活动介绍

class KNearestNeighbor(object): def __init__(self): pass def train(self, X, y): self.X_train = X self.y_train = y def predict(self, X, k=1): num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) d1 = -2 * np.dot(X, self.X_train.T) d2 = np.sum(np.square(X), axis=1, keepdims=True) d3 = np.sum(np.square(self.X_train), axis=1) dist = np.sqrt(d1 + d2 + d3) y_pred = np.zeros(num_test) for i in range(num_test): dist_k_min = np.argsort(dist[i])[:k] y_kclose = self.y_train[dist_k_min] y_pred[i] = np.argmax(np.bincount(y_kclose.tolist())) return y_pred注释每一行代码

时间: 2023-11-20 22:05:20 浏览: 218
这是一个KNN(K-Nearest Neighbor)算法的Python实现,具体注释如下: ```python class KNearestNeighbor(object): def __init__(self): pass def train(self, X, y): self.X_train = X # 训练数据集 self.y_train = y # 训练数据集对应的标签 def predict(self, X, k=1): num_test = X.shape[0] # 测试数据集数量 num_train = self.X_train.shape[0] # 训练数据集数量 dists = np.zeros((num_test, num_train)) # 初始化距离矩阵 # 计算欧氏距离 d1 = -2 * np.dot(X, self.X_train.T) d2 = np.sum(np.square(X), axis=1, keepdims=True) d3 = np.sum(np.square(self.X_train), axis=1) dist = np.sqrt(d1 + d2 + d3) y_pred = np.zeros(num_test) # 初始化预测结果 for i in range(num_test): # 找到距离最近的k个训练数据点的索引 dist_k_min = np.argsort(dist[i])[:k] # 找到这k个训练数据点对应的标签 y_kclose = self.y_train[dist_k_min] # 在k个标签中找到出现次数最多的标签,作为预测结果 y_pred[i] = np.argmax(np.bincount(y_kclose.tolist())) return y_pred ``` KNN算法是一种比较简单的分类算法,主要步骤包括以下几点: 1. 计算测试数据集与训练数据集之间的距离(通常使用欧氏距离); 2. 找到距离最近的k个训练数据点,这k个数据点对应的标签就是预测结果; 3. 在k个标签中找到出现次数最多的标签,作为最终的预测结果。
阅读全文

相关推荐

import numpy as np from sklearn import datasets from sklearn.linear_model import LinearRegression np.random.seed(10) class Newton(object): def init(self,epochs=50): self.W = None self.epochs = epochs def get_loss(self, X, y, W,b): """ 计算损失 0.5sum(y_pred-y)^2 input: X(2 dim np.array):特征 y(1 dim np.array):标签 W(2 dim np.array):线性回归模型权重矩阵 output:损失函数值 """ #print(np.dot(X,W)) loss = 0.5np.sum((y - np.dot(X,W)-b)2) return loss def first_derivative(self,X,y): """ 计算一阶导数g = (y_pred - y)*x input: X(2 dim np.array):特征 y(1 dim np.array):标签 W(2 dim np.array):线性回归模型权重矩阵 output:损失函数值 """ y_pred = np.dot(X,self.W) + self.b g = np.dot(X.T, np.array(y_pred - y)) g_b = np.mean(y_pred-y) return g,g_b def second_derivative(self,X,y): """ 计算二阶导数 Hij = sum(X.T[i]X.T[j]) input: X(2 dim np.array):特征 y(1 dim np.array):标签 output:损失函数值 """ H = np.zeros(shape=(X.shape[1],X.shape[1])) H = np.dot(X.T, X) H_b = 1 return H, H_b def fit(self, X, y): """ 线性回归 y = WX + b拟合,牛顿法求解 input: X(2 dim np.array):特征 y(1 dim np.array):标签 output:拟合的线性回归 """ self.W = np.random.normal(size=(X.shape[1])) self.b = 0 for epoch in range(self.epochs): g,g_b = self.first_derivative(X,y) # 一阶导数 H,H_b = self.second_derivative(X,y) # 二阶导数 self.W = self.W - np.dot(np.linalg.pinv(H),g) self.b = self.b - 1/H_bg_b print("itration:{} ".format(epoch), "loss:{:.4f}".format( self.get_loss(X, y , self.W,self.b))) def predict(): """ 需要自己实现的代码 """ pass def normalize(x): return (x - np.min(x))/(np.max(x) - np.min(x)) if name == "main": np.random.seed(2) X = np.random.rand(100,5) y = np.sum(X3 + X**2,axis=1) print(X.shape, y.shape) # 归一化 X_norm = normalize(X) X_train = X_norm[:int(len(X_norm)*0.8)] X_test = X_norm[int(len(X_norm)*0.8):] y_train = y[:int(len(X_norm)0.8)] y_test = y[int(len(X_norm)0.8):] # 牛顿法求解回归问题 newton=Newton() newton.fit(X_train, y_train) y_pred = newton.predict(X_test,y_test) print(0.5np.sum((y_test - y_pred)**2)) reg = LinearRegression().fit(X_train, y_train) y_pred = reg.predict(X_test) print(0.5np.sum((y_test - y_pred)**2)) ——修改代码中的问题,并补全缺失的代码,实现牛顿最优化算法

