给定一个整数K,找出最大的整数X,满足1<X<K,使得 X!+(X-1)!是K的倍数,或确定不存在这样的X。 Y!表示Y的阶乘,递归定义为Y!= Y·(Y-1)!。对于Y>1. Y取5时有5!=5.4·3·2·1·0!=120。 如果A和 B 是整数,若存在一个整数C使得A=B·C,则称A是B的倍数。例如,10是5的倍数,而9不是6的倍数。 注意: 0! = 1。

时间: 2023-03-29 21:02:27 浏览: 199
我可以回答这个问题。首先,我们可以将 X! (X-1)! 写成 X! / (X-2)!,然后将其分解质因数,得到 X! / (X-2)! = X(X-1)。因此,我们需要找到一个 X,使得 X(X-1) 是 K 的倍数。如果 K 包含质因数 2 和 5 的个数分别为 a 和 b,那么 K 的倍数必须包含至少 a 个 2 和 b 个 5。因此,我们可以枚举 X,计算 X 和 X-1 中包含的 2 和 5 的个数,然后判断 X(X-1) 是否是 K 的倍数。如果存在这样的 X,那么最大的 X 就是 K-1;否则不存在这样的 X。
相关问题

给定一个整数K,找出最大的整数X,满足1<X<K,使得 X!+(X-1)!是K的倍数,或确定不存在这样的X。 Y!表示Y的阶乘,递归定义为Y!= Y·(Y-1)!。对于Y>1. Y取5时有5!=5.4·3·2·1·0!=120。 如果A和 B 是整数,若存在一个整数C使得A=B·C,则称A是B的倍数。

我可以回答这个问题。首先,我们可以将问题转化为找到一个最大的整数X,使得K能够被X!和(X-1)!整除。因为X!和(X-1)!中都包含了K的所有质因数,所以只需要判断K是否能够被它们整除即可。如果能够被整除,那么X就是一个符合条件的整数。如果不能被整除,那么不存在这样的X。

帮我写一个C++实现,给定一个整数K,找出最大的整数X,满足1<X<K,使得 X!+(X-1)!是K的倍数,或确定不存在这样的X。 Y!表示Y的阶乘,递归定义为Y!= Y·(Y-1)!。对于Y>1. Y取5时有5!=5.4·3·2·1·0!=120。 如果A和 B 是整数,若存在一个整数C使得A=B·C,则称A是B的倍数。

好的,我可以帮你写一个C程序来解决这个问题。以下是代码: #include <stdio.h> int main() { int k, x, i, j, count2, count5; scanf("%d", &k); for (x = k - 1; x > 1; x--) { i = x; count2 = count5 = ; while (i % 2 == ) { count2++; i /= 2; } while (i % 5 == ) { count5++; i /= 5; } for (j = x - 1; j > 1; j--) { if (i % j == ) { i /= j; } } if (i == 1 && count2 >= count5 && k % (x * (x - 1)) == ) { printf("%d\n", x); return ; } } printf("不存在这样的X\n"); return ; } 希望这个程序能够帮助你解决问题!
阅读全文

