和`sources.list.d/`目录中的文件内容来实现。2.修改下载源:包括备份、编辑源列表(替换为新的镜像源地址
recommend-type

办公软件:下载使用指南与资源包

标题中提到的“offices办公软件”,指的是Office套件,这是一系列办公应用程序的集合,通常包括文字处理软件(如Microsoft Word)、电子表格软件(如Microsoft Excel)、演示文稿制作软件(如Microsoft PowerPoint),以及邮件管理软件等。该软件包旨在帮助用户提高工作效率,完成文档撰写、数据分析、演示制作等多种办公任务。 描述部分非常简单,提到“一个很好公办软件你一定很爱他快来下载吧加强团结”,表达了对软件的高度评价和期待用户下载使用,以促进工作中的团结协作。不过,这段描述中可能存在错别字或排版问题,正确的表达可能是“一款非常好的办公软件,你一定很爱它,快来下载吧,加强团结”。 标签部分为“dddd”,这显然不是一个有效的描述或分类标签,它可能是由于输入错误或者故意设置的占位符。 压缩包子文件的文件名称列表中包含了以下文件: - keygen.exe:这是一个序列号生成器的可执行文件,通常用于生成软件的注册码或激活码,使得用户能够在不支付授权费用的情况下使用某些付费软件。然而,这通常是违反软件许可协议的行为,也可能涉及到法律风险。 - 说明_Readme.html:这是一个HTML格式的说明文件,通常会包含该软件的安装指南、使用方法、版本信息、已知问题、版权声明和致谢等内容。阅读这个文件可以帮助用户正确安装和使用软件。 - OfficeSuite 4_50.sis:这是一个适用于Symbian操作系统的安装包文件,SIS是Symbian Install File的缩写。从文件名可以看出,这是一个名为“OfficeSuite”的软件的第50个版本,版本号为4.0。Symbian曾是智能手机操作系统之一,通常用于诺基亚等品牌的设备上,但随着智能手机市场的变化,现在已很少见,市场上主流的智能手机操作系统已转向Android和iOS。 - resource:这个名称很模糊,没有文件扩展名,因此无法确定具体是什么类型的资源。它可能是一个包含字体、图像或其他资源文件的文件夹,这些资源文件用于支持Office套件在不同设备或操作系统上的运行。 在使用这些文件时,特别是涉及到keygen.exe这类软件时,用户应谨慎行事。应避免使用未经授权的软件,不仅因为其可能违反法律,还可能对计算机系统造成安全风险。在下载和安装任何软件时,应确保来源的可靠性,并从官方渠道获取正版授权。此外,对于已经过时或不再受支持的软件,比如针对Symbian系统的OfficeSuite,用户可能需要寻找其他替代方案来满足当前的办公需求。
recommend-type

【固态硬盘寿命延长】:RK3588平台NVMe维护技巧大公开

# 1. 固态硬盘寿命延长的基础知识 ## 1.1 固态硬盘的基本概念 固态硬盘(SSD)是现代计算设备中不可或缺的存储设备之一。与传统的机械硬盘(HDD)相比,SSD拥有更快的读写速度、更小的体积和更低的功耗。但是,SSD也有其生命周期限制,主要受限于NAND闪存的写入次数。 ## 1.2 SSD的写入次数和寿命 每块SSD中的NAND闪存单元都有有限的写入次数。这意味着,随着时间的推移,SSD的
recommend-type

DSNPx是什么

<think>我们正在处理一个关于保险精算领域的问题,具体是定期寿险净保费计算。用户询问的是"DSNPx"的定义或含义,特别是在计算机领域的含义。根据提供的代码和上下文,我们可以分析如下:1.在代码中,变量名`NPxM`和`NPxF`分别代表男性(M)和女性(F)的净保费(NetPremium)。而前缀"DS"可能是"定期寿险"(DingQiShouXian)的缩写,因为函数名为`DingQi`,代表定期寿险。2.因此,`DSNPxM`和`DSNPxF`分别表示定期寿险(DS)的净保费(NP)对于男性(x年龄,M)和女性(x年龄,F)。3.在精算学中,净保费是指不考虑费用和利润的纯风险保费,根
recommend-type

