stm32f407 __HAL_TIM_DISABLE(__HANDLE__)函数

时间: 2025-07-11 21:38:34 浏览: 35
<think>我们正在讨论STM32F407的HAL库中__HAL_TIM_DISABLE函数的用法。根据引用[3],我们看到了一个类似的宏定义__HAL_TIM_ENABLE,它用于启用定时器。我们可以推测__HAL_TIM_DISABLE应该是用于禁用定时器的宏。引用[3]中给出了__HAL_TIM_ENABLE的定义:#define__HAL_TIM_ENABLE(__HANDLE__)((__HANDLE__)->Instance->CR1|=(TIM_CR1_CEN))因此,我们推断__HAL_TIM_DISABLE的定义应该是类似的,但它是清除TIM_CR1_CEN位(控制使能位)来停止定时器。在STM32HAL库中,通常会有配对的使能和禁用宏。所以,__HAL_TIM_DISABLE应该定义为:#define__HAL_TIM_DISABLE(__HANDLE__)((__HANDLE__)->Instance->CR1&=~(TIM_CR1_CEN))这个宏的作用是停止指定的定时器。参数__HANDLE__是一个指向TIM_HandleTypeDef结构的指针,该结构包含了定时器寄存器的基地址(Instance成员)。使用示例:假设我们有一个定时器句柄定义为:TIM_HandleTypeDefhtim2;那么,要禁用这个定时器,我们可以这样调用:__HAL_TIM_DISABLE(&htim2);注意:在使用这个宏之前,确保已经对定时器进行了初始化(例如,通过HAL_TIM_Base_Init()等函数初始化)。另外,在HAL库中,通常还会提供HAL_TIM_Base_Start()和HAL_TIM_Base_Stop()这样的函数,这些函数内部可能就调用了上述宏,但同时也包含了一些状态管理。因此,在大多数情况下,推荐使用HAL库提供的函数(如HAL_TIM_Base_Stop())来停止定时器,因为这些函数还会更新定时器的状态(如gState和RxState)。但是,如果你需要更直接的控制,或者在某些中断服务函数中需要快速操作,可以使用这些底层宏。引用[4]中展示了一个输入捕获的例子,其中使用了__HAL_TIM_SetCounter和__HAL_TIM_SET_CAPTUREPOLARITY等宏,这些宏的使用方式与__HAL_TIM_DISABLE类似,都是直接操作寄存器。总结:__HAL_TIM_DISABLE(__HANDLE__)是一个宏,用于直接禁用指定的定时器。它通过清除定时器控制寄存器1(CR1)中的CEN位来实现。参数__HANDLE__是定时器句柄的指针。使用步骤:1.确保定时器句柄已经初始化。2.调用__HAL_TIM_DISABLE(&htimx)(其中htimx是你的定时器句柄)来停止定时器。注意:这个宏不会改变定时器句柄的内部状态(如htim->State),所以如果你使用HAL库的状态管理,建议使用HAL_TIM_Base_Stop()等函数。相关问题:1.如何在STM32HAL库中启动定时器?2.除了__HAL_TIM_DISABLE,还有哪些常用的TIM宏?3.如何配置STM32的定时器以PWM模式工作?4.定时器禁用后,其计数器会保持当前值吗?</think>### STM32F407中`__HAL_TIM_DISABLE`函数用法详解 `__HAL_TIM_DISABLE(__HANDLE__)`是STM32 HAL库中用于**禁用定时器计数**的底层宏函数。它通过直接操作寄存器关闭定时器,属于高效的低层级控制方法。 #### 函数原型与参数 ```c #define __HAL_TIM_DISABLE(__HANDLE__) \ ((__HANDLE__)->Instance->CR1 &= ~(TIM_CR1_CEN)) ``` - **参数**:`__HANDLE__` 指向`TIM_HandleTypeDef`结构的指针(例如`&htim2`),包含定时器配置信息[^3]。 #### 工作原理解析 1. **寄存器操作**: 清除定时器控制寄存器`CR1`的**计数使能位(CEN)**,对应寄存器位操作: $ \text{CR1 \&= ~(TIM\_CR1\_CEN)} $ 其中`TIM_CR1_CEN`是使能位的掩码(通常为`0x0001`)。 2. **效果**: - 立即停止定时器计数器(CNT)累加 - 保持当前计数器值不变 - 外设时钟仍运行(需单独关闭时钟以节能) #### 使用示例 ```c TIM_HandleTypeDef htim3; // 定时器3句柄 // 禁用定时器3 __HAL_TIM_DISABLE(&htim3); // 检查是否已禁用 if(!(htim3.Instance->CR1 & TIM_CR1_CEN)) { // 定时器已成功停止 } ``` #### 对比HAL层函数 | 方法 | 层级 | 特点 | |---------------------|------------|----------------------------------------------------------------------| | `__HAL_TIM_DISABLE` | **寄存器级** | 直接操作寄存器,无状态检查,速度快,适合实时性要求高的场景[^3] | | `HAL_TIM_Base_Stop` | HAL抽象层 | 包含状态管理(如`htim->State`更新),适合常规应用[^2] | #### 注意事项 1. **安全调用**: 在中断服务函数中调用时需确保不会与主程序冲突(例如操作同一定时器)。 2. **外设管理**: 禁用后如需彻底关闭定时器,需额外调用时钟禁用函数(如`__HAL_TIM_CLK_DISABLE`)[^1]。 3. **状态同步**: 此宏**不会更新**`TIM_HandleTypeDef`中的`State`字段,若需状态管理应使用`HAL_TIM_Base_Stop()`[^2]。 #### 典型应用场景 1. 精确控制定时器启停时序(如PWM突发模式) 2. 高实时性中断服务函数中的计数器管理 3. 低功耗模式下快速关闭定时器计数 > 参考示例:输入捕获模式中通过`__HAL_TIM_SetCounter()`重置计数器前需先禁用定时器[^4]。 ---
阅读全文