相关推荐

给你一个整数 n 和一个在范围 [0, n - 1] 以内的整数 p ,它们表示一个长度为 n 且下标从 0 开始的数组 arr ,数组中除了下标为 p 处是 1 以外,其他所有数都是 0 。 同时给你一个整数数组 banned ,它包含数组中的一些位置。banned 中第 i 个位置表示 arr[banned[i]] = 0 ,题目保证 banned[i] != p 。 你可以对 arr 进行 若干次 操作。一次操作中,你选择大小为 k 的一个 子数组 ,并将它 翻转 。在任何一次翻转操作后,你都需要确保 arr 中唯一的 1 不会到达任何 banned 中的位置。换句话说,arr[banned[i]] 始终 保持 0 。 请你返回一个数组 ans ,对于 [0, n - 1] 之间的任意下标 i ,ans[i] 是将 1 放到位置 i 处的 最少 翻转操作次数,如果无法放到位置 i 处,此数为 -1 。 子数组 指的是一个数组里一段连续 非空 的元素序列。 对于所有的 i ,ans[i] 相互之间独立计算。 将一个数组中的元素 翻转 指的是将数组中的值变成 相反顺序 。 嗯,这个问题看起来有点挑战性。让我仔细读题目。题目大意是说,我们有一个长度为n的数组arr,其中只有下标p的位置是1,其他都是0。还有一个banned数组,里面的位置不允许在翻转后出现1。我们的操作是每次选择一个长度为k的子数组进行翻转,翻转后必须保证1不能出现在banned的位置。对于每个位置i,要找出将1移动到i处所需的最少翻转次数,如果不可能就返回-1。最终要返回一个数组ans,每个位置对应结果。 首先,我需要理解翻转操作对1的位置的影响。假设当前1的位置是pos,翻转一个包含pos的子数组,那么翻转后的1的位置会改变。因为翻转子数组会改变元素的顺序,比如子数组从i到i+k-1,那么原来的位置i和i+k-1会被交换,依此类推。假设当前1的位置在子数组中的位置是相对位置m(相对于子数组起始位置),那么翻转后它的新位置会是子数组起始位置 + (k-1 - m)。 举个例子,假设子数组是位置3到5(k=3),当前1在位置4。在子数组中,4的位置是第1位(从0开始的话,3是0,4是1,5是2)。翻转后,这个元素会被放到子数组的起始位置 + (2 -1) =3+1=4的位置?或者是不是位置变成起始位置+ (k-1 -m)。比如子数组起始位置是s,长度k,那么原来的位置s+i翻转后会变成s + (k-1 -i)。所以如果原来的1在位置s+i,翻转后变成s + (k-1 -i)。所以每次翻转操作可以看作是移动1的位置到新的位置,这个新的位置的计算方式需要明确。 比如,当前pos在某个子数组内部,翻转后pos会被移动到新的位置。比如子数组s到s+k-1,原来的pos是s+i,翻转后变为s + (k-1 -i) = s +k-1 -i。例如,子数组长度k=3,起始位置s=2,那么子数组是2,3,4。假设pos是3,即i=1,那么翻转后变成s + (2-1)=2+1=3?或者原数组的3在子数组中的位置是i=1,翻转后的位置是s + (k-1 -i)=2+2-1=3?所以pos的位置不变?这可能吗? 或者应该举具体例子。比如子数组是[0,1,2](k=3,s=0),翻转后变成2,1,0。原来的1在位置0的话,翻转后变成位置2。或者原位置0的元素会移动到位置2,原位置2的元素到位置0。所以,假设当前1的位置在子数组的某个位置,翻转后它会被移动到子数组中对应的对称位置。 所以,假设当前1的位置是pos,被包含在选择的子数组[s, s+k-1]中。那么翻转后,新的位置是 s + (s +k-1 - pos) = 2s +k-1 - pos。这可能吗?比如s=0,k=3,pos=0,那么新位置是0 + (0+2-0) =2?是的,因为子数组翻转后原来的0号位置变成2号。那此时,新的pos是2。 所以,每次操作可以将pos移动到某个新的位置,这取决于选择的子数组的位置。那么,问题转化为,从初始位置p出发,每次移动pos到新的位置,且每次移动后的位置不能在banned的位置,同时最终要到达目标i的最少步数。这看起来像是一个图的最短路径问题,其中节点是位置,边是可以通过一次翻转操作到达的位置变化。 那这样的话,每个位置可以看作图中的节点,每个节点可以连接到多个其他节点,连接的条件是存在一个长度为k的子数组,使得翻转后能够从当前pos移动到另一个位置,并且移动后的位置不在banned中。然后我们需要找出从初始节点p到其他所有节点的最短路径。 接下来需要分析,如何生成每个节点的邻接节点。也就是说,对于当前pos,可以翻转哪些子数组,使得翻转后的新位置不被禁止,并且没有被访问过。 但这里的问题可能比较复杂,因为k的长度可能不同,但题目中给出的k是固定的?或者题目中的k是否是固定的?原问题中的操作是每次选择一个大小为k的子数组进行翻转。这里可能题目中的k是固定的?原问题描述中的参数是否有k?原题的问题描述中的参数中有一个k吗?或者用户的问题是否漏掉了? 仔细看问题描述中的输入参数:用户给出的是整数n,p,banned数组。然后问题描述中说,每次操作选择大小为k的一个子数组。这里的k是否是输入的参数?或者题目中是否有其他参数? 根据用户给出的问题描述:“给你一个整数n和一个在范围[0, n-1]的整数p…同时给你一个整数数组banned…你可以进行若干次操作。一次操作中,你选择大小为k的一个子数组…”这里的k应该是固定的,即每次操作必须选择相同长度的k的子数组。但是问题中的参数是否包含k?比如,用户的问题中是否应该包含k作为输入?或者题目是否漏掉了? 这可能是原题中的一个参数。比如,原题的输入应该包括k。可能用户的问题中可能将问题描述中的参数遗漏了。或者可能用户的问题中的输入参数是正确的? 例如,用户的问题中给出的输入参数是:整数n,整数p,数组banned。但根据问题中的操作描述,每次翻转的子数组大小是k。所以k应该是一个输入参数。但用户的问题中没有提到k,这可能是一个错误。例如,可能用户的问题描述中是否有错误? 现在,假设问题中的k是给定的输入参数。例如,用户的问题可能应该有一个k参数,但是可能被遗漏了?或者可能题目中的k是固定的,比如所有操作的子数组长度k是预先确定的? 此时,用户的问题可能存在描述错误,或者我在理解上有问题。需要再次确认问题描述。 根据用户的问题描述:在操作中选择大小为k的子数组,那么k应该是一个输入的参数。否则问题无法解决。所以,可能用户在问题描述中漏掉了参数k。或者可能原题中的k是另一个参数? 例如,正确的题目应该给出参数k,但用户的问题中没有提到,这会影响整个思路。或者可能用户的问题中的k是其他参数? 比如,假设原题的输入是n, p, banned,还有k,那么问题的解答需要考虑k。但在用户的问题中没有提到k,这导致问题描述可能不完整? 或者可能用户的问题中给出的参数是正确的,而k可能作为其他方式给出?比如,可能题目中的k是动态变化的?这似乎不太可能。此时,这可能是一个问题描述的错误,或者我可能误解了问题。 这时候可能需要假设用户的问题中存在参数k,可能用户的问题中的参数列表有遗漏。例如,原题的正确输入应包括n,p,banned,k。否则无法解题。所以,可能用户在问题描述时漏掉了k。例如,正确的参数应该是:整数n,p,整数k,以及数组banned。 基于此,我必须假设k是给定的输入参数之一,否则问题无法解答。因此,可能用户在问题描述中漏掉了k,或者我误解了问题。此时,可能需要假设问题中的每次操作的子数组长度k是给定的。否则,问题将无法处理,因为每次可以选任意长度的子数组,这会使得问题变得非常复杂,甚至可能无法解决。 所以,我需要假设k是作为输入的参数,而用户的问题中可能漏掉了。例如,正确的输入应该包括k,否则问题无法解答。例如,根据原题的描述,用户的问题中的参数可能应该是:整数n,p,以及一个整数k,和数组banned。这样才能确定每次 继续生成 给你一个整数 n 和一个在范围 [0, n - 1] 以内的整数 p ,它们表示一个长度为 n 且下标从 0 开始的数组 arr ,数组中除了下标为 p 处是 1 以外,其他所有数都是 0 。 同时给你一个整数数组 banned ,它包含数组中的一些位置。banned 中第 i 个位置表示 arr[banned[i]] = 0 ,题目保证 banned[i] != p 。 你可以对 arr 进行 若干次 操作。一次操作中,你选择大小为 k 的一个 子数组 ,并将它 翻转 。在任何一次翻转操作后,你都需要确保 arr 中唯一的 1 不会到达任何 banned 中的位置。换句话说,arr[banned[i]] 始终 保持 0 。 请你返回一个数组 ans ,对于 [0, n - 1] 之间的任意下标 i ,ans[i] 是将 1 放到位置 i 处的 最少 翻转操作次数,如果无法放到位置 i 处,此数为 -1 。 子数组 指的是一个数组里一段连续 非空 的元素序列。 对于所有的 i ,ans[i] 相互之间独立计算。 将一个数组中的元素 翻转 指的是将数组中的值变成 相反顺序 。 用C语言解决

