raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None) data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])

时间: 2025-07-09 09:47:43 浏览: 2
<think>好的,我现在需要帮用户解析一段使用Pandas的read_csv和NumPy的hstack的代码片段的功能。首先,我得回忆一下这两个库的基本用途。Pandas的read_csv是用来读取CSV文件的,而NumPy的hstack则是水平堆叠数组的函数。用户提供的示例代码可能涉及将多个CSV文件读取后,用hstack进行合并。 接下来,我需要确认代码的结构。假设用户给出的代码类似这样: import pandas as pd import numpy as np df1 = pd.read_csv('file1.csv') df2 = pd.read_csv('file2.csv') data = np.hstack([df1.values, df2.values]) 这里,read_csv读取了两个CSV文件,转换成DataFrame,然后用hstack将它们的值水平堆叠成一个NumPy数组。这样做的目的是将不同特征的数据合并到一个数据集中,方便后续处理,比如机器学习模型的输入。 需要注意的是,hstack要求两个数组在行数上一致,否则会报错。此外,DataFrame的values属性返回的是NumPy数组,所以这里转换是自动完成的。还要确保列数正确,避免数据错位。 另外,可能涉及的参数比如encoding、dtype等在read_csv中的使用会影响数据读取的正确性。例如,如果CSV文件包含中文或其他非ASCII字符,需要指定正确的编码格式,如encoding='utf-8'。此外,使用low_memory参数处理大文件时需要注意类型推断的问题,可能需要设置low_memory=False或指定dtype来确保数据类型的正确性。 总结来说,代码的功能是将多个CSV文件的数据水平合并成一个NumPy数组,便于进行数值计算和数据处理。需要提醒用户注意数据维度的一致性和编码等问题,以确保合并成功。</think>以下是对Pandas的$read_csv$结合NumPy的$hstack$方法的功能解析及代码说明: --- ### 一、功能解析 1. **数据读取** $read_csv$负责将CSV文件转换为DataFrame格式,支持处理编码、缺失值、数据类型等特性[^2][^3]。 $$df = pd.read\_csv('data.csv', encoding='utf-8')$$ 2. **数据合并** NumPy的$hstack$(水平堆叠)用于将多个数组在水平方向(列方向)拼接,要求所有数组行数相同[^4]。 --- ### 二、示例代码说明 ```python import pandas as pd import numpy as np # 读取两个CSV文件 df1 = pd.read_csv('data1.csv', dtype={'id': int}) # 指定id列为整数类型 df2 = pd.read_csv('data2.csv', usecols=['feature']) # 仅读取指定列 # 转换为NumPy数组并水平拼接 combined_data = np.hstack([df1.values, df2.values]) ``` 1. **关键步骤** - `pd.read_csv`读取文件并转换为DataFrame - `.values`将DataFrame转为NumPy数组 - `np.hstack`横向合并数组 2. **注意事项** - 确保所有数组的行数一致 - 使用`dtype`参数明确指定列类型以避免类型混淆[^4] - 大文件建议设置`low_memory=False`或分块读取 --- ### 三、典型应用场景 1. 合并多个数据源的特征列(如用户画像+行为日志) 2. 机器学习中输入数据的预处理(特征工程阶段) 3. 时间序列数据与统计指标的横向关联 ---
阅读全文

相关推荐

代码import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression def pred_house_price(): plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['font.size'] = 12 y = np.asarray([6450, 7450, 8450, 9450, 11450, 15450, 18450]) x = np.asarray([150, 200, 250, 300, 350, 400, 600] ) plt.xlabel('面积(平方英尺)') plt.ylabel('售价(美元)') clf = LinearRegression() x = x.reshape(len(x), 1)#①为什么要调整维度? clf.fit(x, y) pre = clf.predict(x) plt.scatter(x, y, s=50) #②散点图,什么数据? plt.plot(x, pre, 'r-', linewidth=2)#③ 直线,什么数据? plt.show()报错:Traceback (most recent call last): File "C:\Users\Administrator\PycharmProjects\pythonProject1\exp4.1.py", line 21, in <module> boston = datasets.load_boston() ^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Administrator\anaconda3\Lib\site-packages\sklearn\datasets\__init__.py", line 157, in __getattr__ raise ImportError(msg) ImportError: load_boston has been removed from scikit-learn since version 1.2. The Boston housing prices dataset has an ethical problem: as investigated in [1], the authors of this dataset engineered a non-invertible variable "B" assuming that racial self-segregation had a positive impact on house prices [2]. Furthermore the goal of the research that led to the creation of this dataset was to study the impact of air quality but it did not give adequate demonstration of the validity of this assumption. The scikit-learn maintainers therefore strongly discourage the use of this dataset unless the purpose of the code is to study and educate about ethical issues in data science and machine learning. In this special case, you can fetch the dataset from the original source:: import pandas as pd import numpy as np data_url = "http://lib.stat.cmu.edu/datasets/boston" raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None) data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) target = raw_df.values[1::2, 2] Alternative datasets include the California housing dataset and the Ames housing dataset. You can load the datasets as follows:: from sklearn.datasets import fetch_california_housing housing = fetch_california_housing() for the California housing dataset and:: from sklearn.datasets import fetch_openml housing = fetch_openml(name="house_prices", as_frame=True) for the Ames housing dataset. [1] M Carlisle. "Racist data destruction?" <https://medium.com/@docintangible/racist-data-destruction-113e3eff54a8> [2] Harrison Jr, David, and Daniel L. Rubinfeld. "Hedonic housing prices and the demand for clean air." Journal of environmental economics and management 5.1 (1978): 81-102. <https://www.researchgate.net/publication/4974606_Hedonic_housing_prices_and_the_demand_for_clean_air>