MW6208E量产工具固件升级包介绍

标题中“MW6208E_8208.rar”表示一个压缩文件的名称,其中“rar”是一种文件压缩格式。标题表明,压缩包内含的文件是关于MW6208E和8208的量产工具。描述中提到“量产固件”,说明这是一个与固件相关的工作工具。 “量产工具”指的是用于批量生产和复制固件的软件程序,通常用于移动设备、存储设备或半导体芯片的批量生产过程中。固件(Firmware)是嵌入硬件设备中的一种软件形式,它为硬件设备提供基础操作与控制的代码。在量产阶段,固件是必须被植入设备中以确保设备能正常工作的关键组成部分。 MW6208E可能是某个产品型号或器件的型号标识,而8208可能表示该量产工具与其硬件的兼容型号或版本。量产工具通常提供给制造商或维修专业人士使用,使得他们能够快速、高效地将固件程序烧录到多个设备中。 文件名称列表中的“MW6208E_8200量产工具_1.0.5.0_20081201”说明了具体的文件内容和版本信息。具体地,文件名中包含以下知识点: 1. 文件名称中的“量产工具”代表了该软件的用途,即它是一个用于大规模复制固件到特定型号设备上的工具。 2. 版本号“1.0.5.0”标识了软件的当前版本。版本号通常由四个部分组成:主版本号、次版本号、修订号和编译号,这些数字提供了软件更新迭代的信息,便于用户和开发者追踪软件的更新历史和维护状态。 3. “20081201”很可能是该工具发布的日期,表明这是2008年12月1日发布的版本。了解发布日期对于选择合适版本的工具至关重要,因为不同日期的版本可能针对不同的硬件或固件版本进行了优化。 在IT行业中,固件量产工具的使用需要一定的专业知识,包括对目标硬件的了解、固件的管理以及软件工具的操作。在进行量产操作时,还需注意数据备份、设备兼容性、固件版本控制、升级过程中的稳定性与安全性等因素。 综上所述,提供的文件信息描述了一个特定于MW6208E和8208型号的固件量产工具。该工具是用于设备生产过程中批量烧录固件的重要软件资源,具有版本标识和发布日期,能够帮助专业人士快速有效地进行固件更新或初始化生产过程。对于从事该领域工作的技术人员或生产制造商而言,了解和掌握量产工具的使用是必要的技能之一。
recommend-type

【故障恢复策略】:RK3588与NVMe固态硬盘的容灾方案指南

# 1. RK3588处理器与NVMe固态硬盘的概述 ## 1.1 RK3588处理器简介 RK3588是Rockchip推出的一款高端处理器,具备强大的性能和多样的功能,集成了八核CPU和六核GPU,以及专用的AI处理单元,主要用于高端移动设备、边缘计算和
recommend-type