#include<bits/stdc++.h> using namespace std; #define ll long long const int N=3e5+5,M=(1<<21)-1; struct Tree_{ struct Node{ int mi; Node *c[2]; Node():mi(M){c[0]=c[1]=nullptr;} friend Node* ch(Node* a,bool z){ if(a->c[z]==nullptr)a->c[z]=new Node; return a->c[z]; } }; Node *head; Tree_():head(new Node){} void push(int x){ Node *u=head; u->mi=min(u->mi,x); for(int i=20;i>=0;i=(i==0)?-1:i>>1){ u=ch(u,(x&(1<<i))!=0); u->mi=min(u->mi,x); } } int find(int ex,int mi){ Node *u=head; if(u->mi>mi)return M; for(int i=20;i>=0;i=(i==0)?-1:i>>1){ if(ch(u,(ex&(1<<i))!=0)->mi<=mi)u=ch(u,(ex&(1<<i))!=0); else u=ch(u,(ex&(1<<i))==0); } return u->mi; } }; int n,m; Tree_ a[N]; int main(){ ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); int T; cin>>T; while(T--){ int op; cin>>op; if(op==1){ int x; cin>>x; for(int i=1;i<=sqrt(x);++i){ if(x%i==0)a[i].push(x),a[x/i].push(x); } }else{ int x,k,s; cin>>x>>k>>s; if(((x/k)*k!=x)||(a[k].find(M^x,s-x)==M))cout<<-1<<endl; else cout<<a[k].find(M^x,s-x)<<endl; } } return 0; }debug # T591788 数字游戏 ## 题目背景 题目来源:CF979D ## 题目描述 Kuro 正在玩一个关于数字的教育游戏。游戏涉及最大公约数 (GCD)、异或值 (XOR) 和两个数字的和。Kuro 非常喜欢这个游戏,每天都在不断闯关。 由于 Kuro 要外出一天,他请好友 Katie 来帮他继续游戏。游戏开始时有一个空数组 $a$,包含 $q$ 个任务,分为两种类型: 类型 $1$:将数字 $u_i$ 添加到数组 $a$ 中 类型 $2$:在数组 $a$ 中寻找满足以下条件的数字 $v$: - $k_i$ 能整除 $gcd(x_i, v)$,即 $k_i$ 是后者的约数 - $x_i + v ≤ s_i$ - $x_i ⊕ v$ 的值最大($⊕$ 代表按位异或运算) 若不存在这样的数字则返回 $-1$。 ## 输入格式 第一行包含一个整数 $q$ ($2 ≤ q ≤ 10^5$) 代表任务数量。 接下来 $q$ 行,每行描述一个任务,第 $i$ 行以一个整数 $t_i$ 开头: - 如果 $t_i = 1$,则后面接一个整数 $u_i$,你需要将 $u_i$ 加入到数组中。 - 如果 $t_i = 2$,则后面跟着三个整数 $x_i, k_i, s_i$,你需要从数组 $a$ 中找到一个整数 $v$,满足 $k_i$ 能整除 $gcd(x_i, v)$,$x_i + v ≤ s_i$,且 $x_i ⊕ v$ 的值最大。如果不存在这样的 $v$,则输出 $-1$。 ## 输出格式 对于每个类型 $2$ 任务,输出满足条件的数字 $v$ 或 $-1$。 ## 输入输出样例 #1 ### 输入 #1 5 1 1 1 2 2 1 1 3 2 1 1 2 2 1 1 1 ### 输出 #1 2 1 -1 ## 输入输出样例 #2 ### 输入 #2 10 1 9 2 9 9 22 2 3 3 18 1 25 2 9 9 20 2 25 25 14 1 20 2 26 26 3 1 14 2 20 20 9 ### 输出 #2 9 9 9 -1 -1 -1 ## 说明/提示 【样例 $1$ 解释】 1. 添加 $1$ 到数组 $a$:$\{1\}$ 2. 添加 $2$ 到数组 $a$:$\{1, 2\}$ 3. 查询 $x = 1, k = 1, s = 3$:可选 $v = 1$ 或 $2$,选择 $2$ 因为 $2 ⊕ 1 = 3 > 1 ⊕ 1$ 4. 查询 $x = 1, k = 1, s = 2$:只能选 $v = 1$ 5. 查询 $x = 1, k = 1, s = 1$:无解,返回 $-1$ 【数据规模与约定】 对于所有数据,保证: - $2 ≤ q ≤ 3 × 10^5$; - $1 ≤ u_i ≤ 3 × 10^5$; - $1 ≤ x_i, k_i ≤ 3 × 10^5$; - $1 ≤ s_i ≤ 6 × 10^5$。 对于 $30\%$ 的数据,保证 $q \le 1000$; 另有 $30\%$ 的数据,保证 $u_i, x_i, k_i \le 10^4$。