import numpy as np class NaiveBayesClassifier(object): def __init__(self): ''' self.label_prob表示每种类别在数据中出现的概率 例如,{0:0.333, 1:0.667}表示数据中类别0出现的概率为0.333,类别1的概率为0.667 ''' self.label_prob = {} ''' self.condition_prob表示每种类别确定的条件下各个特征出现的概率 例如训练数据集中的特征为 [[2, 1, 1], [1, 2, 2], [2, 2, 2], [2, 1, 2], [1, 2, 3]] 标签为[1, 0, 1, 0, 1] 那么当标签为0时第0列的值为1的概率为0.5,值为2的概率为0.5; 当标签为0时第1列的值为1的概率为0.5,值为2的概率为0.5; 当标签为0时第2列的值为1的概率为0,值为2的概率为1,值为3的概率为0; 当标签为1时第0列的值为1的概率为0.333,值为2的概率为0.666; 当标签为1时第1列的值为1的概率为0.333,值为2的概率为0.666; 当标签为1时第2列的值为1的概率为0.333,值为2的概率为0.333,值为3的概率为0.333; 因此self.label_prob的值如下: { 0:{ 0:{ 1:0.5 2:0.5 } 1:{ 1:0.5 2:0.5 } 2:{ 1:0 2:1 3:0 } } 1: { 0:{ 1:0.333 2:0.666 } 1:{ 1:0.333 2:0.666 } 2:{ 1:0.333 2:0.333 3:0.333 } } } ''' self.condition_prob = {} def fit(self, feature, label): ''' 对模型进行训练,需要将各种概率分别保存在self.label_prob和self.condition_prob中 :param feature: 训练数据集所有特征组成的ndarray :param label:训练数据集中所有标签组成的ndarray :return: 无返回 ''' #********* Begin *********# #********* End *********# def predict(self, feature): ''' 对数据进行预测,返回预测结果 :param feature:测试数据集所有特征组成的ndarray :return: ''' # ********* Begin *********# #********* End *********#

Traceback (most recent call last): File "F:\PythonProject\ultralytics-8.3.33\yolo_train.py", line 15, in <module> results = model.train( ^^^^^^^^^^^^ File "F:\PythonProject\ultralytics-8.3.33\ultralytics\engine\model.py", line 802, in train self.trainer.train() File "F:\PythonProject\ultralytics-8.3.33\ultralytics\engine\trainer.py", line 207, in train self._do_train(world_size) File "F:\PythonProject\ultralytics-8.3.33\ultralytics\engine\trainer.py", line 322, in _do_train self._setup_train(world_size) File "F:\PythonProject\ultralytics-8.3.33\ultralytics\engine\trainer.py", line 303, in _setup_train self.optimizer = self.build_optimizer( ^^^^^^^^^^^^^^^^^^^^^ File "F:\PythonProject\ultralytics-8.3.33\ultralytics\engine\trainer.py", line 806, in build_optimizer optimizer = optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\torch\optim\sgd.py", line 63, in __init__ super().__init__(params, defaults) File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\torch\optim\optimizer.py", line 369, in __init__ self.add_param_group(cast(dict, param_group)) File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\torch\_compile.py", line 46, in inner import torch._dynamo File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\torch\_dynamo\__init__.py", line 53, in <module> from .polyfills import loader as _ # usort: skip # noqa: F401 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\torch\_dynamo\polyfills\loader.py", line 25, in <module> POLYFILLED_MODULES: tuple["ModuleType", ...] = tuple( ^^^^^^ File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\torch\_dynamo\polyfills\loader.py", line 26, in <genexpr> importlib.import_module(f".{submodule}", package=polyfills.__name__) File "F:\Python\Anaconda3\envs\yolo11\Lib\importlib\__init__.py", line 90, in import_module return _bootstrap._gcd_import(name[level:], package, level) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\torch\_dynamo\polyfills\builtins.py", line 30, in <module> @substitute_in_graph(builtins.all, can_constant_fold_through=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\torch\_dynamo\decorators.py", line 427, in wrapper rule_map: dict[Any, type[VariableTracker]] = get_torch_obj_rule_map() ^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\torch\_dynamo\trace_rules.py", line 2870, in get_torch_obj_rule_map obj = load_object(k) ^^^^^^^^^^^^^^ File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\torch\_dynamo\trace_rules.py", line 2901, in load_object val = _load_obj_from_str(x[0]) ^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\torch\_dynamo\trace_rules.py", line 2885, in _load_obj_from_str return getattr(importlib.import_module(module), obj_name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\Python\Anaconda3\envs\yolo11\Lib\importlib\__init__.py", line 90, in import_module return _bootstrap._gcd_import(name[level:], package, level) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\torch\_higher_order_ops\map.py", line 6, in <module> from torch._functorch.aot_autograd import AOTConfig, create_joint File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\torch\_functorch\aot_autograd.py", line 135, in <module> from .partitioners import default_partition File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\torch\_functorch\partitioners.py", line 37, in <module> from ._activation_checkpointing.graph_info_provider import GraphInfoProvider File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\torch\_functorch\_activation_checkpointing\graph_info_provider.py", line 3, in <module> import networkx as nx File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\networkx\__init__.py", line 23, in <module> config = utils.backends._set_configs_from_environment() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\networkx\utils\backends.py", line 574, in _set_configs_from_environment backends=Config( ^^^^^^^ File "F:\Python\Anaconda3\envs\yolo11\Lib\site-packages\networkx\utils\configs.py", line 84, in __new__ cls = dataclass( ^^^^^^^^^^ File "F:\Python\Anaconda3\envs\yolo11\Lib\dataclasses.py", line 1265, in wrap return _process_class(cls, init, repr, eq, order, unsafe_hash, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\Python\Anaconda3\envs\yolo11\Lib\dataclasses.py", line 1063, in _process_class _init_fn(all_init_fields, File "F:\Python\Anaconda3\envs\yolo11\Lib\dataclasses.py", line 619, in _init_fn return _create_fn('__init__', ^^^^^^^^^^^^^^^^^^^^^^ File "F:\Python\Anaconda3\envs\yolo11\Lib\dataclasses.py", line 473, in _create_fn exec(txt, globals, ns) File "<string>", line 1 def __create_fn__(__dataclass_type_nx-loopback__, __dataclass_HAS_DEFAULT_FACTORY__, __dataclass_builtins_object__, __dataclass_return_type__): ^ SyntaxError: invalid syntax

