In conclusion, we have proposed a six-deep-feature radiomics signature that have the potential to be an imag- ing biomarker for prediction of the OS in patients with GBM. It was demonstrated that the deep learning method can be incorporated into the state-of-the-art radiomics model to achieve a better performance. The proposed signature predicted the OS in GBM patients with better performance compared with conventional factors such as age and KPS. A nomogram was proposed for prediction of the probability of survival. Despite the limitations, the proposed radiomics model has the potential to facilitate the preoperative care of patients with GBM 解释
时间: 2024-04-27 19:22:03 浏览: 200
这段话总结了该研究的主要发现和贡献。研究提出了一个由六个深度特征组成的放射组学标记,具有成为GBM患者OS预测的成像生物标志物的潜力。研究表明,深度学习方法可以融入最新的放射组学模型,以实现更好的性能。与年龄和KPS等传统因素相比,所提出的标记对GBM患者的OS预测具有更好的性能。研究提出了一个预测生存概率的数学模型。尽管存在一些限制,但所提出的放射组学模型有望促进GBM患者的术前护理。诺模图也被提出用于预测生存概率。总之,该研究的结果表明,放射组学和深度学习方法可以被用于开发一种非侵入性的成像生物标志物,来预测GBM患者的生存期,并可能有助于为这些患者提供更好的治疗和护理。
相关问题
In our study the proposed radiomics signature performed better than traditional risk factors such as age and KPS. None of these clinical factors successfully stratified patients into groups with different prognostic risks. After combining the radiomics signature with clinical factors into a Cox regression model, the predictive power improved with C-index of 0.739 in validation data set. According to the radiomics signature and the two clinical risk factors, we drew a nomogram that can visually predict the probability of survival. According to the calibra- tion curve we can see that our nomogram had good predictive performance. 解释
这段话是在讲述一项医学研究,研究人员使用了一种叫做“放射组学签名”的方法来预测患者的预后风险,这种方法比传统的风险因素如年龄和身体状况评分(KPS)更有效。经过将放射组学签名与临床因素结合起来,研究人员得到了一种名为“诺模图”的预测模型,可以直观地预测患者的生存概率。通过校准曲线可以看出,这个诺模图的预测性能很好。总的来说,这项研究表明,放射组学签名可以作为一种有效的预测方法,可以帮助医生更准确地评估患者的预后风险。
精简下面表达:Existing protein function prediction methods integrate PPI networks and multivariate bioinformatics data to improve the performance of function prediction. By combining multivariate information, the interactions between proteins become diverse. Different interactions’ functions in functional prediction are various. Combining multiple interactions simply between two proteins can effectively reduce the effect of false negatives and increase the number of predicted functions, but it can also increase the number of false positive functions, which contribute to nonobvious enhancement for the overall functional prediction performance. In this article, we have presented a framework for protein function prediction algorithms based on PPI network and semantic similarity with the addition of protein hierarchical functions to them. The framework relies on diverse clustering algorithms and the calculation of protein semantic similarity for protein function prediction. Classification and similarity calculations for protein pairs clustered by the functional feature are more accurate and reliable, allowing for the prediction of protein function at different functional levels from different proteomes, and giving biological applications greater flexibility.The method proposed in this paper performs well on protein data from wine yeast cells, but how well it matches other data remains to be verified. Yet until now, most unknown proteins have only been able to predict protein function by calculating similarities to their homologues. The predictions result of those unknown proteins without homologues are unstable because they are relatively isolated in the protein interaction network. It is difficult to find one protein with high similarity. In the framework proposed in this article, the number of features selected after clustering and the number of protein features selected for each functional layer has a significant impact on the accuracy of subsequent functional predictions. Therefore, when making feature selection, it is necessary to select as many functional features as possible that are important for the whole interaction network. When an incorrect feature was selected, the prediction results will be somewhat different from the actual function. Thus as a whole, the method proposed in this article has improved the accuracy of protein function prediction based on the PPI network method to a certain extent and reduces the probability of false positive prediction results.
本文提出了一种基于PPI网络和语义相似性,加上蛋白质分层功能的蛋白质功能预测算法框架,对酒葡萄酵母细胞的蛋白质数据表现出良好的效果,但其他数据的效果如何仍有待验证。此外,该框架中的功能特征选择的数量以及每个功能层中蛋白质特征的选择量,对于后续功能预测的准确度有很大影响。因此,在进行特征选择时,必须尽可能选择对整个交互网络重要的多种功能特征,从而提高蛋白质功能预测的准确性,减少错误预测的概率。
阅读全文
相关推荐


