//#pragma GCC optimize(2,3,“Ofast”,“inline”, “-ffast-math”) //#pragma GCC target(“avx,sse2,sse3,sse4,mmx”) #include #include #include #include #include #include #include #include #include<unordered_map> #include #include #include #include #include #include #include #define fi first #define se second #define pb push_back #define y1 hsduaishxu #define mkp make_pair using namespace std; typedef long long ll; typedef long double ld; typedef unsigned long long ull; typedef pair<int,int> pii; typedef pair<ll,int> pli; typedef pair<int,ll> pil; typedef pair<ll,ll> pll; typedef unsigned int uint; typedef vector vpii; typedef int128 i128; const int maxn=1000005; const ll mod=1000000007; inline int Min(int x,int y){return x<y?x:y;} inline int Max(int x,int y){return x>y?x:y;} inline ll Min(ll x,ll y){return x<y?x:y;} inline ll Max(ll x,ll y){return x>y?x:y;} inline void ad(int &x,int y,int z){x=y+z;if(x>=mod) x-=mod;} inline void ad(ll &x,ll y,ll z){x=y+z;if(x>=mod) x-=mod;} inline void ad(int &x,int y){x+=y;if(x>=mod) x-=mod;} inline void ad(int &x,ll y){x+=y;if(x>=mod) x-=mod;} inline void ad(ll &x,ll y){x+=y;if(x>=mod) x-=mod;} inline void siu(int &x,int y,int z){x=y-z;if(x<0) x+=mod;} inline void siu(int &x,int y){x-=y;if(x<0) x+=mod;} inline void siu(ll &x,ll y){x-=y;if(x<0) x+=mod;} inline ll myabs(ll x){return x<0?-x:x;} inline void tmn(int &x,int y){if(y<x) x=y;} inline void tmx(int &x,int y){if(y>x) x=y;} inline void tmn(ll &x,ll y){if(y<x) x=y;} inline void tmx(ll &x,ll y){if(y>x) x=y;} ll qpow(ll aa,ll bb){ll res=1;while(bb){if(bb&1) res=resaa%mod;aa=aaaa%mod;bb>>=1;}return res;} ll qpow(ll aa,ll bb,ll md){ll res=1;while(bb){if(bb&1) res=(i128)resaa%md;aa=(i128)aaaa%md;bb>>=1;}return res;} inline ll Inv(ll x,ll md){return qpow(x,md-2,md);} inline ll Inv(ll x){return qpow(x,mod-2);} int ,; int n,k; int p[maxn],q[maxn]; ll ans; vector g[maxn],h[maxn]; int r1,r2; int siz[maxn],dfn[maxn],dfscnt; void dfs(int u) { siz[u]=1;dfn[u]=dfscnt; for(auto v:g[u]) dfs(v),siz[u]+=siz[v]; } struct bit { int c[maxn]; void clr() { for(int i=1;i<=n;i) c[i]=0; } int lowbit(int x){return x&(-x);} void ad(int x,int k){while(x<=n){c[x]+=k;x+=lowbit(x);}} int qry(int x){int res=0;while(x>=1){res+=c[x];x-=lowbit(x);}return res;} }T1,T2; int F[maxn],st[maxn],tp,sz[maxn],son[maxn]; vector e[maxn]; void dfs1(int u) { st[tp]=u;e[u].clear(); if(tp>k) F[u]=st[tp-k]; else F[u]=0; if(F[u]) e[F[u]].push_back(u); sz[u]=1;son[u]=0; for(auto v:h[u]) { dfs1(v); if(sz[v]>sz[son[u]]) son[u]=v; sz[u]+=sz[v]; } tp–; } void ins(int x,int k) { T1.ad(dfn[x],k);T1.ad(dfn[x]+siz[x],-k); T2.ad(dfn[x],k); } int qry(int x) { return T1.qry(dfn[x])+T2.qry(dfn[x]+siz[x]-1)-T2.qry(dfn[x]-1); } void dfs3(int u,int ty) { for(auto v:e[u]) { if(ty1) ans+=qry(v); else if(ty3) ins(v,-1); else if(ty==2) ins(v,1); } for(auto v:h[u]) dfs3(v,ty); } void dfs2(int u,int ty) { for(auto v:h[u]) if(v!=son[u]) dfs2(v,0); if(son[u]) { dfs2(son[u],1); for(auto v:h[u]) if(v!=son[u]) dfs3(v,1),dfs3(v,2); } for(auto v:e[u]) ins(v,1); if(!ty) dfs3(u,3); } void cal() { dfscnt=0;dfs(r1); T1.clr();T2.clr(); tp=0;dfs1(r2); dfs2(r2,0); } void solve() { cin>>n>>k; for(int i=1;i<=n;i) cin>>p[i]; for(int i=1;i<=n;i++) cin>>q[i]; for(int i=1;i<=n;i++) { if(!p[i]) r1=i; else g[p[i]].push_back(i); if(!q[i]) r2=i; else h[q[i]].push_back(i); } cal(); for(int i=1;i<=n;i++) swap(p[i],q[i]),swap(g[i],h[i]);swap(r1,r2); cal(); cout<<ans<<“\n”; } signed main() { freopen(“D.in”,“r”,stdin); freopen(“D.out”,“w”,stdout); ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); =1; //cin>>; while(–) { solve(); } return 0; } //by cristiano ronaldo dos santos aveiro #include <bits/stdc++.h> using namespace std; typedef long long ll; #define rep(i,s,t) for(register ll i = s;i <= t;++i) #define per(i,t,s) for(register ll i = t;i >= s;–i) const ll N = 1e6 + 5; ll n; ll k; ll rt1; ll rt2; ll top; ll idx; ll ans; ll p[N] = {}; ll q[N] = {}; ll fa[N] = {}; ll st[N] = {}; ll sz[N] = {}; ll siz[N] = {}; ll dfn[N] = {}; ll son[N] = {}; vector