第第3关:数据增强 300 学习内容 参考答案 记录 评论 任务描述 相关知识 随机翻转 随机缩放 随机裁剪 编程要求 测试说明 任务描述 本关任务:独立完成前面关卡的小伙伴,相信你们会读取数据并对数据做归一化处理。但是这远远不够,你需要通过数据增强技术来增加数据的多样性。在本关中,你将要实现数据增强中的随机翻转和随机缩放功能。 相关知识 为了完成本关任务,你需要掌握:1. 随机翻转; 2. 随机缩放; 3. 随机裁剪。 随机翻转 水平翻转: 左右翻转,将左边的像素点放在右边,将右边的像素点放在左边。如下图所示: 垂直翻转:上下翻转,将上边的像素点放在下边,将下边的像素点放在上边,如下图所示: Image模块中包含图像的水平翻转和垂直翻转等操作。 # 水平翻转 out = im.transpose(Image.FLIP_LEFT_RIGHT) # 垂直翻转 out = im.transpose(Image.FLIP_TOP_BOTTOM) 随机缩放 缩放:对图片随机进行不同比例大小的缩放 随机裁剪 以固定尺寸裁剪图像,但是每次裁剪的图像内容不同。 在pytorch中,实现随机裁剪的是RandomCrop类。定义如下: torchvision.transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant') size:裁剪尺寸 padding:在裁剪之前,是否对图像进行填充,可以填充图像的左、上、右、下。 pad_if_needed:如果图像小于所需大小,它将填充图像以避免引发异常。 fill :用于恒定填充的像素填充值。 padding_mode :指定填充模式,填充模式有:constant、edge、reflect、symmetric。 示例如下: import torchvision.transforms as tf import torch MyTransfrom = tf.RandomCrop([224,224]) input = torch.randn(3, 256, 256) output = MyTransfrom(input) 编程要求 根据提示,在右侧编辑器补充Begin-End段中的代码,你所需要完成的功能是: 完成随机水平翻转 完成缩放 完成裁剪 将增强后的图像保存至 ./train-2/Imgs/Test/Pass3/img_aug.png 测试说明 平台会对你编写的代码进行测试: 测试输入: 预期输出: 数据增强成功! 开始你的任务吧,祝你成功!# 导入库 import torchvision.transforms as tf import torch from PIL import Image, ImageOps import random # 随机翻转和随机缩放 class MyCoTransform(object): def __init__(self, augment=True, base_size=320, scale=True,crop = True): self.scale = scale self.augment = augment self.base_size = base_size self.crop = crop def __call__(self, input): ''' :param input: 图片 :return: ''' if (self.augment): # Random hflip random.seed(1) if random.random() < 0.5: # 请在此添加你的代码实现左右翻转 # ********** Begin *********# input = # ********** End **********# # 随机缩放 if self.scale: # 请在此添加你的代码实现缩放,缩放比例为0.75-2.0 # ********** Begin *********# short_size = # ********** End **********# else: short_size = self.base_size w, h = input.size if h > w: ow = short_size oh = int(1.0 * h * ow / w) else: oh = short_size ow = int(1.0 * w * oh / h) input = input.resize((ow, oh), Image.BILINEAR) # 随机裁剪 if self.crop: # 请在此添加你的代码实现随机裁剪,裁剪大小为224x224 # ********** Begin *********# input = # ********** End **********# w, h = input.size # 请在此添加你的代码存储图片 # ********** Begin *********# # ********** End **********#