相关推荐

下面的代码为什么没有办法在stm32f407的DAC通道上产生正弦波:#include “main.h” #include “dac.h” #include “math.h” #include “tim.h” #include “gpio.h” #define M_PI 3.14159265358979323846f volatile uint32_t freq = 100; volatile uint8_t key0_pressed = 0; volatile uint8_t key_up_pressed = 0;#define SINE_WAVE_POINTS 1024 void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { HAL_Delay(50); }DMA_HandleTypeDef hdma_dac; void DMA_Init(void) { __HAL_RCC_DMA1_CLK_ENABLE(); hdma_dac.Instance = DMA1_Stream5; hdma_dac.Init.Channel = DMA_CHANNEL_7; hdma_dac.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_dac.Init.PeriphInc = DMA_PINC_DISABLE; hdma_dac.Init.MemInc = DMA_MINC_ENABLE; hdma_dac.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD; hdma_dac.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; hdma_dac.Init.Mode = DMA_CIRCULAR; // ??? HAL_DMA_Init(&hdma_dac); __HAL_LINKDMA(&hdac, DMA_Handle1, hdma_dac); } uint32_t sineWave[SINE_WAVE_POINTS]; void EXTI0_IRQHandler(void) // KEY0 { HAL_GPIO_EXTI_IRQHandler(KEY0_Pin); key0_pressed = 1; } void EXTI4_IRQHandler(void) // KEY_UP { HAL_GPIO_EXTI_IRQHandler(KEY_UP_Pin); key_up_pressed = 1; } void Generate_SineWave(void) { float amplitude = 0.5f * (4095.0f / 3.3f); // 0.5V??DAC? float offset = 1.65f * (4095.0f / 3.3f); // 1.65V?? for(int i=0; i<SINE_WAVE_POINTS; i++) { sineWave[i] = (uint32_t)(offset + amplitude * sin(2M_PIi/SINE_WAVE_POINTS)); } }int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DAC_Init(); MX_TIM6_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 / HAL_DAC_Start_DMA(&hdac, DAC_CHANNEL_1, (uint32_t)sineWave, SINE_WAVE_POINTS, DAC_ALIGN_12B_R); /* Infinite loop / / USER CODE BEGIN WHILE / while (1) { / USER CODE END WHILE */ if (key0_pressed) { key0_pressed = 0; if(freq > 100) freq -= 100; __HAL_TIM_SET_AUTORELOAD(&htim6, (168000000/(freq*SINE_WAVE_POINTS)) - 1); } if (key_up_pressed) { key_up_pressed = 0; if(freq < 10000) freq += 100; __HAL_TIM_SET_AUTORELOAD(&htim6, (168000000/(freq*SINE_WAVE_POINTS)) - 1); } /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ }

#include "dac.h" DAC_HandleTypeDef hdac; DMA_HandleTypeDef hdma_dac1; void MX_DAC_Init(void) { DAC_ChannelConfTypeDef sConfig = {0}; hdac.Instance = DAC; if (HAL_DAC_Init(&hdac) != HAL_OK) { Error_Handler(); } sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1) != HAL_OK) { Error_Handler(); } } void HAL_DAC_MspInit(DAC_HandleTypeDef* dacHandle) { GPIO_InitTypeDef GPIO_InitStruct = {0}; if(dacHandle->Instance==DAC) { __HAL_RCC_DAC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); GPIO_InitStruct.Pin = DAC_Pin; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(DAC_GPIO_Port, &GPIO_InitStruct); hdma_dac1.Instance = DMA1_Stream5; hdma_dac1.Init.Channel = DMA_CHANNEL_7; hdma_dac1.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_dac1.Init.PeriphInc = DMA_PINC_DISABLE; hdma_dac1.Init.MemInc = DMA_MINC_ENABLE; hdma_dac1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD; hdma_dac1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; hdma_dac1.Init.Mode = DMA_NORMAL; hdma_dac1.Init.Priority = DMA_PRIORITY_LOW; hdma_dac1.Init.FIFOMode = DMA_FIFOMODE_DISABLE; if (HAL_DMA_Init(&hdma_dac1) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(dacHandle,DMA_Handle1,hdma_dac1); } } void HAL_DAC_MspDeInit(DAC_HandleTypeDef* dacHandle) { if(dacHandle->Instance==DAC) { __HAL_RCC_DAC_CLK_DISABLE(); HAL_GPIO_DeInit(DAC_GPIO_Port, DAC_Pin); HAL_DMA_DeInit(dacHandle->DMA_Handle1); } } 解释上面的代码

