#include "FreeRTOS.h" #include "task.h" #include "main.h" #include "cmsis_os.h" #include "stdio.h"

时间: 2023-09-02 08:08:35 浏览: 354
这段代码是一个基于FreeRTOS的多任务应用程序的主程序。以下是代码中各部分的解释: - `#include`语句用于引入所需的头文件。 - `FreeRTOS.h`和`task.h`是FreeRTOS的核心头文件,`cmsis_os.h`是FreeRTOS的CMSIS-RTOS API头文件,`main.h`是主程序的头文件,`stdio.h`是标准输入输出头文件。 - 这些头文件提供了所需的函数和数据类型,例如任务处理函数、任务句柄和队列句柄等。 - 在这段代码中,还没有定义任何任务或队列,这只是一个主程序的框架。
相关问题

#include "FreeRTOS.h" #include "task.h" #include "main.h" #include "cmsis_os.h" #include "stdio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN Variables */ QueueHandle_t xQueue; #define dui_len 5 #define content_len 10 /* USER CODE END Variables */ osThreadId defaultTaskHandle; osThreadId myTask02Handle; osThreadId myTask03Handle; /* Private function prototypes -----------------------------------------------*/ /* USER CODE BEGIN FunctionPrototypes */ /* USER CODE END FunctionPrototypes */ void StartDefaultTask(void const * argument); void StartTask02(void const * argument); void StartTask03(void const * argument); void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */ /* GetIdleTaskMemory prototype (linked to static allocation support) */ void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ); /* USER CODE BEGIN GET_IDLE_TASK_MEMORY */ static StaticTask_t xIdleTaskTCBBuffer; static StackType_t xIdleStack[configMINIMAL_STACK_SIZE]; void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ) { *ppxIdleTaskTCBBuffer = &xIdleTaskTCBBuffer; *ppxIdleTaskStackBuffer = &xIdleStack[0]; *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;请写出详细的注释

这段代码是一个基于FreeRTOS的多任务应用程序的主程序。以下是代码中各部分的解释: - `#include`语句用于引入所需的头文件。 - `QueueHandle_t xQueue;`声明一个队列句柄。 - `dui_len`和`content_len`分别定义了队列中数据项的长度。 - `osThreadId`类型的三个变量`defaultTaskHandle`、`myTask02Handle`和`myTask03Handle`声明了三个任务的句柄。 - `StartDefaultTask`、`StartTask02`和`StartTask03`是三个任务的函数原型。 - `MX_FREERTOS_Init`是FreeRTOS的初始化函数,其中包含了定义空闲任务的回调函数。 下面是三个任务的函数: - `StartDefaultTask`函数是FreeRTOS默认的空闲任务,它没有任何实际作用。 - `StartTask02`函数是一个任务,主要是向队列中发送数据。 - `StartTask03`函数是一个任务,主要是从队列中接收数据。 在`vApplicationGetIdleTaskMemory`回调函数中,我们为空闲任务分配了堆栈和TCB缓冲区,这些缓冲区将在FreeRTOS启动时用于空闲任务。