import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator # 定义路径 train_dir = r'C:\Users\29930\Desktop\结构参数图' # 数据增强配置 train_datagen = ImageDataGenerator( rescale=1./255, validation_split=0.2, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) # 生成训练集和验证集 train_generator = train_datagen.flow_from_directory( train_dir, target_size=(224, 224), batch_size=32, class_mode='binary', subset='training' ) val_generator = train_datagen.flow_from_directory( train_dir, target_size=(224, 224), batch_size=32, class_mode='binary', subset='validation' ) model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(224,224,3)), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(64, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(128, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', tf.keras.metrics.AUC(name='auc')] ) # 添加早停法 early_stop = tf.keras.callbacks.EarlyStopping( monitor='val_loss', patience=5, restore_best_weights=True ) # 训练模型 history = model.fit( train_generator, validation_data=val_generator, epochs=30, callbacks=[early_stop] ) # 保存模型 model.save('copd_cnn_model.h5') # 评估指标可视化 import matplotlib.pyplot as plt plt.plot(history.history['auc'], label='Training AUC') plt.plot(history.history['val_auc'], label='Validation AUC') plt.title('模型AUC曲线') plt.ylabel('AUC值') plt.xlabel('Epoch') plt.legend() plt.show()运行结果是Found 213 images belonging to 2 classes. Found 52 images belonging to 2 classes. Warning (from warnings module): File "C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\layers\convolutional\base_conv.py", line 107 super().__init__(activity_regularizer=activity_regularizer, **kwargs) UserWarning: Do not pass an input_shape/input_dim argument to a layer. When using Sequential models, prefer using an Input(shape) object as the first layer in the model instead. Warning (from warnings module): File "C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\trainers\data_adapters\py_dataset_adapter.py", line 121 self._warn_if_super_not_called() UserWarning: Your PyDataset class should call super().__init__(**kwargs) in its constructor. **kwargs can include workers, use_multiprocessing, max_queue_size. Do not pass these arguments to fit(), as they will be ignored. Traceback (most recent call last): File "D:/建模/cnn.py", line 61, in <module> history = model.fit( File "C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\utils\traceback_utils.py", line 122, in error_handler raise e.with_traceback(filtered_tb) from None File "C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\utils\image_utils.py", line 227, in load_img raise ImportError( ImportError: Could not import PIL.Image. The use of load_img requires PIL. 请根据结果修改代码使其能正常运行

大家在看

recommend-type

离心泵特性曲线计算程序VB源代码包

离心泵特性曲线计算程序VB源代码包 化工原理课程实验使用
recommend-type

python的预测房价模型组合代码.zip

模型-python的预测房价模型.zip python的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zip python的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zip
recommend-type

中国检查徽章背景的检察机关PPT模板

这是一套中国检查徽章背景的,检察机关PPT模板。第一PPT模板网提供精美军警类幻灯片模板免费下载; 关键词:蓝天白云、华表、彩带、中国检查徽章PPT背景图片,中国检查院工作汇报PPT模板,蓝色绿色搭配扁平化幻灯片图表,.PPTX格式;
recommend-type

WinUSB4NuVCOM_NUC970+NuWriter.rar

NUC970 USB启动所需的USB驱动,已经下载工具NuWriter,可以用于裸机启动NUC970调试,将USB接电脑后需要先安装WinUSB4NuVCOM_NUC970驱动,然后使用NuWriter初始化硬件,之后就可以使用jlink或者ulink调试。
recommend-type

indonesia-geojson:印度尼西亚GEOJSON文件收集

印尼省数据 indonesia-province.zip:SHP格式的印度尼西亚省 indonesia-province.json:GeoJSON格式的印度尼西亚省 indonesia-province-simple.json:GeoJSON格式的印度尼西亚省的简单版本(文件大小也较小!) id-all.geo.json:印度尼西亚省GEOJSON id-all.svg:印度尼西亚SVG地图 indonesia.geojson:来自成长亚洲的印度尼西亚GEOJSON 来源 工具 将SHP文件的形状转换并简化为GeoJSON