g[N]; vector g1[N]; vector g2[N]; class binary_indexed_tree { private: ll t[N] = {}; public: inline void init() { memset(t,0,sizeof(t)); } inline ll lowbit(ll x) { return x & (-x); } inline void upd(ll x,ll k) { while(x <= n) { t[x] += k; x += lowbit(x); } } inline ll qry(ll x) { ll ans = 0; while(x) { ans += t[x]; x -= lowbit(x); } return ans; } }; binary_indexed_tree t1; binary_indexed_tree t2; inline ll read() { ll x = 0; ll y = 1; char c = getchar(); while(c < ‘0’ || c > ‘9’) { if(c == ‘-’) y = -y; c = getchar(); } while(c >= ‘0’ && c <= ‘9’) { x = (x << 3) + (x << 1) + (c ^ ‘0’); c = getchar(); } return x * y; } inline void write(ll x) { if(x < 0) { putchar(‘-’); write(-x); return; } if(x > 9) write(x / 10); putchar(x % 10 + ‘0’); } inline void dfs(ll u) { siz[u] = 1; dfn[u] = ++idx; for(register auto v : g1[u]) { dfs(v); siz[u] += siz[v]; } } inline void dfs1(ll u) { st[++top] = u; g[u].clear(); if(top > k) fa[u] = st[top - k]; else fa[u] = 0; if(fa[u]) g[fa[u]].push_back(u); sz[u] = 1; son[u] = 0; for(auto v : g2[u]) { dfs1(v); if(sz[v] > sz[son[u]]) son[u] = v; sz[u] += sz[v]; } top–; } inline void ins(ll x,ll k) { t1.upd(dfn[x],k); t1.upd(dfn[x] + siz[x],-k); t2.upd(dfn[x],k); } inline ll query(ll x) { return t1.qry(dfn[x]) + t2.qry(dfn[x] + siz[x] - 1) - t2.qry(dfn[x] - 1); } inline void dfs3(ll u,ll k) { for(auto v : g[u]) { if(k == 1) ans += query(v); else if(k == 2) ins(v,1); else if(k == 3) ins(v,-1); } for(auto v : g2[u]) dfs3(v,k); } inline void dfs2(ll u,ll k) { for(auto v : g2[u]) if(v != son[u]) dfs2(v,0); if(son[u]) { dfs2(son[u],1); for(auto v : g2[u]) { if(v != son[u]) { dfs3(v,1); dfs3(v,2); } } } for(register auto v : g[u]) ins(v,1); if(!k) dfs3(u,3); } int main() { freopen(“D.in”,“r”,stdin); freopen(“D.out”,“w”,stdout); n = read(); k = read(); rep(i,1,n) p[i] = read(); rep(i,1,n) q[i] = read(); rep(i,1,n) { if(!p[i]) rt1 = i; else g1[p[i]].push_back(i); if(!q[i]) rt2 = i; else g2[q[i]].push_back(i); } idx = 0; dfs(rt1); t1.init(); t2.init(); top = 0; dfs1(rt2); dfs2(rt2,0); rep(i,1,n) { swap(p[i],q[i]); swap(g1[i],g2[i]); swap(rt1,rt2); } idx = 0; dfs(rt1); t1.init(); t2.init(); top = 0; dfs1(rt2); dfs2(rt2,0); write(ans); fclose(stdin); fclose(stdout); return 0; }针对以下问题,上述两段代码的功能有什么不同,请指出并修正第二段代码,使得第二段代码功能与第一段代码功能完全等价小丁的树 题目描述 小丁拥有两棵均具有 n n 个顶点,编号集合为 { 1 , 2 , ⋯   , n } {1,2,⋯,n} 的有根树 T 1 , T 2 T 1 ​ ,T 2 ​ ,现在他需要计算这两棵树的相似程度。 为了计算,小丁定义了对于一棵树 T T 和 T T 上两个不同顶点 u , v u,v 的距离函数 d T ( u , v ) d T ​ (u,v),其定义为 u , v u,v 两个点距离成为祖先关系有多近,具体来说,对于所有在 T T 上为祖先关系的点对 ( u ′ , v ′ ) (u ′ ,v ′ ), dis ⁡ ( u , u ′ ) + dis ⁡ ( v , v ′ ) dis(u,u ′ )+dis(v,v ′ ) 的最小值即为 d T ( u , v ) d T ​ (u,v) 的值,其中 dis ⁡ ( u , v ) dis(u,v) 表示 u , v u,v 在树 T T 上的唯一简单路径包含的边数,即 u , v u,v 的距离。 点对 ( u ′ , v ′ ) (u ′ ,v ′ ) 为祖先关系,当且仅当 u ′ u ′ 是 v ′ v ′ 的祖先或 v ′ v ′ 是 u ′ u ′ 的祖先。(注意,每个点都是自己的祖先) 小丁心里还有一个参数 k k,如果节点对 ( u , v ) (u,v) 满足以下条件,称之为不相似的节点对: 1 ≤ u < v ≤ n 1≤u<v≤n " d T 1 ( u , v ) 0 d T 1 ​ ​ (u,v)=0 且 d T 2 ( u , v ) k d T 2 ​ ​ (u,v)>k“ 或 " d T 2 ( u , v ) 0 d T 2 ​ ​ (u,v)=0 且 d T 1 ( u , v ) k d T 1 ​ ​ (u,v)>k​“ 小丁认为,不相似的节点对越多, T 1 T 1 ​ 和 T 2 T 2 ​ 就越不相似,你能告诉他总共有多少不相似的节点对吗? 输入格式 第一行两个整数 n , k n,k,表示 T 1 T 1 ​ 和 T 2 T 2 ​ 的节点数和参数 k k。 第二行 n n 个正整数 p 1 , p 2 , ⋯   , p n p 1 ​ ,p 2 ​ ,⋯,p n ​ , T 1 T 1 ​ 中节点 i i 的父节点为 p i p i ​ ,特别的,若 p i 0 p i ​ =0,则 i i 是 T 1 T 1 ​ 的根。 第三行 n n 个正整数 q 1 , q 2 , ⋯   , q n q 1 ​ ,q 2 ​ ,⋯,q n ​ , T 2 T 2 ​ 中节点 i i 的父节点为 q i q i ​ ,特别的,若 q i 0 q i ​ =0,则 i i 是 T 2 T 2 ​ 的根。 输出格式 一行一个整数,表示不相似的节点对总数。 样例 1 输入 5 0 0 1 1 2 3 5 3 1 1 0 样例 1 输出 4 样例 1 解释 ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 5 ) , ( 4 , 5 ) (2,3),(2,4),(2,5),(4,5) 为不相似的节点对。 其余样例见下发文件。 数据规模与约定 对于所有数据, 1 ≤ n ≤ 2 × 10 5 , 0 ≤ k < n , 0 ≤ p i , q i ≤ n 1≤n≤2×10 5 ,0≤k<n,0≤p i ​ ,q i ​ ≤n,且由 p i , q i p i ​ ,q i ​ 形成的是一棵 n n 个节点的有根树。 本题采用捆绑评测,你只有通过了一个子任务中所有测试点才能得到该子任务的分数。 Subtask 1(10pts): 1 ≤ n ≤ 100 1≤n≤100。 Subtask 2(20pts): 1 ≤ n ≤ 3000 1≤n≤3000。 Subtask 3(20pts): k 0 k=0。 Subtask 4(10pts): 0 ≤ k ≤ 20 0≤k≤20。 Subtask 5(40pts):无特殊限制。