main.c:“/* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "tim.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_TIM2_Init(); MX_USART1_UART_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */” gpio.c:“/* Includes ------------------------------------------------------------------*/ #include "gpio.h" /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /*----------------------------------------------------------------------------*/ /* Configure GPIO */ /*----------------------------------------------------------------------------*/ /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOC, GPIO_PIN_0|GPIO_PIN_1, GPIO_PIN_RESET); /*Configure GPIO pins : PC0 PC1 */ GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); } /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ ” tim.c:“/* Includes ------------------------------------------------------------------*/ #include "tim.h" /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ TIM_HandleTypeDef htim2; /* TIM2 init function */ void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 71; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 1000; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_PWM_Init(&htim2) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 500; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ HAL_TIM_MspPostInit(&htim2); } void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef* tim_pwmHandle) { if(tim_pwmHandle->Instance==TIM2) { /* USER CODE BEGIN TIM2_MspInit 0 */ /* USER CODE END TIM2_MspInit 0 */ /* TIM2 clock enable */ __HAL_RCC_TIM2_CLK_ENABLE(); /* TIM2 interrupt Init */ HAL_NVIC_SetPriority(TIM2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(TIM2_IRQn); /* USER CODE BEGIN TIM2_MspInit 1 */ /* USER CODE END TIM2_MspInit 1 */ } } void HAL_TIM_MspPostInit(TIM_HandleTypeDef* timHandle) { GPIO_InitTypeDef GPIO_InitStruct = {0}; if(timHandle->Instance==TIM2) { /* USER CODE BEGIN TIM2_MspPostInit 0 */ /* USER CODE END TIM2_MspPostInit 0 */ __HAL_RCC_GPIOA_CLK_ENABLE(); /**TIM2 GPIO Configuration PA0-WKUP ------> TIM2_CH1 */ GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* USER CODE BEGIN TIM2_MspPostInit 1 */ /* USER CODE END TIM2_MspPostInit 1 */ } } void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef* tim_pwmHandle) { if(tim_pwmHandle->Instance==TIM2) { /* USER CODE BEGIN TIM2_MspDeInit 0 */ /* USER CODE END TIM2_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_TIM2_CLK_DISABLE(); /* TIM2 interrupt Deinit */ HAL_NVIC_DisableIRQ(TIM2_IRQn); /* USER CODE BEGIN TIM2_MspDeInit 1 */ /* USER CODE END TIM2_MspDeInit 1 */ } } /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ ” usart.c:“/* Includes ------------------------------------------------------------------*/ #include "usart.h" /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ UART_HandleTypeDef huart1; /* USART1 init function */ void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } void HAL_UART_MspInit(UART_HandleTypeDef* uartHandle) { GPIO_InitTypeDef GPIO_InitStruct = {0}; if(uartHandle->Instance==USART1) { /* USER CODE BEGIN USART1_MspInit 0 */ /* USER CODE END USART1_MspInit 0 */ /* USART1 clock enable */ __HAL_RCC_USART1_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /**USART1 GPIO Configuration PB6 ------> USART1_TX PB7 ------> USART1_RX */ GPIO_InitStruct.Pin = GPIO_PIN_6; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); __HAL_AFIO_REMAP_USART1_ENABLE(); /* USART1 interrupt Init */ HAL_NVIC_SetPriority(USART1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(USART1_IRQn); /* USER CODE BEGIN USART1_MspInit 1 */ /* USER CODE END USART1_MspInit 1 */ } } void HAL_UART_MspDeInit(UART_HandleTypeDef* uartHandle) { if(uartHandle->Instance==USART1) { /* USER CODE BEGIN USART1_MspDeInit 0 */ /* USER CODE END USART1_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_USART1_CLK_DISABLE(); /**USART1 GPIO Configuration PB6 ------> USART1_TX PB7 ------> USART1_RX */ HAL_GPIO_DeInit(GPIOB, GPIO_PIN_6|GPIO_PIN_7); /* USART1 interrupt Deinit */ HAL_NVIC_DisableIRQ(USART1_IRQn); /* USER CODE BEGIN USART1_MspDeInit 1 */ /* USER CODE END USART1_MspDeInit 1 */ } } /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ ” stm32f1xx_it.c:“/* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stm32f1xx_it.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN TD */ /* USER CODE END TD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /* External variables --------------------------------------------------------*/ extern TIM_HandleTypeDef htim2; extern UART_HandleTypeDef huart1; /* USER CODE BEGIN EV */ /* USER CODE END EV */ void NMI_Handler(void) { /* USER CODE BEGIN NonMaskableInt_IRQn 0 */ /* USER CODE END NonMaskableInt_IRQn 0 */ /* USER CODE BEGIN NonMaskableInt_IRQn 1 */ while (1) { } /* USER CODE END NonMaskableInt_IRQn 1 */ } void HardFault_Handler(void) { /* USER CODE BEGIN HardFault_IRQn 0 */ /* USER CODE END HardFault_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_HardFault_IRQn 0 */ /* USER CODE END W1_HardFault_IRQn 0 */ } } void MemManage_Handler(void) { /* USER CODE BEGIN MemoryManagement_IRQn 0 */ /* USER CODE END MemoryManagement_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */ /* USER CODE END W1_MemoryManagement_IRQn 0 */ } } void BusFault_Handler(void) { /* USER CODE BEGIN BusFault_IRQn 0 */ /* USER CODE END BusFault_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_BusFault_IRQn 0 */ /* USER CODE END W1_BusFault_IRQn 0 */ } } void UsageFault_Handler(void) { /* USER CODE BEGIN UsageFault_IRQn 0 */ /* USER CODE END UsageFault_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_UsageFault_IRQn 0 */ /* USER CODE END W1_UsageFault_IRQn 0 */ } } void SVC_Handler(void) { /* USER CODE BEGIN SVCall_IRQn 0 */ /* USER CODE END SVCall_IRQn 0 */ /* USER CODE BEGIN SVCall_IRQn 1 */ /* USER CODE END SVCall_IRQn 1 */ } void DebugMon_Handler(void) { /* USER CODE BEGIN DebugMonitor_IRQn 0 */ /* USER CODE END DebugMonitor_IRQn 0 */ /* USER CODE BEGIN DebugMonitor_IRQn 1 */ /* USER CODE END DebugMonitor_IRQn 1 */ } void PendSV_Handler(void) { /* USER CODE BEGIN PendSV_IRQn 0 */ /* USER CODE END PendSV_IRQn 0 */ /* USER CODE BEGIN PendSV_IRQn 1 */ /* USER CODE END PendSV_IRQn 1 */ } void SysTick_Handler(void) { /* USER CODE BEGIN SysTick_IRQn 0 */ /* USER CODE END SysTick_IRQn 0 */ HAL_IncTick(); /* USER CODE BEGIN SysTick_IRQn 1 */ /* USER CODE END SysTick_IRQn 1 */ } void RCC_IRQHandler(void) { /* USER CODE BEGIN RCC_IRQn 0 */ /* USER CODE END RCC_IRQn 0 */ /* USER CODE BEGIN RCC_IRQn 1 */ /* USER CODE END RCC_IRQn 1 */ } void TIM2_IRQHandler(void) { /* USER CODE BEGIN TIM2_IRQn 0 */ /* USER CODE END TIM2_IRQn 0 */ HAL_TIM_IRQHandler(&htim2); /* USER CODE BEGIN TIM2_IRQn 1 */ /* USER CODE END TIM2_IRQn 1 */ } void USART1_IRQHandler(void) { /* USER CODE BEGIN USART1_IRQn 0 */ /* USER CODE END USART1_IRQn 0 */ HAL_UART_IRQHandler(&huart1); /* USER CODE BEGIN USART1_IRQn 1 */ /* USER CODE END USART1_IRQn 1 */ } /* USER CODE BEGIN 1 */ /* USER CODE END 1 */” main.h:“/* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_hal.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Exported types ------------------------------------------------------------*/ /* USER CODE BEGIN ET */ /* USER CODE END ET */ /* Exported constants --------------------------------------------------------*/ /* USER CODE BEGIN EC */ /* USER CODE END EC */ /* Exported macro ------------------------------------------------------------*/ /* USER CODE BEGIN EM */ /* USER CODE END EM */ /* Exported functions prototypes ---------------------------------------------*/ void Error_Handler(void); /* USER CODE BEGIN EFP */ /* USER CODE END EFP */ /* Private defines -----------------------------------------------------------*/ #define DIR_Pin GPIO_PIN_0 #define DIR_GPIO_Port GPIOC #define EN_Pin GPIO_PIN_1 #define EN_GPIO_Port GPIOC /* USER CODE BEGIN Private defines */ /* USER CODE END Private defines */ #ifdef __cplusplus } #endif #endif /* __MAIN_H */ ” gpio.h:“/* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __GPIO_H__ #define __GPIO_H__ #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "main.h" /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* USER CODE BEGIN Private defines */ /* USER CODE END Private defines */ void MX_GPIO_Init(void); /* USER CODE BEGIN Prototypes */ /* USER CODE END Prototypes */ #ifdef __cplusplus } #endif #endif /*__ GPIO_H__ */” tim.h:“/* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __TIM_H__ #define __TIM_H__ #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "main.h" /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ extern TIM_HandleTypeDef htim2; /* USER CODE BEGIN Private defines */ /* USER CODE END Private defines */ void MX_TIM2_Init(void); void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim); /* USER CODE BEGIN Prototypes */ /* USER CODE END Prototypes */ #ifdef __cplusplus } #endif #endif /* __TIM_H__ */ ” usart.h:“/* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __USART_H__ #define __USART_H__ #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "main.h" /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ extern UART_HandleTypeDef huart1; /* USER CODE BEGIN Private defines */ /* USER CODE END Private defines */ void MX_USART1_UART_Init(void); /* USER CODE BEGIN Prototypes */ /* USER CODE END Prototypes */ #ifdef __cplusplus } #endif #endif /* __USART_H__ */” stm32f1xx_it.h:“/* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Exported types ------------------------------------------------------------*/ /* USER CODE BEGIN ET */ /* USER CODE END ET */ /* Exported constants --------------------------------------------------------*/ /* USER CODE BEGIN EC */ /* USER CODE END EC */ /* Exported macro ------------------------------------------------------------*/ /* USER CODE BEGIN EM */ /* USER CODE END EM */ /* Exported functions prototypes ---------------------------------------------*/ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void RCC_IRQHandler(void); void TIM2_IRQHandler(void); void USART1_IRQHandler(void); /* USER CODE BEGIN EFP */ /* USER CODE END EFP */ #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */ ”目前我已经有以上代码,那么完成一个42步进电机的控制,采用TB6600驱动器,串口发送一个多位数据,比如第一部分控制正转反转与停止,第二位部分控制圈数,第三部分控制速度,如果要实现该功能在以上代码的基础上那么还需要完成哪些部分,请帮我完成,详细一些,还要确保所有量或函数都要声明,一定确保正确性,记得反复检查下