最新推荐

recommend-type

构建基于ajax, jsp, Hibernate的博客网站源码解析

根据提供的文件信息,本篇内容将专注于解释和阐述ajax、jsp、Hibernate以及构建博客网站的相关知识点。 ### AJAX AJAX(Asynchronous JavaScript and XML)是一种用于创建快速动态网页的技术,它允许网页在不重新加载整个页面的情况下,与服务器交换数据并更新部分网页内容。AJAX的核心是JavaScript中的XMLHttpRequest对象,通过这个对象,JavaScript可以异步地向服务器请求数据。此外,现代AJAX开发中,常常用到jQuery中的$.ajax()方法,因为其简化了AJAX请求的处理过程。 AJAX的特点主要包括: - 异步性:用户操作与数据传输是异步进行的,不会影响用户体验。 - 局部更新:只更新需要更新的内容,而不是整个页面,提高了数据交互效率。 - 前后端分离:AJAX技术允许前后端分离开发,让前端开发者专注于界面和用户体验,后端开发者专注于业务逻辑和数据处理。 ### JSP JSP(Java Server Pages)是一种动态网页技术标准,它允许开发者将Java代码嵌入到HTML页面中,从而实现动态内容的生成。JSP页面在服务器端执行,并将生成的HTML发送到客户端浏览器。JSP是Java EE(Java Platform, Enterprise Edition)的一部分。 JSP的基本工作原理: - 当客户端首次请求JSP页面时,服务器会将JSP文件转换为Servlet。 - 服务器上的JSP容器(如Apache Tomcat)负责编译并执行转换后的Servlet。 - Servlet生成HTML内容,并发送给客户端浏览器。 JSP页面中常见的元素包括: - 指令(Directives):如page、include、taglib等。 - 脚本元素:脚本声明(Script declarations)、脚本表达式(Scriptlet)和脚本片段(Expression)。 - 标准动作:如jsp:useBean、jsp:setProperty、jsp:getProperty等。 - 注释:在客户端浏览器中不可见的注释。 ### Hibernate Hibernate是一个开源的对象关系映射(ORM)框架,它提供了从Java对象到数据库表的映射,简化了数据库编程。通过Hibernate,开发者可以将Java对象持久化到数据库中,并从数据库中检索它们,而无需直接编写SQL语句或掌握复杂的JDBC编程。 Hibernate的主要优点包括: - ORM映射:将对象模型映射到关系型数据库的表结构。 - 缓存机制:提供了二级缓存,优化数据访问性能。 - 数据查询:提供HQL(Hibernate Query Language)和Criteria API等查询方式。 - 延迟加载:可以配置对象或对象集合的延迟加载,以提高性能。 ### 博客网站开发 构建一个博客网站涉及到前端页面设计、后端逻辑处理、数据库设计等多个方面。使用ajax、jsp、Hibernate技术栈,开发者可以更高效地构建功能完备的博客系统。 #### 前端页面设计 前端主要通过HTML、CSS和JavaScript来实现,其中ajax技术可以用来异步获取文章内容、用户评论等,无需刷新页面即可更新内容。 #### 后端逻辑处理 JSP可以在服务器端动态生成HTML内容,根据用户请求和数据库中的数据渲染页面。Hibernate作为ORM框架,可以处理Java对象与数据库表之间的映射,并提供数据库的CRUD(创建、读取、更新、删除)操作。 #### 数据库设计 博客网站的数据库设计通常包含多个表,如用户表(存储用户信息)、文章表(存储文章信息)、评论表(存储用户评论信息)等。使用Hibernate框架可以简化数据库操作,同时确保数据的一致性和安全性。 #### 安全性和性能优化 安全性是构建网站时需要考虑的重要方面,包括但不限于SQL注入防护、XSS攻击防护、会话管理等。性能优化方面,可以利用Hibernate的缓存机制,以及对JSP页面和ajax请求进行适当的缓存处理。 ### 结论 ajax、jsp、Hibernate技术结合可以构建出高效、动态、易于维护的博客网站。在开发过程中,应当关注前后端分离、用户体验优化、系统性能和安全性等关键要素,确保博客网站的稳定和长期可用性。通过本篇文章,读者应该已经对这些技术有了初步了解,并能够结合文件提供的源码开始进行相关开发实践。
recommend-type

【Unity Sunny Land关卡设计高级指南】:打造完美关卡的8大技巧

# 1. Unity关卡设计概述 ## 1.1 关卡设计的核心要素 关卡设计作为游戏开发中不可或缺的一环,承担着构建游戏世界、呈现故事背景、引导玩家体验和激发玩家兴趣的责任。一个优秀的关卡不仅需要有吸引人的视觉效果和有趣的挑战,还需平衡玩家体验,提供连贯的游戏故事。 ## 1.2 关卡设计师的角色 在Unity引擎的环境下,关卡设计师需要具备对场景布局、角色互动、剧情
recommend-type

C++ 模版

<think>我们正在讨论C++模板的使用和常见问题。根据用户要求,所有行内数学表达式使用$...$,独立公式使用$$...$$,用中文回答,并生成相关问题。同时,回答要结构清晰,帮助用户逐步解决问题。 首先,回顾用户的问题:用户想了解C++模板的使用和常见问题。我们将从以下几个方面展开: 1. 模板的基本概念和用途 2. 函数模板和类模板 3. 模板特化和偏特化 4. 模板元编程简介 5. 常见问题及解决方案 注意:在回答中,我们会引用站内提供的引用内容(引用[1]和引用[2])作为参考,但主要围绕模板展开。 ### 1. 模板的基本概念和用途 C++模板是一种支持泛型编程的特性,允许
recommend-type

