gcn分类代码
时间: 2025-05-16 13:47:18 浏览: 16
### 关于GCN(图卷积网络)用于分类任务的代码实现
以下是基于 TensorFlow 2.0 的 GCN 实现,适用于节点分类任务。此代码展示了如何构建一个简单的两层 GCN 并训练它来解决半监督学习中的节点分类问题。
#### 数据准备
为了简化说明,假设输入是一个邻接矩阵 \( A \) 和对应的特征矩阵 \( X \),以及部分标签作为训练集。这些可以通过 `scipy.sparse` 或其他工具加载并转换为张量形式。
```python
import tensorflow as tf
from tensorflow.keras import layers, Model
import numpy as np
class GraphConvolution(layers.Layer):
"""Basic graph convolution layer."""
def __init__(self, units, activation=None, **kwargs):
super(GraphConvolution, self).__init__(**kwargs)
self.units = units
self.activation = tf.keras.activations.get(activation)
def build(self, input_shape):
# 初始化权重 W
self.weight = self.add_weight(shape=(input_shape[-1], self.units),
initializer='glorot_uniform',
trainable=True)
def call(self, inputs, adjacency_matrix):
support = tf.matmul(inputs, self.weight)
output = tf.sparse.sparse_dense_matmul(adjacency_matrix, support)
if self.activation is not None:
output = self.activation(output)
return output
def normalize_adjacency(A):
"""Symmetric normalization of the adjacency matrix"""
D_inv_sqrt = tf.linalg.diag(tf.pow(tf.reduce_sum(A, axis=1), -0.5))
normalized_A = tf.matmul(D_inv_sqrt, tf.matmul(A, D_inv_sqrt))
return normalized_A
# 构建模型
class GCN(Model):
def __init__(self, hidden_units, num_classes, dropout_rate=0.5, **kwargs):
super(GCN, self).__init__(**kwargs)
self.gc_layer_1 = GraphConvolution(hidden_units, activation="relu")
self.dropout_layer = layers.Dropout(dropout_rate)
self.gc_layer_2 = GraphConvolution(num_classes, activation="softmax")
def call(self, features, adj_normalized, training=False):
h = self.gc_layer_1(features, adj_normalized)
h = self.dropout_layer(h, training=training)
outputs = self.gc_layer_2(h, adj_normalized)
return outputs
# 假设的数据初始化
num_nodes = 2708 # 节点数量 (Cora数据集中有2708个文档)
feature_dim = 1433 # 特征维度 (Cora数据集中每个文档由1433维词向量表示)
hidden_units = 16 # 隐藏单元数
num_classes = 7 # 类别数目 (Cora数据集中有7种类别)
features = tf.random.normal((num_nodes, feature_dim)) # 输入特征矩阵
adj_sparse = tf.SparseTensor(indices=[[i, j] for i in range(num_nodes) for j in range(i + 1, min(i + 10, num_nodes))],
values=[float(np.random.rand() < 0.5) for _ in range(sum([min(9, num_nodes-i-1) for i in range(num_nodes)])],
dense_shape=(num_nodes, num_nodes))
normalized_adj = normalize_adjacency(tf.sparse.to_dense(adj_sparse)) # 归一化后的邻接矩阵
model = GCN(hidden_units=hidden_units, num_classes=num_classes)
outputs = model(features, normalized_adj, training=True)
print(outputs.shape) # 输出形状应为 (num_nodes, num_classes)
```
上述代码实现了两个核心功能:
1. 定义了一个基本的图卷积操作 `GraphConvolution`,其中包含了权重矩阵乘法和消息传递机制[^1]。
2. 使用了两次图卷积操作分别提取低级特征和高级类别分布[^2]。
#### 训练流程
对于实际应用中的训练过程,通常会定义损失函数(如交叉熵),并通过优化器最小化该损失:
```python
loss_fn = tf.keras.losses.CategoricalCrossentropy()
optimizer = tf.keras.optimizers.Adam()
with tf.GradientTape() as tape:
predictions = model(features, normalized_adj, training=True)
loss_value = loss_fn(labels_train_one_hot, predictions[train_mask])
grads = tape.gradient(loss_value, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
```
这里需要注意的是,在真实场景下还需要处理掩码 (`train_mask`) 来区分哪些样本参与训练、验证或测试阶段。
---
阅读全文
相关推荐


