UnicodeDecodeError Traceback (most recent call last) Cell In[54], line 4 1 import pandas as pd 3 # 读取CSV文件(假设时间列名为"date") ----> 4 df = pd.read_csv(r"D:\dashuju\zuoye\微博_时间.csv") 5 df['date'] = pd.to_datetime(df['date']) 7 # 设置目标年月 File D:\python\Lib\site-packages\pandas\io\parsers\readers.py:1026, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend) 1013 kwds_defaults = _refine_defaults_read( 1014 dialect, 1015 delimiter, (...) 1022 dtype_backend=dtype_backend, 1023 ) 1024 kwds.update(kwds_defaults) -> 1026 return _read(filepath_or_buffer, kwds) File D:\python\Lib\site-packages\pandas\io\parsers\readers.py:620, in _read(filepath_or_buffer, kwds) 617 _validate_names(kwds.get("names", None)) 619 # Create the parser. --> 620 parser = TextFileReader(filepath_or_buffer, **kwds) 622 if chunksize or iterator: 623 return parser File D:\python\Lib\site-packages\pandas\io\parsers\readers.py:1620, in TextFileReader.__init__(self, f, engine, **kwds) 1617 self.options["has_index_names"] = kwds["has_index_names"] 1619 self.handles: IOHandles | None = None -> 1620 self._engine = self._make_engine(f, self.engine) File D:\python\Lib\site-packages\pandas\io\parsers\readers.py:1898, in TextFileReader._make_engine(self, f, engine) 1895 raise ValueError(msg) 1897 try: -> 1898 return mapping[engine](f, **self.o

# -*- coding: utf-8 -*- """ Created on 2023-10-16 @author: Your Name 本代码用于对房屋交易数据进行分析,包括数据预处理、特征工程、模型训练与评估等步骤。 目标是研究影响城市住宅价格的因素,并评估不同机器学习模型在预测房价方面的表现。 """ # 导入必要的库 import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.neural_network import MLPRegressor from sklearn.metrics import mean_absolute_error, mean_squared_error import shap import matplotlib.pyplot as plt import warnings import re # 忽略警告信息 warnings.filterwarnings("ignore") # 1. 数据加载与初步查看 def load_data(file_path): """ 加载数据并进行初步查看 """ data = pd.read_excel(file_path) print("数据集基本信息:") print(data.info()) print("\n数据集前5行:") print(data.head()) print("\n数据集描述性统计:") print(data.describe()) return data # 2. 数据预处理 def data_preprocessing(data): """ 数据预处理,包括删除无效数据、变量转化或拆分、数据集整合、删除极端值等 """ # 删除无效数据(如缺失值过多的行) data = data.dropna(thresh=len(data.columns) * 2 / 3, axis=0) # 变量转化或拆分 # 拆分户型信息,适应不同的格式 def extract_room_hall(x): if pd.isna(x): return np.nan, np.nan # 尝试匹配常见的格式,如 "3室1厅"、"3房间1厅"、"3房1厅" 等 room = 0 hall = 0 if '室' in x and '厅' in x: parts = x.split('厅') if len(parts) >= 2: room_part = parts[0] hall_part = parts[1].split(' ')[0] if ' ' in parts[1] else parts[1] room = room_part.split('室')[0] if '室' in room_part else 0 hall = hall_part.split('厅')[0] if '厅' in hall_part else 0 elif '房间' in x and '厅' in x: parts = x.split('厅') if len(parts) >= 2: room_part = parts[0] hall_part = parts[1].split(' ')[0] if ' ' in parts[1] else parts[1] room = room_part.sp