C#随机数摇奖系统功能及隐藏开关揭秘

### C#摇奖系统知识点梳理 #### 1. C#语言基础 C#(发音为“看井”)是由微软开发的一种面向对象的、类型安全的编程语言。它是.NET框架的核心语言之一,广泛用于开发Windows应用程序、ASP.NET网站、Web服务等。C#提供丰富的数据类型、控制结构和异常处理机制,这使得它在构建复杂应用程序时具有很强的表达能力。 #### 2. 随机数的生成 在编程中,随机数生成是常见的需求之一,尤其在需要模拟抽奖、游戏等场景时。C#提供了System.Random类来生成随机数。Random类的实例可以生成一个伪随机数序列,这些数在统计学上被认为是随机的,但它们是由确定的算法生成,因此每次运行程序时产生的随机数序列相同,除非改变种子值。 ```csharp using System; class Program { static void Main() { Random rand = new Random(); for(int i = 0; i < 10; i++) { Console.WriteLine(rand.Next(1, 101)); // 生成1到100之间的随机数 } } } ``` #### 3. 摇奖系统设计 摇奖系统通常需要以下功能: - 用户界面:显示摇奖结果的界面。 - 随机数生成:用于确定摇奖结果的随机数。 - 动画效果:模拟摇奖的视觉效果。 - 奖项管理:定义摇奖中可能获得的奖品。 - 规则设置:定义摇奖规则,比如中奖概率等。 在C#中,可以使用Windows Forms或WPF技术构建用户界面,并集成上述功能以创建一个完整的摇奖系统。 #### 4. 暗藏的开关(隐藏控制) 标题中提到的“暗藏的开关”通常是指在程序中实现的一个不易被察觉的控制逻辑,用于在特定条件下改变程序的行为。在摇奖系统中,这样的开关可能用于控制中奖的概率、启动或停止摇奖、强制显示特定的结果等。 #### 5. 测试 对于摇奖系统来说,测试是一个非常重要的环节。测试可以确保程序按照预期工作,随机数生成器的随机性符合要求,用户界面友好,以及隐藏的控制逻辑不会被轻易发现或利用。测试可能包括单元测试、集成测试、压力测试等多个方面。 #### 6. System.Random类的局限性 System.Random虽然方便使用,但也有其局限性。其生成的随机数序列具有一定的周期性,并且如果使用不当(例如使用相同的种子创建多个实例),可能会导致生成相同的随机数序列。在安全性要求较高的场合,如密码学应用,推荐使用更加安全的随机数生成方式,比如RNGCryptoServiceProvider。 #### 7. Windows Forms技术 Windows Forms是.NET框架中用于创建图形用户界面应用程序的库。它提供了一套丰富的控件,如按钮、文本框、标签等,以及它们的事件处理机制,允许开发者设计出视觉效果良好且功能丰富的桌面应用程序。 #### 8. WPF技术 WPF(Windows Presentation Foundation)是.NET框架中用于构建桌面应用程序用户界面的另一种技术。与Windows Forms相比,WPF提供了更现代化的控件集,支持更复杂的布局和样式,以及3D图形和动画效果。WPF的XAML标记语言允许开发者以声明性的方式设计用户界面,与C#代码分离,易于维护和更新。 #### 9. 压缩包子文件TransBallDemo分析 从文件名“TransBallDemo”可以推测,这可能是一个C#的示例程序或者演示程序,其中“TransBall”可能表示旋转的球体,暗示该程序包含了动画效果,可能是用来模拟转动的球体(如转盘或摇奖球)。该文件可能是用来展示如何实现一个带有视觉动画效果的摇奖系统的C#程序。 总结以上内容,我们可以得出构建一个C#摇奖系统需要深入理解C#语言及其随机数生成机制,设计用户界面,集成动画效果,确保隐藏控制逻辑的安全性,以及全面测试系统以保证其正确性和公平性。通过掌握Windows Forms或WPF技术,可以进一步增强系统的视觉和交互体验。
recommend-type

【数据驱动的力量】:管道缺陷判别方法论与实践经验

# 摘要 数据驱动技术在管道缺陷检测领域展现出强大的力量,本文首先概述了数据驱动的力量和管道缺陷判别的基础理论。接着,重点探讨了管道缺陷的类型与特征、数据采集与预处理、数据驱动模型的选择与构建。在实践技巧章节,本文详述了实战数据集的准备与处理、缺陷识别算法的应用、以及性能评估与模型优化。此外,高级应用章节深入讨论了实时数据处理分析、多模态数据融合技术、以及深度学习在缺
recommend-type

FatalError: `Segmentation fault` is detected by the operating system. [TimeInfo: *** Aborted at 1752568501 (unix time) try "date -d @1752568501" if you are using GNU date ***] [SignalInfo: *** SIGSEGV (@0x0) received by PID 3203 (TID 0x7f8a04143340) from PID 0 ***],训练模型中出现上述错误,怎么解决

<think>我们面对的是一个模型训练过程中出现的Segmentation fault错误。根据引用[1],Segmentation Fault通常是由非法内存访问引起的,常见原因包括空指针解引用、数组越界、使用未初始化指针等。在深度学习训练场景中,还可能涉及显存溢出、CUDA内核错误等。 引用[2]展示了一个具体案例:在PaddlePaddle框架中遇到Segmentation fault,并提示了C++ Traceback。这通常表明底层C++代码出现了问题。而引用[3]则提到Python环境下的Segmentation fault,可能涉及Python扩展模块的错误。 解决步骤: 1
recommend-type

