def cal_linear(iaqi_lo, iaqi_hi, bp_lo, bp_hi, cp): """ 范围缩放 """ iaqi = (iaqi_hi - iaqi_lo) * (cp - bp_lo) / (bp_hi - bp_lo) + iaqi_lo return iaqi def cal_pm25_iaqi(pm25_val): """ PM2.5的iaqi计算函数 """ if 0 <= pm25_val < 36: iaqi1 = cal_linear(0, 50, 0, 35, pm25_val) elif 36 <= pm25_val < 76: iaqi1 = cal_linear(50, 100, 35, 75, pm25_val) elif 76 <= pm25_val < 116: iaqi1 = cal_linear(100, 150, 75, 115, pm25_val) elif 116 <= pm25_val < 151: iaqi1 = cal_linear(150, 200, 115, 150, pm25_val) elif 151 <= pm25_val < 251: iaqi1 = cal_linear(200, 300, 150, 250, pm25_val) elif 251 <= pm25_val < 351: iaqi1 = cal_linear(300, 400, 250, 350, pm25_val) elif 351 <= pm25_val < 501: iaqi1 = cal_linear(400, 500, 350, 500, pm25_val) return iaqi1 def cal_pm10_iaqi(pm10_val): """ CO的iaqi计算函数 """ if 0 <= pm10_val < 51: iaqi2 = cal_linear(0, 50, 0, 50, pm10_val) elif 51 <= pm10_val < 151: iaqi2 = cal_linear(50, 100, 50, 150, pm10_val) elif 151 <= pm10_val < 251: iaqi2 = cal_linear(100, 150, 150, 250, pm10_val) elif 251 <= pm10_val < 351: iaqi2 = cal_linear(150, 200, 250, 350, pm10_val) elif 351 <= pm10_val < 421: iaqi2 = cal_linear(200, 300, 350, 420, pm10_val) elif 421 <= pm10_val < 501: iaqi2 = cal_linear(300, 400, 420, 500, pm10_val) elif 501 <= pm10_val < 601: iaqi2 = cal_linear(400, 500, 500, 600, pm10_val) return iaqi2 pm25_value = dust_weather_data['pm2.5'] pm10_value = dust_weather_data['pm10'] pm25_iaqi = cal_pm25_iaqi(pm25_value) pm10_iaqi = cal_pm10_iaqi(pm10_val) aqi = max(iaqi1,iaqi2)出错,The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
时间: 2024-04-14 09:28:57 浏览: 157
在你的代码中,出现了相同的错误。这是因为在计算aqi时,你尝试将Series对象(iaqi1和iaqi2)与标量值进行比较,导致了"The truth value of a Series is ambiguous"错误。
要解决这个问题,你需要使用逐元素的比较运算符来比较Series对象中的每个元素。在这种情况下,你可以使用Series对象的.max()方法来找到iaqi1和iaqi2中的最大值。
请修改以下代码:
```python
aqi = max(iaqi1, iaqi2)
```
为:
```python
aqi = pd.Series([iaqi1, iaqi2]).max()
```
这样就可以避免出现"The truth value of a Series is ambiguous"错误,并找到iaqi1和iaqi2中的最大值作为aqi。请确保在使用该代码之前导入pandas库(import pandas as pd)以使用pd.Series()方法。
相关问题
解释每条语句作用def cal_linear(iaqi_lo, iaqi_hi, bp_lo, bp_hi, cp): #范围缩放 iaqi = (iaqi_hi - iaqi_lo) * (cp - bp_lo) / (bp_hi - bp_lo) + iaqi_lo return iaqi def cal_pm_iaqi(pm_val): #计算PM2.5的IAQI if 0 <= pm_val < 35: iaqi = cal_linear(0, 50, 0, 35, pm_val) elif 35 <= pm_val < 75: iaqi = cal_linear(50, 100, 35, 75, pm_val) elif 75 <= pm_val < 115: iaqi = cal_linear(100, 150, 75, 115, pm_val) else: pass return iaqi def cal_co_iaqi(co_val): #计算CO的IAQI if 0 <= co_val < 3: iaqi = cal_linear(0, 50, 0, 3, co_val) elif 3 <= co_val < 5: iaqi = cal_linear(50, 100, 2, 4, co_val) else: pass return iaqi def cal_aqi(para_list): #AQI计算 pm_val = para_list[0] co_val = para_list[1] pm_iaqi = cal_pm_iaqi(pm_val) co_iaqi = cal_co_iaqi(co_val) iaqi_list = [] iaqi_list.append(pm_iaqi) iaqi_list.append(co_iaqi) aqi = max(iaqi_list) return aqi def main(): #主函数 print('请输入以下信息,用空格分隔') input_str = input('(1)PM2.5 (2)CO:') str_list = input_str.split(' ') pm_val = float(str_list[0]) co_val = float(str_list[1]) para_list = [] para_list.append(pm_val) para_list.append(co_val) # 调用AQI计算函数 aqi_val = cal_aqi(para_list) print('空气质量指数为:{}'.format(aqi_val)) if name == 'main': main()
这段代码是一个空气质量指数(AQI)计算器的实现。函数`cal_linear()`用于将一个值的范围从一个区间映射到另一个区间,函数`cal_pm_iaqi()`用于计算PM2.5浓度对应的IAQI值,函数`cal_co_iaqi()`用于计算CO浓度对应的IAQI值,函数`cal_aqi()`用于计算AQI值,最终在`main()`函数中将用户输入的PM2.5和CO浓度值传入`cal_aqi()`函数中计算AQI值,并输出结果。
pm25_value = dust_weather_data['pm2.5'] pm10_value = dust_weather_data['pm10'] pm25_iaqi = cal_pm25_iaqi(pm25_value) pm10_iaqi = cal_pm10_iaqi(pm10_val)出错,The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
这个错误通常发生在尝试使用逻辑运算(如==,<,>等)对Series对象进行比较时。要解决这个问题,你可以使用逐元素的比运算符(如.eq(),.lt().gt()等)来比较Series中的每个元素。
在你的代码中,你可以尝试使用以下方式来计算pm25_iaqi和pm10_iaqi:
```python
pm25_iaqi = cal_pm25_iaqi(pm25_value)
pm10_iaqi = cal_pm10_iaqi(pm10_value)
```
确保你在定义cal_pm25_iaqi和cal_pm10_iaqi函数时,也使用逐元素的比较运算符来处理Series对象中的每个元素。这样就可以避免出现"The truth value of a Series is ambiguous"错误。
阅读全文
相关推荐
















