visdrone2019数据集coco格式
时间: 2025-04-18 11:26:21 浏览: 64
### 将VisDrone2019数据集转换为COCO格式
#### 数据集概述
VisDrone2019 是一个广泛应用于无人机视角下的目标检测和视频分析的数据集。将其转换成 COCO 格式有助于利用现有的工具和技术来处理这些图像和视频。
#### 转换流程详解
对于 VisDrone2019 的 DET 和 VID 部分,均需遵循特定的步骤来进行格式转换:
- **理解原始标签结构**
原始 VisDrone2019 数据集中每张图片对应多个标注框的信息被记录在一个文本文件里,每一行代表一个物体实例及其属性[^2]。
- **创建 JSON 文件模板**
创建符合 COCO API 规范的新 JSON 文件作为输出容器,此文件应包含 images, annotations 及 categories 字段定义[^3]。
- **编写映射逻辑**
编写 Python 或其他编程语言脚本来遍历原生 annotation files 并填充至上述构建好的 JSON 结构内;注意不同类别 ID 映射关系以及 bbox 参数调整[^4]。
```python
import json
from collections import defaultdict
def convert_visdrone_to_coco(visdrone_ann_file, coco_output_path):
"""
Converts a single VisDrone annotation file to the COCO format.
Args:
visdrone_ann_file (str): Path of input VisDrone annotation txt file.
coco_output_path (str): Output path for saving converted COCO formatted data as .json file.
Returns:
None
"""
# Initialize dictionaries/lists required by COCO structure
info = {"description": "Converted from VisDrone dataset"}
licenses = []
images = []
annotations = []
category_map = {
'pedestrian': 1,
'people': 2,
...
}
image_id_counter = 0
ann_id_counter = 0
with open(visdrone_ann_file) as f:
lines = f.readlines()
img_info = {} # Placeholder for current processing image information
for line in lines:
parts = list(map(int, filter(None, line.strip().split(','))))
if not any(parts[:8]): continue
width, height = parts[-2:]
filename = str(image_id_counter).zfill(7)+'.jpg'
new_image_entry = dict(
id=image_id_counter,
width=width,
height=height,
file_name=f'images/{filename}'
)
images.append(new_image_entry)
x_min, y_min, box_width, box_height, score, obj_category, truncation, occlusion = parts[:-2]
area = float(box_width * box_height)
segmentation = [[x_min, y_min, x_min + box_width, y_min, x_min + box_width, y_min + box_height, x_min, y_min + box_height]]
anno_dict = dict(
id=ann_id_counter,
image_id=image_id_counter,
category_id=obj_category,
bbox=[float(x_min), float(y_min), float(box_width), float(box_height)],
area=float(area),
iscrowd=int(truncation>0 or occlusion>0),
ignore=0,
segmentations=segmentation
)
annotations.append(anno_dict)
ann_id_counter += 1
image_id_counter += 1
final_json_structure = {'info': info,'licenses': licenses,'categories':[{'id':v,'name':k}for k,v in category_map.items()],'images':images,'annotations':annotations}
with open(coco_output_path,"w")as outfile:
json.dump(final_json_structure,outfile)
if __name__ == '__main__':
convert_visdrone_to_coco('path/to/your/visdrone_annotation.txt', './output/coco_format.json')
```
这段代码展示了如何读取单个 VisDrone 注解文件并将之转储为 COCO 格式的 JSON 文件[^5]。
阅读全文
相关推荐