docx
内容概要:本文详细介绍了DirectX修复工具的功能及其重要性。DirectX是微软开发的多媒体编程接口,广泛应用于游戏开发、多媒体播放和工业设计等领域。它包含Direct3D、Direct2D、DirectInput、DirectSound和DXGI等多个组件,这些组件协同工作,为多媒体应用提供全面支持。然而,由于软件安装与卸载、驱动程序更新、系统升级、病毒攻击和硬件故障等因素,DirectX可能出现问题,导致游戏或软件无法启动、画面显示异常、音频问题等。DirectX修复工具通过全面检测、智能修复、备份与还原、解决关键错误等功能,帮助用户快速准确地修复这些问题,确保系统恢复正常运行。文中还详细讲解了修复工具的不同版本(标准版、增强版、在线修复版)的特点,以及使用过程中可能遇到的问题及解决方法。 适合人群:适用于所有使用Windows操作系统的用户,尤其是游戏玩家和多媒体软件用户。 使用场景及目标:①帮助用户解决因DirectX故障导致的游戏无法启动、画面显示异常、音频问题等;②确保多媒体应用正常运行,避免图形显示错误、色彩异常等问题;③为不具备专业知识的普通用户提供便捷的修复方案。 其他说明:使用DirectX修复工具时,用户应确保下载来源的安全性,保持修复过程的稳定性,并可在必要时尝试多次修复或更换其他修复工具。此外,文中还提供了详细的使用教程,包括下载渠道、安装与解压、运行与检测、查看结果与修复以及诊断功能的使用,帮助用户更好地理解和操作修复工具。
pdf
内容概要:本文综述了电能质量扰动(PQDs)检测与识别的研究现状。随着新能源发电的快速发展,PQDs问题日益严重。文章梳理了当前研究中的关键问题,包括信号特征检测精度不足、特征选择冗余及扰动类型识别能力有限等。详细阐述了基于先进信号处理技术的特征检测方法、智能算法的特征提取策略以及深度学习模型的分类识别技术,分析了各类方法的优缺点。最后指出了当前研究中存在的问题,并对未来发展趋势进行了展望。此外,文章还提供了详细的代码实现,涵盖了从信号生成、特征提取到基于深度学习的分类识别,再到结果分析与可视化的全过程。 适合人群:具备一定电能质量基础知识和编程能力的研发人员、研究生及以上学历的电力系统研究人员。 使用场景及目标:①适用于电力系统监测与维护部门,帮助其提升对电能质量扰动的检测与识别能力;②为高校和科研机构提供理论依据和技术支持,推动相关领域的学术研究;③为企业研发团队提供实用的技术方案,助力开发更高效的电能质量监测产品。 其他说明:本文不仅提供了理论分析,还通过具体代码实现了多种先进的检测与识别方法,包括但不限于小波变换、FFT、STFT、CNN、LSTM等。这些方法能够有效应对实际应用中的复杂情况,如高噪声环境下的信号处理、多类型扰动的精确分类等。同时,文中还探讨了未来的研究方向,如基于Transformer的端到端识别架构、结合物理约束的深度学习、边缘计算部署优化等,为后续研究提供了有价值的参考。

最新推荐

recommend-type

Java反射实现实体类相同字段自动赋值示例

资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 Java 反射能在运行时探查类结构并动态读写属性。示例工具类 ClassReflection 提供两种静态方法:简易版 reflectionAttr 直接以两个对象入参;复杂版额外用 Class.forName 按名字加载类。 流程: 分别对两个对象调用 getDeclaredFields(),得到包含私有属性的 Field[]。 遍历源对象字段,跳过名为 "id" 的主键;设 setAccessible(true) 解锁私有权限。 用 Field.get() 取值,若目标对象存在同名字段,同样解锁后执行 Field.set() 完成拷贝。 复杂版增加 invokeGetMethod,通过反射调用 getter 取非基本类型值,避免直接 get() 的局限。 适用:ORM 框架在查询结果与实体间同步数据、单元测试为私有字段注入状态等。 注意:反射带来性能损耗与封装破坏,需捕获 IllegalAccessException、NullPointerException,非必要场景应优先用常规赋值。
recommend-type