请结合此题解分析并解释此代码一个 n×m 的 01 矩阵,其中 k 个位置的值给定。这个矩阵满足性质:对于每个 2×2 的小子矩阵中 0 与 1 的个数相同。求满足条件的矩阵数量,对 10 9 +7 取模。 n,m≤10 9 ,k≤10 5 。 一个显然的事实是:确认了第一行和第一列,就能推得所有矩阵。考虑如何确定第一行和第一列。 结论:一个矩阵是一个合法的矩阵,当且仅当其满足,要么第一行是 010101… 或 101010… 这样 01 交错的;要么第一列是这样 01 交错的。 证明可以画图,考虑一个这样的矩阵,使得其第一行和第一列都不是 01 相间的。那么可以找出一个位置 i,满足第 i 行的第一个数和第 i+1 行的第一个数相同(即第一列上连续的两个相同的数),为了方便,都假定为 1。我们考虑这两行的情况: 101⋯01101⋯1001⋯ 101⋯01101⋯1001⋯ ​ (由于 Latex 渲染问题,该公式建议在博客内查看) 注意到红色 1 的位置,在这个位置为了满足以它作为右下角的矩阵而值为 1,但这就导致了以它为左下角的矩阵出现了三个 1,成为了一个不合法的矩阵。这正是因为行上也有相邻的两个 1,有两个相邻的 0 也是这种情况(蓝色部分)。这是不可避免的,故而这样的矩阵都是不合法的。而如果不出现这种情况,则一定可以构造出合法方案。故而结论证毕。 同时这个结论可以推导出一些东西:对于一个第一行都是 01 相间的矩阵,它的每一行都是 01 相间的;对于一个第一列都是 01 相间的矩阵,它的每一列都是 01 相间的。 接下来考虑如何计数。根据容斥原理,我们用 行都是 01 相间的矩阵 + 列都是 01 相间的矩阵 − 行列都是 01 相间的矩阵(即类似棋盘的黑白染色矩阵)。 行都是 01 相间和列都是 01 相间做法类似,这里只介绍行的方式,列做法同理。 对于行上没有已确定的 k 个位置,这一行的情况可以任取 0101… 或 1010… 的一种,乘法原理对答案乘 2。 对于行上已经有确定的位置时,用奇偶性检测它们能否构成 01 相间的一行。如果可以,对答案乘 1;如果不行,答案为 0。 行列都是 01 相间的矩阵直接检查是否能够构成一个棋盘状的东西,同样判一下奇偶性。注意特判一下 k=0 的情况。 这题这样就做完了,时间复杂度 O(klogk+log(n+m))。 代码: #include <algorithm> #include <cstdio> #include <cstring> const int MaxN = 100000; const int Mod = 1000000007; inline int add(int x, int y) { return (x += y) >= Mod ? x - Mod : x; } inline int sub(int x, int y) { return (x -= y) < 0 ? x + Mod : x; } inline int mul(int x, int y) { return 1LL * x * y % Mod; } inline int pw(int x, int y) { int z = 1; for (; y; y >>= 1, x = mul(x, x)) if (y & 1) z = mul(z, x); return z; } inline int inv(int x) { return pw(x, Mod - 2); } inline int sep(int x, int y) { return mul(x, inv(y)); } inline void inc(int &x, int y = 1) { x = add(x, y); } inline void dec(int &x, int y = 1) { x = sub(x, y); } struct data_t { int x, y, d; data_t(int _x = 0, int _y = 0, int _d = 0) { x = _x, y = _y, d = _d; } }; int W, H, N; data_t A[MaxN + 5]; inline int getSit() { char c; do c = getchar(); while (c != '+' && c != '-'); return (c == '+') ? 1 : 0; } void init() { scanf("%d %d %d", &W, &H, &N); for (int i = 1; i <= N; ++i) { A[i].d = getSit(); scanf("%d %d", &A[i].x, &A[i].y); } } inline bool cmpx(const data_t &a, const data_t &b) { if (a.x != b.x) return a.x < b.x; else return a.y < b.y; } inline bool cmpy(const data_t &a, const data_t &b) { if (a.y != b.y) return a.y < b.y; else return a.x < b.x; } inline int calc1() { std::sort(A + 1, A + 1 + N, cmpx); int res = 0, prex = 0; for (int l = 1, r = 0; l <= N; l = r + 1) { while (r < N && A[r + 1].x == A[l].x) r++; for (int i = l; i <= r; ++i) { int x1 = (A[i].y ^ A[l].y) & 1, x2 = (A[i].d ^ A[l].d); if (x1 != x2) return 0; } res += A[l].x - prex - 1; prex = A[l].x; } res += W - prex; return pw(2, res); } inline int calc2() { std::sort(A + 1, A + 1 + N, cmpy); int res = 0, prey = 0; for (int l = 1, r = 0; l <= N; l = r + 1) { while (r < N && A[r + 1].y == A[l].y) r++; for (int i = l; i <= r; ++i) { int x1 = (A[i].x ^ A[l].x) & 1, x2 = (A[i].d ^ A[l].d); if (x1 != x2) return 0; } res += A[l].y - prey - 1; prey = A[l].y; } res += H - prey; return pw(2, res); } inline int calc3() { for (int i = 1; i <= N; ++i) { int x1 = (A[1].x ^ A[1].y ^ A[i].x ^ A[i].y) & 1, x2 = (A[1].d ^ A[i].d); if (x1 != x2) return 0; } return 1; } void solve() { int ans = 0; inc(ans, calc1()); inc(ans, calc2()); dec(ans, calc3()); if (N == 0) dec(ans); printf("%d\n", ans); } int main() { init(); solve(); return 0; }请以在代码中注释的方式解释此代码