#include "stm32g4xx_hal.h" #include "time.h" #include "main.h" #include "DCAC_ADC.h" #include "OLED.h" #include "adc.h" #include "math.h" #include "PID.h" #include "SPWM.h" #define ADC_SAMPLES 100 extern float Vcc; uint16_t volt[ADC_SAMPLES]; // DMA采集缓冲区 float V_value = 0.0f; // RMS值 float voltage ; // 平均电压 float Top; float PID_Top; float Sum_V_value=0; float target_votage; extern volatile uint8_t dma_complete_flag; // DMA完成标志 extern TIM_HandleTypeDef htim3; extern uint8_t Key_flag; float zhj_voltage; uint32_t adc_raw_value = 0; float voltage = 0.0f; // void Catch_start() { // ADC校准+DMA采集启动(只需一次) HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED); HAL_ADC_Start_DMA(&hadc1, (uint32_t*)volt, ADC_SAMPLES); HAL_TIM_Base_Start_IT(&htim3); } void Show_ADC1(float Move_value)//交流电压 { if(dma_complete_flag) { static uint16_t Sum_count = 0; // 静态变量保持状态 int32_t sum_rms = 0; for(int i = 0; i < ADC_SAMPLES; i++) { sum_rms += (volt[i]-(Move_value*1241))*(volt[i]-(Move_value*1241)); } //V_value = sqrt((float)sum_rms / ADC_SAMPLES); // 有效值(单位: ADC码) //滤波 Sum_V_value+=sqrt((float)sum_rms / ADC_SAMPLES); Sum_count++; if(Sum_count==35) { V_value=Sum_V_value/35; //最终ADC值 Sum_count=0; Sum_V_value=0; } // voltage = V_value* 3.3f / 4095.0f; // 真实值 Top=voltage*sqrtf(2); //当前值 target_votage=get_current_votage();//目标值 // 峰值 PID_Top=Buck_PID(target_votage,Top); // 增大单次调整限制和总输出限制 set_pwm(PID_Top); dma_complete_flag = 0; // 清除标志 // 重新启动DMA采集,循环模式不需要开启 // HAL_ADC_Start_DMA(&hadc1, (uint32_t*)volt, ADC_SAMPLES); } } void adc_read_and_display(void)//直流电压 { // 启动ADC转换 HAL_ADC_Start(&hadc2); // 等待转换完成(超时100ms) if (HAL_ADC_PollForConversion(&hadc2, 10) == HAL_OK) { // 读取原始ADC值(12位,范围0-4095) adc_raw_value = HAL_ADC_GetValue(&hadc2); // 转换为电压值(假设参考电压3.3V) zhj_voltage = (adc_raw_value * 3.3f) / 4095.0f; OLED_ShowString(1, 1, "Zhi_V:"); OLED_ShowString(4, 1, "Zhi_A:"); OLED_ShowString(2, 3, "Raw:"); OLED_ShowNum(2, 7, adc_raw_value, 4); // 显示4位原始值 // 在OLED上显示电压值(第2行,从第1列开始) OLED_ShowString(3, 3, "Volt:"); OLED_ShowNum(3, 8, (uint32_t)zhj_voltage, 1); // 整数部分 OLED_ShowString(3, 9, "."); OLED_ShowNum(3, 10, (uint32_t)(zhj_voltage * 1000) % 1000, 3); // 小数部分(毫伏级) OLED_ShowString(3, 13, "V"); } // 停止ADC转换 HAL_ADC_Stop(&hadc2); } 我的ADC2不工作/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file adc.c * @brief This file provides code for the configuration * of the ADC instances. ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "adc.h" /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ ADC_HandleTypeDef hadc1; ADC_HandleTypeDef hadc2; DMA_HandleTypeDef hdma_adc1; /* ADC1 init function */ void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_MultiModeTypeDef multimode = {0}; ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Common config */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.GainCompensation = 0; hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc1.Init.LowPowerAutoWait = DISABLE; hadc1.Init.ContinuousConvMode = ENABLE; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T3_TRGO; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING; hadc1.Init.DMAContinuousRequests = ENABLE; hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc1.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure the ADC multi-mode */ multimode.Mode = ADC_MODE_INDEPENDENT; if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_15; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_47CYCLES_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /* ADC2 init function */ void MX_ADC2_Init(void) { /* USER CODE BEGIN ADC2_Init 0 */ /* USER CODE END ADC2_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC2_Init 1 */ /* USER CODE END ADC2_Init 1 */ /** Common config */ hadc2.Instance = ADC2; hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2; hadc2.Init.Resolution = ADC_RESOLUTION_12B; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.GainCompensation = 0; hadc2.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc2.Init.LowPowerAutoWait = DISABLE; hadc2.Init.ContinuousConvMode = DISABLE; hadc2.Init.NbrOfConversion = 1; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc2.Init.DMAContinuousRequests = DISABLE; hadc2.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc2.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc2) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_15; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_640CYCLES_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC2_Init 2 */ /* USER CODE END ADC2_Init 2 */ } static uint32_t HAL_RCC_ADC12_CLK_ENABLED=0; void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle) { GPIO_InitTypeDef GPIO_InitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; if(adcHandle->Instance==ADC1) { /* USER CODE BEGIN ADC1_MspInit 0 */ /* USER CODE END ADC1_MspInit 0 */ /** Initializes the peripherals clocks */ PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC12; PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } /* ADC1 clock enable */ HAL_RCC_ADC12_CLK_ENABLED++; if(HAL_RCC_ADC12_CLK_ENABLED==1){ __HAL_RCC_ADC12_CLK_ENABLE(); } __HAL_RCC_GPIOB_CLK_ENABLE(); /**ADC1 GPIO Configuration PB0 ------> ADC1_IN15 */ GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* ADC1 DMA Init */ /* ADC1 Init */ hdma_adc1.Instance = DMA1_Channel1; hdma_adc1.Init.Request = DMA_REQUEST_ADC1; hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE; hdma_adc1.Init.MemInc = DMA_MINC_ENABLE; hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD; hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; hdma_adc1.Init.Mode = DMA_CIRCULAR; hdma_adc1.Init.Priority = DMA_PRIORITY_LOW; if (HAL_DMA_Init(&hdma_adc1) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc1); /* ADC1 interrupt Init */ HAL_NVIC_SetPriority(ADC1_2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(ADC1_2_IRQn); /* USER CODE BEGIN ADC1_MspInit 1 */ /* USER CODE END ADC1_MspInit 1 */ } else if(adcHandle->Instance==ADC2) { /* USER CODE BEGIN ADC2_MspInit 0 */ /* USER CODE END ADC2_MspInit 0 */ /** Initializes the peripherals clocks */ PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC12; PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } /* ADC2 clock enable */ HAL_RCC_ADC12_CLK_ENABLED++; if(HAL_RCC_ADC12_CLK_ENABLED==1){ __HAL_RCC_ADC12_CLK_ENABLE(); } __HAL_RCC_GPIOB_CLK_ENABLE(); /**ADC2 GPIO Configuration PB15 ------> ADC2_IN15 */ GPIO_InitStruct.Pin = GPIO_PIN_15; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* ADC2 interrupt Init */ HAL_NVIC_SetPriority(ADC1_2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(ADC1_2_IRQn); /* USER CODE BEGIN ADC2_MspInit 1 */ /* USER CODE END ADC2_MspInit 1 */ } } void HAL_ADC_MspDeInit(ADC_HandleTypeDef* adcHandle) { if(adcHandle->Instance==ADC1) { /* USER CODE BEGIN ADC1_MspDeInit 0 */ /* USER CODE END ADC1_MspDeInit 0 */ /* Peripheral clock disable */ HAL_RCC_ADC12_CLK_ENABLED--; if(HAL_RCC_ADC12_CLK_ENABLED==0){ __HAL_RCC_ADC12_CLK_DISABLE(); } /**ADC1 GPIO Configuration PB0 ------> ADC1_IN15 */ HAL_GPIO_DeInit(GPIOB, GPIO_PIN_0); /* ADC1 DMA DeInit */ HAL_DMA_DeInit(adcHandle->DMA_Handle); /* ADC1 interrupt Deinit */ /* USER CODE BEGIN ADC1:ADC1_2_IRQn disable */ /** * Uncomment the line below to disable the "ADC1_2_IRQn" interrupt * Be aware, disabling shared interrupt may affect other IPs */ /* HAL_NVIC_DisableIRQ(ADC1_2_IRQn); */ /* USER CODE END ADC1:ADC1_2_IRQn disable */ /* USER CODE BEGIN ADC1_MspDeInit 1 */ /* USER CODE END ADC1_MspDeInit 1 */ } else if(adcHandle->Instance==ADC2) { /* USER CODE BEGIN ADC2_MspDeInit 0 */ /* USER CODE END ADC2_MspDeInit 0 */ /* Peripheral clock disable */ HAL_RCC_ADC12_CLK_ENABLED--; if(HAL_RCC_ADC12_CLK_ENABLED==0){ __HAL_RCC_ADC12_CLK_DISABLE(); } /**ADC2 GPIO Configuration PB15 ------> ADC2_IN15 */ HAL_GPIO_DeInit(GPIOB, GPIO_PIN_15); /* ADC2 interrupt Deinit */ /* USER CODE BEGIN ADC2:ADC1_2_IRQn disable */ /** * Uncomment the line below to disable the "ADC1_2_IRQn" interrupt * Be aware, disabling shared interrupt may affect other IPs */ /* HAL_NVIC_DisableIRQ(ADC1_2_IRQn); */ /* USER CODE END ADC2:ADC1_2_IRQn disable */ /* USER CODE BEGIN ADC2_MspDeInit 1 */ /* USER CODE END ADC2_MspDeInit 1 */ } } /* USER CODE BEGIN 1 */ // hdma_adc1.Init.Mode = DMA_CIRCULAR;---------136�� /* USER CODE END 1 */