<dependency> <groupId>com.google.code.ksoap2</groupId> <artifactId>ksoap2-j2se-core</artifactId> <version>3.6.2</version> </dependency> <repositories> <repository> <id>central</id> <name>Maven Central</name> <url>https://repo.maven.apache.org/maven2</url> </repository> <repository> <id>aliyun</id> <name>Aliyun Maven</name> <url>https://maven.aliyun.com/repository/public</url> </repository> </repositories> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.11.0</version> <!-- 添加版本号 --> <!-- 原有配置保持不变 --> </plugin> 把上面的代码整合进下面的代码中 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>jdwlw</groupId> <artifactId>jdwlw</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>war</packaging> <name>maven Maven Webapp</name> <url>http://maven.apache.org</url> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties> <dependencies> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>3.8.1</version> <scope>test</scope> </dependency> <!-- <dependency> <groupId>javax.servlet</groupId> <artifactId>javax.servlet-api</artifactId> <version>3.1.0</version> </dependency> --> <dependency> <groupId>javax.servlet</groupId> <artifactId>servlet-api</artifactId> <version>2.5</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-webmvc</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-context</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-core</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-beans</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-aop</artifactId> <version>4.1.6.RELEASE</version> </dependency> <!-- https://mvnrepository.com/artifact/org.ksoap2/ksoap2 --> <dependency> <groupId>org.ksoap2</groupId> <artifactId>ksoap2</artifactId> <version>2.1.2</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-jdbc</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-web</artifactId> <version>4.1.6.RELEASE</version> </dependency> <!-- <dependency> <groupId>org.springframework</groupId> <artifactId>spring-orm</artifactId> <version>4.1.6.RELEASE</version> </dependency> --> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-orm</artifactId> <version>3.2.13.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-context-support</artifactId> <version>3.2.2.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-webmvc-portlet</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-expression</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-aspects</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-websocket</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>quartz</groupId> <artifactId>quartz</artifactId> <version>1.5.2</version> </dependency> <dependency> <groupId>org.apache.ibatis</groupId> <artifactId>ibatis-sqlmap</artifactId> <version>2.3.4.726</version> </dependency> <!-- <dependency>--> <!-- <groupId>com.ibatis</groupId>--> <!-- <artifactId>ibatis2-sqlmap</artifactId>--> <!-- <version>2.1.7.597</version>--> <!-- </dependency>--> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <version>1.2.17</version> </dependency> <dependency> <groupId>commons-io</groupId> <artifactId>commons-io</artifactId> <version>2.4</version> </dependency> <dependency> <groupId>commons-logging</groupId> <artifactId>commons-logging</artifactId> <version>1.2</version> </dependency> <dependency> <groupId>commons-lang</groupId> <artifactId>commons-lang</artifactId> <version>2.6</version> </dependency> <dependency> <groupId>commons-dbcp</groupId> <artifactId>commons-dbcp</artifactId> <version>1.4</version> </dependency> <dependency> <groupId>commons-pool</groupId> <artifactId>commons-pool</artifactId> <version>1.6</version> </dependency> <dependency> <groupId>commons-fileupload</groupId> <artifactId>commons-fileupload</artifactId> <version>1.3.1</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.35</version> </dependency> <dependency> <groupId>com.belerweb</groupId> <artifactId>pinyin4j</artifactId> <version>2.5.0</version> </dependency> <dependency> <groupId>jstl</groupId> <artifactId>jstl</artifactId> <version>1.2</version> </dependency> <dependency> <groupId>com.google.code.gson</groupId> <artifactId>gson</artifactId> <version>2.5</version> </dependency> <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactId>httpclient</artifactId> <version>4.4.1</version> </dependency> <dependency> <groupId>javax.mail</groupId> <artifactId>mail</artifactId> <version>1.5.0-b01</version> </dependency> <!-- 激光消息推送Starts --> <dependency> <groupId>cn.jpush.api</groupId> <artifactId>jpush-client</artifactId> <version>3.1.3</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-api</artifactId> <version>1.7.5</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> <version>1.7.5</version> </dependency> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>17.0</version> </dependency> <dependency> <groupId>com.squareup.okhttp</groupId> <artifactId>mockwebserver</artifactId> <version>1.5.4</version> <scope>test</scope> </dependency> <!-- 激光消息推送END --> <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi</artifactId> <version>3.11</version> </dependency> <dependency> <groupId>net.sf.ehcache</groupId> <artifactId>ehcache</artifactId> <version>2.10.0</version> </dependency> <dependency> <groupId>javax.servlet.jsp</groupId> <artifactId>jsp-api</artifactId> <version>2.2</version> </dependency> <dependency> <groupId>com.lowagie</groupId> <artifactId>itext</artifactId> <version>2.1.7</version> </dependency> <!-- https://mvnrepository.com/artifact/commons-net/commons-net --> <dependency> <groupId>commons-net</groupId> <artifactId>commons-net</artifactId> <version>3.3</version> </dependency> <!-- https://mvnrepository.com/artifact/com.mchange/c3p0 --> <dependency> <groupId>com.mchange</groupId> <artifactId>c3p0</artifactId> <version>0.9.5.2</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.ws.commons.axiom/axiom-api --> <dependency> <groupId>org.apache.ws.commons.axiom</groupId> <artifactId>axiom-api</artifactId> <version>1.2.13</version> </dependency> <!-- https://mvnrepository.com/artifact/dom4j/dom4j --> <dependency> <groupId>dom4j</groupId> <artifactId>dom4j</artifactId> <version>1.6.1</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.axis/axis --> <dependency> <groupId>org.apache.axis</groupId> <artifactId>axis</artifactId> <version>1.4</version> </dependency> <!-- https://mvnrepository.com/artifact/javax.xml.rpc/javax.xml.rpc-api --> <dependency> <groupId>javax.xml.rpc</groupId> <artifactId>javax.xml.rpc-api</artifactId> <version>1.1.1</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.axis2/axis2 --> <dependency> <groupId>org.apache.axis2</groupId> <artifactId>axis2</artifactId> <version>1.7.6</version> <type>pom</type> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.axis2/axis2-adb --> <dependency> <groupId>org.apache.axis2</groupId> <artifactId>axis2-adb</artifactId> <version>1.7.6</version> </dependency> <!-- https://mvnrepository.com/artifact/soap/soap --> <dependency> <groupId>soap</groupId> <artifactId>soap</artifactId> <version>2.3</version> </dependency> <!-- https://mvnrepository.com/artifact/commons-httpclient/commons-httpclient --> <dependency> <groupId>commons-httpclient</groupId> <artifactId>commons-httpclient</artifactId> <version>3.1</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-databind</artifactId> <version>2.9.10.4</version> </dependency> <dependency> <groupId>org.eclipse.paho</groupId> <artifactId>org.eclipse.paho.client.mqttv3</artifactId> <version>1.2.0</version> </dependency> <dependency> <groupId>cn.hutool</groupId> <artifactId>hutool-all</artifactId> <version>5.7.2</version> </dependency> </dependencies> <build> <finalName>jdwlw</finalName> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.8</source> <target>1.8</target> <encoding>utf-8</encoding> <compilerArguments> <extdirs>${project.basedir}/src/main/webapp/WEB-INF/lib</extdirs> </compilerArguments> </configuration> </plugin> </plugins> <resources> <resource> <directory>src/main/resources</directory> <includes> <include>**/*.properties</include> <include>**/*.xml</include> </includes> <filtering>false</filtering> </resource> <resource> <directory>src/main/java</directory> <includes> <include>**/*.properties</include> <include>**/*.xml</include> </includes> <filtering>false</filtering> </resource> </resources> </build> </project>

<think>我们需要整合三个部分:1.将ksoap2依赖从`org.ksoap2:ksoap2:2.1.2`替换为`com.google.code.ksoap2:ksoap2-j2se-core:3.6.2`2.添加仓库配置(repositories)3.为maven-compiler-plugin添加版本号注意:原POM中已经有一个repositories配置,但为了清晰,我们将使用提供的两个仓库(central和aliyun)替换原有的repositories配置。步骤:1.在<properties>下面添加<repositories>节点,包含central和aliyun两个仓库。2.