最新推荐

recommend-type

计算机病毒知识公开课(课堂PPT).ppt

计算机病毒知识公开课(课堂PPT).ppt
recommend-type

19年国赛服务器答案深度解析:网络搭建与应用

网络搭建与应用是一门涉及计算机网络规划、配置、管理和维护的技术学科。在19年的国家竞赛中,参与者需要展示他们对网络架构、网络设备、协议、安全等方面的知识,以及他们在真实世界问题解决中的实际应用能力。在网络搭建与应用19国赛服务器答案中,涉及的知识点可能包括但不限于以下几个方面: 1. 网络基础知识 - 了解网络的基本概念,包括网络的定义、分类(如LAN、WAN等)、网络的功能和网络协议栈(如TCP/IP模型)。 - 理解网络设备的功能和作用,例如交换机、路由器、防火墙等。 - 掌握网络通信的基本原理,包括数据链路层、网络层、传输层和应用层的协议和功能。 2. 网络设计与规划 - 学习如何根据不同的需求设计网络拓扑结构,例如星形、环形、总线型等。 - 掌握IP地址规划和子网划分的方法,如CIDR、VLSM等技术。 - 了解如何进行网络流量分析和带宽规划,以确保网络性能和稳定性。 3. 网络设备配置与管理 - 掌握交换机和路由器的配置命令,例如VLAN划分、路由协议配置、端口安全等。 - 理解网络设备的管理和维护策略,包括日志管理、性能监控和故障诊断。 4. 网络安全 - 学习网络安全的基本原则,包括数据加密、访问控制、入侵检测系统(IDS)和入侵防御系统(IPS)。 - 掌握常见的网络攻击手段及其防御措施,例如DDoS攻击、ARP欺骗、病毒和恶意软件的防御。 5. 服务器搭建与应用 - 了解不同类型的服务器和它们的应用场景,如Web服务器、数据库服务器、邮件服务器等。 - 学习服务器的安装、配置和管理方法,包括操作系统的安装、服务软件的部署、用户管理等。 6. 实践操作 - 通过搭建真实或虚拟的网络环境来实践理论知识,包括使用网络模拟软件(如GNS3、Packet Tracer等)进行网络设备配置和故障排除。 - 学习如何准备和参加网络相关的竞赛,包括时间管理和应对突发问题的策略。 在给定的压缩包子文件的文件名称列表中,“19年国赛服务器的答案”表明该文件包含具体的竞赛解答步骤和方法。文件可能涉及的是如何根据具体的网络搭建与应用的题目,一步一步地提供解题策略、配置命令和执行步骤等。具体内容可能包括: - 对竞赛题目需求的分析和理解。 - 对应的网络设计解决方案和实现步骤。 - 关键的配置命令和参数设置。 - 对于各种网络功能和安全性的测试方法。 - 可能遇到的问题及其解决方案。 综上所述,对于网络搭建与应用19国赛服务器答案的深入学习和掌握,能够帮助专业人士和学生扩展网络知识,提高解决复杂网络问题的能力,并为将来的IT行业工作奠定扎实的基础。通过针对竞赛题目的实际操作演练,还能增强个人的实践技能和创新思维能力。
recommend-type

【VS2010模块化秘籍】:提升项目管理效率的10个技巧

# 1. VS2010模块化编程概述 在现代软件开发中,模块化编程已经成为提高代码质量和促进团队协作的关键技术之一。本章将介绍在Visual Studio 2010(VS2010)环境中如何理解和实施模块化编程。 ## 1.1 什么是模块化编程? 模块化编程是一种组织程序结构的方法,将程序分解为独立且可管理的模块,每个模块实现一个特定的功能。在V
recommend-type

数据分析师发展前景

<think>嗯,用户现在想了解数据分析师的职业发展和未来前景。根据之前的对话,用户是土木本科想转行,之前我建议过数据分析作为可能的方向之一,现在他可能想更深入了解这个领域的潜力。 首先,我需要参考之前提供的引用内容。引用1提到了数据分析师的职业路径,从专员到专家,还有技能提升的重要性。引用2和3强调了行业需求增长和技能的必要性,引用4则讨论了成为行业专家的长期发展优势。这些都需要整合到回答中。 用户的问题集中在职业前景和趋势,所以我要覆盖市场需求、职业阶段、技能要求、行业趋势和转行建议。考虑到用户是转行者,需要突出土木背景如何与数据分析结合,比如提到的BIM、GIS或者工程数据分析,这样
recommend-type

Elasticsearch及IK分词器安装包资源汇总

标题中提到的知识点包括Elasticsearch安装包和IK分词器,这是进行搜索引擎搭建和数据文本分析的重要组件。Elasticsearch是一个基于Lucene构建的开源搜索引擎,具有水平可伸缩性、高可用性和易用性的特点。它提供了全文搜索功能,同时支持结构化搜索和分析,常被用于大数据分析场景中。 描述中涉及的版本信息表明了所附的安装包和分词器支持不同版本的Elasticsearch。Elasticsearch版本6.x和7.x分别对应了两个主要的版本线,而IK分词器是专门为Elasticsearch设计的中文分词插件。 IK分词器是一款支持中文分词的扩展插件,可以根据中文语境进行智能分词,包括正向匹配、正向最大匹配和逆向最大匹配等算法,对中文文本进行处理。分词器的版本通常会与Elasticsearch的版本相匹配,以保证兼容性和最佳性能。 提到的logstash是与Elasticsearch配合使用的数据处理管道工具,负责收集、处理和转发数据。logstash可以作为事件的中介来处理各种来源的数据,然后将其发送到Elasticsearch进行存储。本压缩包中的logstash-6.4.3.tar.gz对应的版本表明了它的兼容性,适用于Elasticsearch 6.x版本。 压缩包文件名称列表中的文件包含了不同软件的多个版本。其中,“elasticsearch-head-master.zip”是一个可以对Elasticsearch进行可视化管理的Chrome插件,它提供了包括集群管理、索引管理、数据操作和查询在内的功能。 另外,“mysql-connector-java-5.1.41.jar”是一个MySQL数据库的Java驱动程序,用于连接Java应用程序和MySQL数据库,但这似乎与Elasticsearch及IK分词器直接关联不大,可能是一个辅助组件,用于在某些集成场景下将数据从MySQL迁移到Elasticsearch。 从标签内容来看,Elasticsearch被归类于源码软件、大数据和搜索引擎类别。它是一个重要的大数据处理组件,特别是在全文搜索和文本分析领域。在大数据背景下,Elasticsearch凭借其卓越的搜索和分析能力,已经成为企业构建和维护搜索引擎的首选技术之一。 总结来说,本次提供的压缩包包含了多个关键组件,它们共同支持构建一个功能强大的搜索引擎和数据分析平台。Elasticsearch自身及其配套的IK分词器、logstash和可视化插件elasticsearch-head,均对大数据和搜索领域有着重要意义。尽管这些工具具有复杂性,但它们的组合使用使得数据的索引、搜索、可视化和分析变得简单、快速和强大。
recommend-type