最新推荐

recommend-type

深度学习通用模块精选集

这份资源是一套聚焦深度学习领域的通用模块精选集,整合了从经典到近年前沿的 50 个核心组件(如注意力机制、特征增强模块、上下文建模单元等),覆盖目标检测、语义分割、域自适应等多个任务场景。 每个模块均严格从对应论文中提炼核心信息,按 “作用 - 机制 - 独特优势 - 带注释代码” 四部分结构化呈现: 明确模块解决的具体问题(如提升小目标检测精度、增强上下文感知能力); 拆解其工作逻辑(如多分支特征融合、循环注意力机制等); 总结相比同类方法的创新点(如轻量化设计、更高计算效率); 提供可直接运行的代码实现,注释详尽且适配主流框架(PyTorch 为主)。 资源旨在为研究者和开发者提供 “即插即用” 的工具包:无需逐篇翻阅论文,即可快速理解模块原理并嵌入自有网络测试效果,尤其适合赶实验、调模型或撰写论文时的模块选型与整合,助力高效完成 “模块缝合” 与性能优化。
recommend-type

500强企业管理表格模板大全

在当今商业环境中,管理表格作为企业运营和管理的重要工具,是确保组织高效运作的关键。世界500强企业在管理层面的成功,很大程度上得益于它们的规范化和精细化管理。本文件介绍的“世界500强企业管理表格经典”,是一份集合了多种管理表格模板的资源,能够帮助管理者们更有效地进行企业规划、执行和监控。 首先,“管理表格”这个概念在企业中通常指的是用于记录、分析、决策和沟通的各种文档和图表。这些表格不仅仅局限于纸质形式,更多地是以电子形式存在,如Excel、Word、PDF等文件格式。它们帮助企业管理者收集和整理数据,以及可视化信息,从而做出更加精准的决策。管理表格可以应用于多个领域,例如人力资源管理、财务预算、项目管理、销售统计等。 标题中提及的“世界500强”,即指那些在全球范围内运营且在《财富》杂志每年公布的全球500强企业排行榜上出现的大型公司。这些企业通常具备较为成熟和先进的管理理念,其管理表格往往经过长时间的实践检验,并且能够有效地提高工作效率和决策质量。 描述中提到的“规范化”是企业管理中的一个核心概念。规范化指的是制定明确的标准和流程,以确保各项管理活动的一致性和可预测性。管理表格的使用能够帮助实现管理规范化,使得管理工作有据可依、有章可循,减少因个人经验和随意性带来的风险和不确定性。规范化管理不仅提高了企业的透明度,还有利于培养员工的规则意识,加强团队之间的协调与合作。 “经典”一词在这里强调的是,这些管理表格模板是经过实践验证,能够适用于大多数管理场景的基本模式。由于它们的普适性和高效性,这些表格模板被广泛应用于不同行业和不同规模的企业之中。一个典型的例子是SWOT分析表,它可以帮助企业识别内部的优势(Strengths)、弱点(Weaknesses)以及外部的机会(Opportunities)和威胁(Threats)。SWOT分析表就是一个在世界500强企业中普遍使用的管理表格。 标签中的“表格模板”则是对上述管理工具的具体描述。这些模板通常是预先设计好的,能够帮助企业管理者快速开始工作,无需从零开始制作新的表格。它们包含了一些必备的字段和格式,用户可以根据自己的具体需求对模板进行调整和填充。 文件名称列表中的“index.html”可能是压缩包内的一个网页文件,用于展示管理表格的索引或介绍。如果这是一个在线资源,它将允许用户通过网页界面访问和下载各种表格模板。而“menu”可能是一个导航文件,用来帮助用户在多个表格模板之间进行选择。“data”文件夹可能包含了实际的表格模板文件,它们可能以Excel、Word等格式存在。 总的来说,管理表格是企业成功管理不可或缺的工具。通过使用世界500强企业所采纳的管理表格模板,其他企业可以借鉴这些顶级企业的管理经验,帮助自己在管理实践中达到更高的效率和质量。通过规范化和模板化的管理表格,企业可以确保其管理活动的一致性和标准化,这对于保持竞争力和实现长期发展至关重要。
recommend-type