操作系统试题库(经典版).doc

操作系统试题库(经典版).doc
recommend-type

Android实现App启动广告页面功能.doc

Android实现App启动广告页面功能.doc
recommend-type

MiriaManager-机器人开发资源

MiriaMiria-coreQQqqapihttp
recommend-type

毕业设计-weixin220英语互助小程序springboot.zip

源码+数据库+配套文档+答辩教程
recommend-type

飞思OA数据库文件下载指南

根据给定的文件信息,我们可以推断出以下知识点: 首先,从标题“飞思OA源代码[数据库文件]”可以看出,这里涉及的是一个名为“飞思OA”的办公自动化(Office Automation,简称OA)系统的源代码,并且特别提到了数据库文件。OA系统是用于企事业单位内部办公流程自动化的软件系统,它旨在提高工作效率、减少不必要的工作重复,以及增强信息交流与共享。 对于“飞思OA源代码”,这部分信息指出我们正在讨论的是OA系统的源代码部分,这通常意味着软件开发者或维护者拥有访问和修改软件底层代码的权限。源代码对于开发人员来说非常重要,因为它是软件功能实现的直接体现,而数据库文件则是其中的一个关键组成部分,用来存储和管理用户数据、业务数据等信息。 从描述“飞思OA源代码[数据库文件],以上代码没有数据库文件,请从这里下”可以分析出以下信息:虽然文件列表中提到了“DB”,但实际在当前上下文中,并没有提供包含完整数据库文件的下载链接或直接说明,这意味着如果用户需要获取完整的飞思OA系统的数据库文件,可能需要通过其他途径或者联系提供者获取。 文件的标签为“飞思OA源代码[数据库文件]”,这与标题保持一致,表明这是一个与飞思OA系统源代码相关的标签,而附加的“[数据库文件]”特别强调了数据库内容的重要性。在软件开发中,标签常用于帮助分类和检索信息,所以这个标签在这里是为了解释文件内容的属性和类型。 文件名称列表中的“DB”很可能指向的是数据库文件。在一般情况下,数据库文件的扩展名可能包括“.db”、“.sql”、“.mdb”、“.dbf”等,具体要看数据库的类型和使用的数据库管理系统(如MySQL、SQLite、Access等)。如果“DB”是指数据库文件,那么它很可能是以某种形式的压缩文件或包存在,这从“压缩包子文件的文件名称列表”可以推测。 针对这些知识点,以下是一些详细的解释和补充: 1. 办公自动化(OA)系统的构成: - OA系统由多个模块组成,比如工作流管理、文档管理、会议管理、邮件系统、报表系统等。 - 系统内部的流程自动化能够实现任务的自动分配、状态跟踪、结果反馈等。 - 通常,OA系统会提供用户界面来与用户交互,如网页形式的管理界面。 2. 数据库文件的作用: - 数据库文件用于存储数据,是实现业务逻辑和数据管理的基础设施。 - 数据库通常具有数据的CRUD(创建、读取、更新、删除)功能,是信息检索和管理的核心组件。 - 数据库文件的结构和设计直接关系到系统的性能和可扩展性。 3. 数据库文件类型: - 根据数据库管理系统不同,数据库文件可以有不同格式。 - 例如,MySQL数据库的文件通常是“.frm”文件存储表结构,“.MYD”存储数据,“.MYI”存储索引。 - 对于SQLite,数据库就是一个单独的“.sqlite”文件。 4. 数据库设计和管理: - 数据库设计需要遵循一定的规范和最佳实践,如范式化以减少数据冗余。 - 管理数据库包括数据备份、恢复、性能调优、安全性管理等。 5. OA系统开发及源代码维护: - 开发一个OA系统涉及需求分析、系统设计、编码实现、测试、部署和维护等多个阶段。 - OA系统源代码的维护工作包括代码审查、重构、版本控制和更新等。 综上所述,我们可以知道“飞思OA源代码[数据库文件]”所提供的信息包括了对飞思OA系统及其数据库文件的基础介绍和可能的获取途径。对于开发者而言,需要了解如何管理和操作这些数据库文件以确保系统的正常运行和数据的完整性。此外,对于那些希望进行系统定制或二次开发的用户,源代码的可访问性是非常重要的,这可以允许用户根据自己的需求来修改和增强系统功能。
recommend-type

Qt信号与槽优化:提升系统性能与响应速度的实战技巧

# 摘要 本文系统地探讨了Qt框架中信号与槽机制的原理、高级特性、性能优化以及在大型项目中的应用。首先,概述了信号与槽的基本概念和工作原理,包括信号的发射、槽函数的绑定与调用过程。随后,本文深入分析了信号与槽的内部机制,如数据类型兼容性和连接类型,并探讨了优化信
recommend-type