EditPlus中实现COBOL语言语法高亮的设置

标题中的“editplus”指的是一个轻量级的代码编辑器,特别受到程序员和软件开发者的欢迎,因为它支持多种编程语言。标题中的“mfcobol”指的是一种特定的编程语言,即“Micro Focus COBOL”。COBOL语言全称为“Common Business-Oriented Language”,是一种高级编程语言,主要用于商业、金融和行政管理领域的数据处理。它最初开发于1959年,是历史上最早的高级编程语言之一。 描述中的“cobol语言颜色显示”指的是在EditPlus这款编辑器中为COBOL代码提供语法高亮功能。语法高亮是一种编辑器功能,它可以将代码中的不同部分(如关键字、变量、字符串、注释等)用不同的颜色和样式显示,以便于编程者阅读和理解代码结构,提高代码的可读性和编辑的效率。在EditPlus中,要实现这一功能通常需要用户安装相应的语言语法文件。 标签“cobol”是与描述中提到的COBOL语言直接相关的一个词汇,它是对描述中提到的功能或者内容的分类或者指代。标签在互联网内容管理系统中用来帮助组织内容和便于检索。 在提供的“压缩包子文件的文件名称列表”中只有一个文件名:“Java.stx”。这个文件名可能是指一个语法高亮的模板文件(Syntax Template eXtension),通常以“.stx”为文件扩展名。这样的文件包含了特定语言语法高亮的规则定义,可用于EditPlus等支持自定义语法高亮的编辑器中。不过,Java.stx文件是为Java语言设计的语法高亮文件,与COBOL语言颜色显示并不直接相关。这可能意味着在文件列表中实际上缺少了为COBOL语言定义的相应.stx文件。对于EditPlus编辑器,要实现COBOL语言的颜色显示,需要的是一个COBOL.stx文件,或者需要在EditPlus中进行相应的语法高亮设置以支持COBOL。 为了在EditPlus中使用COBOL语法高亮,用户通常需要做以下几步操作: 1. 确保已经安装了支持COBOL的EditPlus版本。 2. 从Micro Focus或者第三方资源下载COBOL的语法高亮文件(COBOL.stx)。 3. 打开EditPlus,进入到“工具”菜单中的“配置用户工具”选项。 4. 在用户工具配置中,选择“语法高亮”选项卡,然后选择“添加”来载入下载的COBOL.stx文件。 5. 根据需要选择其他语法高亮的选项,比如是否开启自动完成、代码折叠等。 6. 确认并保存设置。 完成上述步骤后,在EditPlus中打开COBOL代码文件时,应该就能看到语法高亮显示了。语法高亮不仅仅是颜色的区分,它还可以包括字体加粗、斜体、下划线等样式,以及在某些情况下,语法错误的高亮显示。这对于提高编码效率和准确性有着重要意义。
recommend-type

影子系统(windows)问题排查:常见故障诊断与修复

# 摘要 本文旨在深入探讨影子系统的概念、工作原理以及故障诊断基础。首先,介绍影子系统的定义及其运作机制,并分析其故障诊断的理论基础,包括系统故障的分类和特征。接着,详细探讨各种故障诊断工具和方法,并提供实际操作中的故障排查步骤。文中还深入分析了影子系统常见故障案例,涵盖系统启动问题、软件兼容性和网络连通性问题,并提供相应的诊断与解决方案。高级故障诊断与修复
recommend-type

nt!DbgBreakPointWithStatus: fffff805`7affd0b0 cc int 3 kd> g KDTARGET: Refreshing KD connection *** Fatal System Error: 0x0000001a (0x0000000000061941,0xFFFFF8057B20E1C0,0x0000000000000019,0xFFFFFC89CACA7190) Break instruction exception - code 80000003 (first chance) A fatal system error has occurred. Debugger entered on first try; Bugcheck callbacks have not been invoked. A fatal system error has occurred. For analysis of this file, run !analyze -v nt!DbgBreakPointWithStatus: fffff805`7affd0b0 cc int 3 kd> !analyze -v Connected to Windows 10 19041 x64 target at (Tue Jul 15 23:02:04.588 2025 (UTC + 8:00)), ptr64 TRUE Loading Kernel Symbols ............. Press ctrl-c (cdb, kd, ntsd) or ctrl-break (windbg) to abort symbol loads that take too long. Run !sym noisy before .reload to track down problems loading symbols. .................................................. ................................................................ ..................................................... Loading User Symbols Loading unloaded module list ...... ERROR: FindPlugIns 8007007b ******************************************************************************* * * * Bugcheck Analysis * * * ******************************************************************************* MEMORY_MANAGEMENT (1a) # Any other values for parameter 1 must be individually examined. Arguments: Arg1: 0000000000061941, The subtype of the BugCheck. Arg2: fffff8057b20e1c0 Arg3: 0000000000000019 Arg4: fffffc89caca7190 Debugging Details: ------------------ Press ctrl-c (cdb, kd, ntsd) or ctrl-break (windbg) to abort symbol loads that take too long. Run !sym noisy before .reload to track down problems loading symbols. 蓝屏了,但原帖子代码能正常执行,帖子作者说:我win10是专门针对2mb大页,win7是专门针对4kb小页的,蓝屏的原因我只能想到是因为没有做大页和小页的处理了。你做了2mb和4kb之类的处理吗,还有2mb的大页的物理地址要2mb对齐,不然电脑会卡死,我win10蓝屏的原因就是因为没有物理地址2mb对齐,我这代码是专门针对我那个虚拟机的环境,其他环境蓝屏你要是懂分页的话自己就会处理了。最重要的细节就是物理地址要对齐,2mb就2mb的对齐,1gb就1gb的对齐。