YOLOv8目标检测算法深度剖析:从零开始构建高效检测系统(10大秘诀)

# 1. YOLOv8目标检测算法概述 ## 1.1 YOLOv8的简介与定位 YOLOv8(You Only Look Once version 8)作为一种前沿的目标检测算法,是由YOLO系列算法演化而来。该算法特别强调快速与准确的平衡,它被设计用于实时图像识别
recommend-type

mclmcrrt9_8.dll下载

<think>我们正在处理用户关于"mclmcrrt9_8.dll"文件的下载请求。根据引用内容,这个文件是MATLAB运行时库的一部分,通常与特定版本的MATLABRuntime相关联。用户需求:下载mclmcrrt9_8.dll的官方版本。分析:1.根据引用[2]和[3],mclmcrrt9_0_1.dll和mclmcrrt9_13.dll都是MATLABRuntime的文件,版本号对应MATLAB的版本(如9_0对应R2016a,9_13对应2022b)。2.因此,mclmcrrt9_8.dll应该对应于某个特定版本的MATLAB(可能是R2016b?因为9.8版本通常对应MATLABR
recommend-type

林锐博士C++编程指南与心得:初学者快速提能

首先,这份文件的核心在于学习和提高C++编程能力,特别是针对初学者。在这个过程中,需要掌握的不仅仅是编程语法和基本结构,更多的是理解和运用这些知识来解决实际问题。下面将详细解释一些重要的知识点。 ### 1. 学习C++基础知识 - **基本数据类型**: 在C++中,需要熟悉整型、浮点型、字符型等数据类型,以及它们的使用和相互转换。 - **变量与常量**: 学习如何声明变量和常量,并理解它们在程序中的作用。 - **控制结构**: 包括条件语句(if-else)、循环语句(for、while、do-while),它们是构成程序逻辑的关键。 - **函数**: 理解函数定义、声明、调用和参数传递机制,是组织代码的重要手段。 - **数组和指针**: 学习如何使用数组存储数据,以及指针的声明、初始化和运算,这是C++中的高级话题。 ### 2. 林锐博士的《高质量的C++编程指南》 林锐博士的著作《高质量的C++编程指南》是C++学习者的重要参考资料。这本书主要覆盖了以下内容: - **编码规范**: 包括命名规则、注释习惯、文件结构等,这些都是编写可读性和可维护性代码的基础。 - **设计模式**: 在C++中合理使用设计模式可以提高代码的复用性和可维护性。 - **性能优化**: 学习如何编写效率更高、资源占用更少的代码。 - **错误处理**: 包括异常处理和错误检测机制,这对于提高程序的鲁棒性至关重要。 - **资源管理**: 学习如何在C++中管理资源,避免内存泄漏等常见错误。 ### 3. 答题与测试 - **C++C试题**: 通过阅读并回答相关试题,可以帮助读者巩固所学知识,并且学会如何将理论应用到实际问题中。 - **答案与评分标准**: 提供答案和评分标准,使读者能够自我评估学习成果,了解哪些方面需要进一步加强。 ### 4. 心得体会与实践 - **实践**: 理论知识需要通过大量编程实践来加深理解,动手编写代码,解决问题,是学习编程的重要方式。 - **阅读源码**: 阅读其他人的高质量代码,可以学习到许多编程技巧和最佳实践。 - **学习社区**: 参与C++相关社区,比如Stack Overflow、C++论坛等,可以帮助解答疑惑,交流心得。 ### 5. 拓展知识 - **C++标准库**: 学习C++标准模板库(STL),包括vector、map、list、algorithm等常用组件,是构建复杂数据结构和算法的基础。 - **面向对象编程**: C++是一种面向对象的编程语言,理解类、对象、继承、多态等概念对于写出优雅的C++代码至关重要。 - **跨平台编程**: 了解不同操作系统(如Windows、Linux)上的C++编程差异,学习如何编写跨平台的应用程序。 - **现代C++特性**: 学习C++11、C++14、C++17甚至C++20中的新特性,如智能指针、lambda表达式、自动类型推导等,可以提高开发效率和代码质量。 ### 总结 学习C++是一个系统工程,需要从基础语法开始,逐步深入到设计思想、性能优化、跨平台编程等领域。通过不断的学习和实践,初学者可以逐步成长为一个具有高代码质量意识的C++程序员。而通过阅读经典指南书籍,参与测试与评估,以及反思和总结实践经验,读者将更加扎实地掌握C++编程技术。此外,还需注意编程社区的交流和现代C++的发展趋势,这些都对于保持编程技能的前沿性和实用性是必不可少的。
recommend-type