D8流向算法

<think>我们被要求解释或实现D8流向算法。D8流向算法是一种用于水文分析的数字高程模型(DEM)处理方法,用于确定地表水流的方向。每个像元的水流方向被指定为指向周围8个相邻像元中坡度最陡的那个方向。 ### 算法原理 在D8算法中,每个像元的水流方向被定义为指向其8个相邻像元(包括对角线方向)中坡度最大的方向。坡度由高程差除以距离计算,其中相邻像元的距离为1(水平和垂直方向)或√2(对角线方向)。具体步骤如下: 1. 对于中心像元,计算其与8个相邻像元的高程差(中心像元高程减去相邻像元高程,得到正值表示下坡)。 2. 计算每个相邻方向的坡度:坡度 = 高程差 / 距离(水平/垂直方向
recommend-type

精选36个精美ICO图标免费打包下载

在当今的软件开发和应用程序设计中,图标作为图形用户界面(GUI)的一个重要组成部分,承担着向用户传达信息、增加美观性和提高用户体验的重要角色。图标不仅仅是一个应用程序或文件的象征,它还是品牌形象在数字世界中的延伸。因此,开发人员和设计师往往会对默认生成的图标感到不满意,从而寻找更加精美和个性化的图标资源。 【标题】中提到的“精美ICO图标打包下载”,指向用户提供的是一组精选的图标文件,这些文件格式为ICO。ICO文件是一种图标文件格式,主要被用于Windows操作系统中的各种文件和应用程序的图标。由于Windows系统的普及,ICO格式的图标在软件开发中有着广泛的应用。 【描述】中提到的“VB、VC编写应用的自带图标很难看,换这些试试”,提示我们这个ICO图标包是专门为使用Visual Basic(VB)和Visual C++(VC)编写的应用程序准备的。VB和VC是Microsoft公司推出的两款编程语言,其中VB是一种主要面向初学者的面向对象编程语言,而VC则是更加专业化的C++开发环境。在这些开发环境中,用户可以选择自定义应用程序的图标,以提升应用的视觉效果和用户体验。 【标签】中的“.ico 图标”直接告诉我们,这些打包的图标是ICO格式的。在设计ICO图标时,需要注意其独特的尺寸要求,因为ICO格式支持多种尺寸的图标,例如16x16、32x32、48x48、64x64、128x128等像素尺寸,甚至可以包含高DPI版本以适应不同显示需求。此外,ICO文件通常包含多种颜色深度的图标,以便在不同的背景下提供最佳的显示效果。 【压缩包子文件的文件名称列表】显示了这些精美ICO图标的数量,即“精美ICO图标36个打包”。这意味着该压缩包内包含36个不同的ICO图标资源。对于软件开发者和设计师来说,这意味着他们可以从这36个图标中挑选适合其应用程序或项目的图标,以替代默认的、可能看起来不太吸引人的图标。 在实际应用中,将这些图标应用到VB或VC编写的程序中,通常需要编辑程序的资源文件或使用相应的开发环境提供的工具进行图标更换。例如,在VB中,可以通过资源编辑器选择并替换程序的图标;而在VC中,则可能需要通过设置项目属性来更改图标。由于Windows系统支持在编译应用程序时将图标嵌入到可执行文件(EXE)中,因此一旦图标更换完成并重新编译程序,新图标就会在程序运行时显示出来。 此外,当谈及图标资源时,还应当了解图标制作的基本原则和技巧,例如:图标设计应简洁明了,以传达清晰的信息;色彩运用需考虑色彩搭配的美观性和辨识度;图标风格要与应用程序的整体设计风格保持一致,等等。这些原则和技巧在选择和设计图标时都非常重要。 总结来说,【标题】、【描述】、【标签】和【压缩包子文件的文件名称列表】共同勾勒出了一个为VB和VC编程语言用户准备的ICO图标资源包。开发者通过下载和使用这些图标,能够有效地提升应用程序的外观和用户体验。在这一过程中,了解和应用图标设计与应用的基本知识至关重要。
recommend-type

【Qt数据库融合指南】:MySQL与Qt无缝集成的技巧

# 摘要 本文全面探讨了Qt数据库集成的基础知识与进阶应用,从Qt与MySQL的基础操作讲起,深入到Qt数据库编程接口的配置与使用,并详细介绍了数据模型和视图的实现。随着章节的深入,内容逐渐从基础的数据操作界面构建过渡到高级数据库操作实践,涵盖了性能优化、安全性策略和事务管理。本文还特别针对移动设备上的数据库集成进行了讨