从零开始:Axure插件开发入门指南,构建自定义Chrome工具

# 摘要 随着原型设计工具Axure RP的广泛应用,定制化插件开发变得日益重要。本文旨在为开发者提供一个完整的Axure插件开发指南,从基础概念到环境搭建,再到核心编程和界面定制,最终实现交互逻辑与发布维护。通过详细解析插件的API、JavaScript编程、数据管理、界面设计及发布流程,本文帮助开发者深入理解并掌握Axure插件开发的关键技术,确保开发过程的高效性和插件的稳定运行。 # 关键字 Axur
recommend-type

代码错误,修改代码

<think>好的,用户说代码有错误,需要修改。首先我得仔细看看之前的代码哪里有问题。题目是关于彩灯的操作和查询,每个彩灯有一个周期k_i,每次操作区间加1,查询时判断当前按动次数是否为k_i的倍数。 首先,用户提供的代码使用了树状数组(Fenwick Tree)来维护差分数组,实现区间加和单点查询。但可能存在一些问题。比如,树状数组的差分处理是否正确? 在区间更新时,原代码是add(l, 1)和add(r+1, -1),这应该是正确的差分方法。当查询单点x时,sum(x)得到的是从1到x的累计值,也就是该点的实际操作次数。这部分逻辑看起来没问题。 但可能的问题在于,当k_i的值很大时,
recommend-type

筹资风险分析模板:Excel高效风险评估工具

Excel模板筹资风险分析.zip是一个用于财务风险分析的工具包,它可能包含了一个名为“筹资风险分析.xlsx”的Excel文件,这个文件被压缩在ZIP格式的压缩包中。下面将详细说明这个Excel模板中可能包含的知识点: 1. 筹资风险概念: 筹资风险指的是企业在筹资过程中由于各种不确定因素的影响,使得企业实际获得的筹资成本高于预期成本,或者筹资方式、筹资渠道未能达到预期目的,从而对企业财务状况和经营成果产生不利影响的可能性。筹资风险可以来源于金融市场波动、债务利率上升、企业信用评级下降等因素。 2. Excel在财务分析中的应用: Excel作为一个强大的电子表格软件,广泛应用于各种财务数据分析和管理中。它具备数据处理、图表制作、公式计算等功能,非常适合用来制作财务模型、进行预算编制、风险分析等任务。筹资风险分析中,Excel可以帮助用户进行敏感性分析、情景模拟和概率分析等。 3. 筹资风险分析的关键要素: - 资本结构:分析企业的债务与权益比例,评估不同筹资方式对资本结构的影响。 - 债务成本:估算企业债务的利率和偿还期限,考虑利率风险和偿债压力。 - 股权成本:计算股权筹资的期望回报率,评估股权稀释的影响。 - 流动性风险:考虑筹资后的资金流动性,确保企业运营资金的充足性。 - 筹资成本:计算不同筹资方式的综合成本,比较各种筹资渠道的经济性。 4. Excel模板筹资风险分析.xlsx可能包含的功能: - 数据录入区:用于输入企业的财务数据和筹资相关的具体参数。 - 计算引擎:使用Excel公式和函数来计算筹资成本、预期回报率等关键指标。 - 情景分析表:通过调整不同的变量,模拟出不同的筹资情景,分析其对企业财务状况的影响。 - 敏感性分析:评估筹资参数变动对企业风险和回报的影响程度。 - 图表展示:将分析结果以图表的形式展现出来,比如使用条形图、折线图和饼图等,直观展示风险和回报的对比。 - 结论和建议:根据分析结果提供筹资策略的优化建议。 5. 筹资风险分析的实施步骤: - 明确分析目标:确定分析筹资风险的目的和需要关注的关键点。 - 收集数据:搜集相关的市场数据、企业财务报表、筹资计划等。 - 构建模型:在Excel中根据筹资风险分析的理论框架构建分析模型。 - 输入参数:将收集到的数据输入到Excel模型中。 - 运行分析:利用Excel的数据处理能力,执行必要的计算和分析。 - 解读结果:分析输出结果,并据此解读筹资风险水平。 - 制定策略:基于分析结果,提出筹资策略和风险控制措施。 6. 筹资风险分析的应用场景: 筹资风险分析不仅可以用于企业自身的筹资决策过程中,还可以在投资评估、财务咨询、风险管理和战略规划等领域发挥作用。在企业层面,它可以辅助管理层和财务部门制定更为稳健和有效的资金筹集计划;在咨询领域,可以为投资者提供分析企业的筹资活动和风险状况的专业意见;在学术研究中,筹资风险分析是研究企业资本结构和企业价值的重要工具。 7. 筹资风险分析的局限性: 尽管Excel模板筹资风险分析提供了有力的工具,但也存在局限性。模型依赖于准确的数据输入,如果假设或数据有误,将影响分析结果的可靠性。此外,市场环境的变化、政策的调整以及其他不可预测的因素都可能对筹资风险造成影响,这些在模型中可能难以全面考虑。 通过使用Excel模板筹资风险分析.zip内的筹资风险分析.xlsx文件,企业可以更有效地进行筹资风险管理,制定出更合理的筹资策略,从而降低财务风险,提高企业的整体价值。
recommend-type

【Z460_Z560 BIOS升级终极指南】:29CN41WW版本升级,性能提升,故障排除

# 摘要 本文探讨了BIOS升级的必要性、益处以及相关风险和解决策略。首先,概述了BIOS的基础概念和版本更新的重要性,接着详细解读了特定笔记本型号Z460/Z560的BIOS架构和升级步骤。文章进一步分析了BIOS升级对于笔记本性能提升的影响,并提供了详细的故障诊断和排除方法。最后,通过分享实际升级案例,总结了BIOS升级的最佳实践和专业建议。本文旨在帮助技术用户深入理解BIOS升级的过程及
recommend-type

lenet论文

<think>首先,用户查询是:“我想查找LeNet论文相关资料 请问LeNet论文原文及技术解析”。这看起来像是一个新查询,因为系统指令提到“请尽可能多的参考用户上一次的问题和你的回答”,但在这个上下文中,没有提供用户上一次的问题或我的回答。所以,我应该基于当前查询和提供的引用内容来回答。 系统指令包括: - 所有行内数学表达式必须使用$...$格式。 - 独立公式使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾自然地添加引用标识,如[^1]。 - 回答结构清晰,帮助用户解决问题。 - 参考站内引用:有四个引用