<think>我们之前讨论的代码中已经包含了对大页(2MB)和小页(4KB)的处理。但是,根据蓝屏信息(MEMORY_MANAGEMENT, 0x1a)和参数,问题可能出在内存对齐或页表项设置上。 原帖作者提到:2MB大页的物理地址必须2MB对齐,否则会导致系统不稳定甚至蓝屏。在之前的代码中,我们确实处理了大页的情况,但在分配2MB内存时,我们使用了`MmAllocateContiguousMemorySpecifyCache`,这个函数分配的内存不一定满足2MB对齐(尽管它分配的是连续内存)。因此,我们需要确保分配的内存地址是2MB对齐的。 解决方案: 1. 在分配2MB内存时,要
recommend-type

ASP+CSS+DIV制作仿手机QQ请求状态条教程

根据给定文件信息,我们可以提取以下知识点: 1. 文件格式与技术栈理解: - .RAR文件扩展名代表这是一个压缩文件,通常包含了一个或多个文件的打包。在这个情境中,压缩文件的标题表明它包含了一个使用ASP、CSS和Div技术开发的进度条效果的示例代码。 - ASP(Active Server Pages)是一种服务器端脚本环境,可以用来创建动态交互式网页,是一种早期的网页编程技术。 - CSS(Cascading Style Sheets)是一门用于描述HTML或XML文档样式的计算机语言,用于控制网页的布局和设计。 - Div是HTML中的一个标签元素,它常用来创建文档中的分区或框,可以通过CSS对其进行样式定义和布局控制。 2. 功能说明与实现原理: - 描述提到的是仿手机QQ请求状态时的一个进度条,这意味着该进度条是模仿流行的即时通讯应用“手机QQ”中的功能,用于向用户提供正在加载或请求资源的可视化反馈。 - 进度条的基本原理是通过不断更新进度显示元素的CSS样式属性(如宽度或背景位置),以反映操作的完成百分比。这种效果可以通过JavaScript定时器或异步请求来动态改变进度条的样式,从而实现动态效果。 3. 开发实践: - 要创建一个进度条,开发者会首先在HTML中定义一个Div元素,并为其赋予一个特定的id或class,以便于通过CSS和JavaScript进行操作。 - 在CSS中,会定义进度条的初始样式,比如背景颜色、高度、宽度等,以及进度条的填充部分的样式,如渐变色效果或过渡动画效果。 - 通过ASP代码,开发者可以处理后端逻辑,如发送请求到服务器、接收数据等。但在这个进度条的实现中,ASP的作用可能相对较小,更多的是提供数据或触发加载事件。 - 实际控制进度条外观和行为的JavaScript代码,通常会在页面加载完成后执行,通过调用CSS3的动画或定时器函数(如setTimeout或setInterval)来周期性地更新进度条的宽度或背景位置,从而模拟加载进度。 - 进度条的最终效果可能还会包括各种交互细节,比如当进度达到100%时,进度条可能需要有某种效果(如停止动画、显示完成消息等)。 4. 文件内容与结构预览: - 根据文件名称列表,文件“状态提示条.htm”很可能是这个进度条效果的展示载体,其中可能包含了HTML结构、内嵌CSS样式以及JavaScript脚本。 - 该文件可能首先定义了包含进度条的HTML结构,随后通过内嵌的style标签或外部引入的CSS文件设置了进度条的基本样式。 - JavaScript脚本部分则可能包含在页面加载完成后初始化进度条的函数、控制进度条动态效果的函数,以及任何必要的事件处理逻辑。 5. 实际应用与优化: - 在实际应用中,此类进度条不仅用于提升用户体验,还需注意其性能优化。例如,进度条的动画和效果不应该显著影响到页面的加载时间。 - 优化措施可能包括减少不必要的DOM操作、使用CSS3动画代替JavaScript动画、限制JavaScript定时器的调用频率等。 - 进度条的设计还应考虑可访问性(Accessibility)问题,确保视觉效果对色盲用户等群体友好,并提供必要的键盘可操作性。 总结来说,该压缩文件是一个很好的实例,展示了如何将ASP、CSS和Div结合起来,创建一个视觉效果良好的进度条,用于提升网站或应用的交互体验。开发者可以通过观察和分析文件中的代码,了解进度条的具体实现原理和方法,并在自己的项目中进行实践和改进。