线性代数方程组求解全攻略:直接法vs迭代法,一文搞懂

# 摘要 线性代数方程组求解是数学和工程领域中的基础而重要的问题。本文首先介绍了线性方程组求解的基础知识,然后详细阐述了直接法和迭代法两种主要的求解策略。直接法包括高斯消元法和LU分解方法,本文探讨了其理论基础、实践应用以及算法优化。迭代法则聚焦于雅可比和高斯-赛德尔方法,分析了其原理、实践应用和收敛性。通过比较分析,本文讨论了两种方法在
recommend-type

怎么下载mysql8.0.33版本

<think>我们正在处理用户关于下载并安装MySQL8.0.33版本的问题。根据引用[1]和引用[2],我们可以提供两种方法:一种是使用RPM包在CentOS上安装,另一种是使用ZIP包在Windows上安装。另外,引用[3]提到了安装过程中需要注意Python环境,但根据MySQL官方文档,Python并不是必须的,除非使用某些特定功能(如MySQLShell的Python模式)。因此,我们主要关注下载和安装步骤。用户没有明确操作系统,因此我们将分别介绍Windows和CentOS(Linux)下的安装方法。步骤概述:1.下载MySQL8.0.332.安装(根据系统不同步骤不同)3.初始化
recommend-type

C#学籍管理系统开发完成,信管专业的福音

标题中提到的“C#设计的学籍系统”涉及到几个重要的知识点。首先是“C#”,这是微软公司开发的一种面向对象的、运行在.NET框架上的高级编程语言。C#语言广泛用于开发Windows应用程序、游戏开发、分布式组件和客户端服务器应用程序等。在该标题中,它被用于构建一个学籍系统,这意味着系统的核心逻辑和功能是通过C#语言实现的。 其次是“学籍系统”,这通常是指用于管理学生个人信息、成绩、课程和学籍状态等数据的软件应用系统。学籍系统能够帮助教育机构高效地维护和更新学生档案,实现学生信息的电子化管理。它通常包括学生信息管理、成绩管理、课程安排、毕业资格审核等功能。 从描述中我们可以得知,这个学籍系统是“专门为信管打造”的。这里的“信管”很可能是对“信息管理”或者“信息系统管理”专业的简称。信息管理是一个跨学科领域,涉及信息技术在收集、存储、保护、处理、传输和安全地管理和开发信息资源方面的应用。这个系统可能是针对该专业学生的实际需求来定制开发的,包括一些特有的功能或者界面设计,以便更好地满足专业学习和实践操作的需要。 描述中还提到“请大家积极下载”,这可能意味着该学籍系统是一个开源项目,或者至少是一个允许公众访问的软件资源。由于开发者提出了“如有不足之处请大家多多包涵”,我们可以推断这个系统可能还处于测试或早期使用阶段,因此可能还不是完全成熟的版本,或者可能需要使用者反馈意见以便进行后续改进。 标签中的“C#的啊,大家注意,嘻嘻哈哈”表达了开发者轻松的态度和对C#语言的特定提及。这个标签可能是在一个非正式的交流环境中发布的,所以用词带有一定的随意性。尽管如此,它还是说明了该学籍系统是基于C#语言开发的,并提醒用户对这一点给予关注。 关于压缩包子文件的文件名称列表中,“学生成绩管理系统”直接指出了这个软件系统的主要功能之一,即管理学生的成绩。这通常包括录入成绩、查询成绩、统计分析成绩、成绩报告等功能。一个优秀的学生成绩管理系统可以让教师和学校管理人员更加高效地处理学生的成绩数据,同时也能让学生本人了解自己的学业进展。 综合以上信息,我们可以提炼出以下知识点: 1. C#语言:是一种面向对象的编程语言,适用于.NET框架,用于开发各种类型的应用程序。 2. 学籍系统:是管理学生基本信息、成绩、课程和学籍状态的软件应用系统,目的是实现学生信息的电子化管理。 3. 信息系统管理专业:该系统可能是针对信息系统管理专业的学生或教师的需求设计和开发的。 4. 开源项目或公众访问资源:鼓励用户下载使用,并接受用户的反馈和建议。 5. 学生成绩管理系统:是学籍系统的一个重要组成部分,专注于管理学生的成绩数据。 在开发一个C#设计的学籍系统时,开发者需要考虑的因素很多,比如系统的用户界面设计、数据库设计、数据安全、网络通信等。此外,系统还应该有良好的扩展性和易用性,以便未来可以根据用户反馈和新需求进行升级和优化。
recommend-type

特征值与特征向量速成课:理论精讲与7种高效算法

# 摘要 本文系统地介绍了特征值与特征向量的基本概念、理论深度剖析、高效特征值算法以及这些数学工具在实际问题中的应用。首先从定义与性质出发,详细解释了特征值与特征向量的
recommend-type

嵌入式Linux读写硬盘数据错误CF2 13473a 13433a 1342b2 13473a解决方案

<think>嗯,用户这次提出的问题很专业,是关于嵌入式Linux系统硬盘读写错误的解决方案。从错误代码CF2、13473a等来看,这应该是特定硬盘控制器或文件系统的错误码,需要结合硬件和系统环境分析。用户可能正在调试一个嵌入式设备,遇到了硬盘读写不稳定问题。这类错误通常涉及硬件连接、驱动兼容性、文件系统损坏等多个层面。用户提供的错误码格式看起来像十六进制值,可能是控制器寄存器状态或SCSI检测码。考虑到嵌入式系统的特殊性,需要从底层开始排查。首先应该检查物理连接,因为振动或接触不良在嵌入式环境中很常见。然后是驱动兼容性,嵌入式Linux常使用定制内核,驱动版本匹配很重要。另外,用户没有说明文