/* USER CODE BEGIN Header */ /** ****************************************************************************** * File Name : freertos.c * Description : Code for freertos applications ****************************************************************************** * @attention * * <h2><center>&copy; Copyright (c) 2025 STMicroelectronics. * All rights reserved.</center></h2> * * This software component is licensed by ST under Ultimate Liberty license * SLA0044, the "License"; You may not use this file except in compliance with * the License. You may obtain a copy of the License at: * www.st.com/SLA0044 * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "FreeRTOS.h" #include "task.h" #include "main.h" #include "cmsis_os.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include <stdio.h> /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN Variables */ /* USER CODE END Variables */ osThreadId Task_HighFuncHandle; osThreadId Task_MidFuncHandle; osThreadId Task_LowFuncHandle; osThreadId Task_LedFuncHandle; osThreadId DefaultTaskHandle; osMessageQId myQueue01Handle; osMutexId myMutex01Handle; osSemaphoreId BinarySem_UartHandle; osSemaphoreId BinarySem_KeyHandle; /* Private function prototypes -----------------------------------------------*/ /* USER CODE BEGIN FunctionPrototypes */ /* USER CODE END FunctionPrototypes */ void StartTask_HighFunc(void const * argument); void StartTask_MidFunc(void const * argument); void StartTask_LowFunc(void const * argument); void StartTask_LedFunc(void const * argument); void StartDefaultTask(void const * argument); void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */ /* GetIdleTaskMemory prototype (linked to static allocation support) */ void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ); /* USER CODE BEGIN GET_IDLE_TASK_MEMORY */ static StaticTask_t xIdleTaskTCBBuffer; static StackType_t xIdleStack[configMINIMAL_STACK_SIZE]; void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ) { *ppxIdleTaskTCBBuffer = &xIdleTaskTCBBuffer; *ppxIdleTaskStackBuffer = &xIdleStack[0]; *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE; /* place for user code */ } /* USER CODE END GET_IDLE_TASK_MEMORY */ /** * @brief FreeRTOS initialization * @param None * @retval None */ void MX_FREERTOS_Init(void) { /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Create the mutex(es) */ /* definition and creation of myMutex01 */ osMutexDef(myMutex01); myMutex01Handle = osMutexCreate(osMutex(myMutex01)); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* Create the semaphores(s) */ /* definition and creation of BinarySem_Uart */ osSemaphoreDef(BinarySem_Uart); BinarySem_UartHandle = osSemaphoreCreate(osSemaphore(BinarySem_Uart), 1); /* definition and creation of BinarySem_Key */ osSemaphoreDef(BinarySem_Key); BinarySem_KeyHandle = osSemaphoreCreate(osSemaphore(BinarySem_Key), 1); /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* Create the queue(s) */ /* definition and creation of myQueue01 */ osMessageQDef(myQueue01, 16, uint16_t); myQueue01Handle = osMessageCreate(osMessageQ(myQueue01), NULL); /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* definition and creation of Task_HighFunc */ osThreadDef(Task_HighFunc, StartTask_HighFunc, osPriorityHigh, 0, 128); Task_HighFuncHandle = osThreadCreate(osThread(Task_HighFunc), NULL); /* definition and creation of Task_MidFunc */ osThreadDef(Task_MidFunc, StartTask_MidFunc, osPriorityNormal, 0, 128); Task_MidFuncHandle = osThreadCreate(osThread(Task_MidFunc), NULL); /* definition and creation of Task_LowFunc */ osThreadDef(Task_LowFunc, StartTask_LowFunc, osPriorityLow, 0, 128); Task_LowFuncHandle = osThreadCreate(osThread(Task_LowFunc), NULL); /* definition and creation of Task_LedFunc */ osThreadDef(Task_LedFunc, StartTask_LedFunc, osPriorityNormal, 0, 128); Task_LedFuncHandle = osThreadCreate(osThread(Task_LedFunc), NULL); /* definition and creation of DefaultTask */ osThreadDef(DefaultTask, StartDefaultTask, osPriorityIdle, 0, 128); DefaultTaskHandle = osThreadCreate(osThread(DefaultTask), NULL); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ } /* USER CODE BEGIN Header_StartTask_HighFunc */ /** * @brief Function implementing the Task_HighFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_HighFunc */ void StartTask_HighFunc(void const * argument) { /* USER CODE BEGIN StartTask_HighFunc */ /* Infinite loop */ for(;;) { printf("Task_HighFunc gets binarySem!\r\n"); if(osSemaphorewait(myMutex0lHandle, osWaitForever)== osOK) { printf("Task_HighPunc Running\r\n"); } printf("Task_HighFunc Releasingsesaphore!\r\n"); osSemaphoreRelease (myMutex0lHandle); osDelay(500); } /* USER CODE END StartTask_HighFunc */ } /* USER CODE BEGIN Header_StartTask_MidFunc */ /** * @brief Function implementing the Task_MidFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_MidFunc */ void StartTask_MidFunc(void const * argument) { /* USER CODE BEGIN StartTask_MidFunc */ /* Infinite loop */ for(;;) { printf("Task_MidFunc Running\r\n"); osDelay (500); } /* USER CODE END StartTask_MidFunc */ } /* USER CODE BEGIN Header_StartTask_LowFunc */ /** * @brief Function implementing the Task_LowFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_LowFunc */ void StartTask_LowFunc(void const * argument) { /* USER CODE BEGIN StartTask_LowFunc */ static uint32_t i; /* Infinite loop */ for(;;) { printf("Task_LowFunc gets binarySem!\r\n"); if(osSemaphoreWait(myMutex0lHandle, osWaitForever)== osOK) { printf("Task_LowFunc Running\r\n"); } for(i=0;i<2000000;i++) { if(HAL_GPIO_ReadPin(KEY1_GPIO_Port, KEY1_Pin)== 0) { osDelay(10); while(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin) == 0); printf("Task_HighFunc Suspend!\r\n"); vTaskSuspend(Task_HighHandle); printf("Task_MidFunc Suspend!\r\n"); vTaskSuspend(Task_MidHandle); printf("Task_LedFunc Resume!\r\n"); vTaskResume(Task_LedHandle); printf("Task_LowFunc Suspend!\r\n"); vTaskSuspend(Task_LowHandle); } osThreadYield(); } printf("Task_LowFunc Releasing semaphore!\r\n"); osSemaphoreRelease(myMutex0lHandle); osDelay(500); } /* USER CODE END StartTask_LowFunc */ } /* USER CODE BEGIN Header_StartTask_LedFunc */ /** * @brief Function implementing the Task_LedFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_LedFunc */ void StartTask_LedFunc(void const * argument) { /* USER CODE BEGIN StartTask_LedFunc */ uint32_t temp=0; /* Infinite loop */ for(;;) { if(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==0) { osDelay(10); while(HAL_GPIO_ReadPin(KEY1_GPIO_Port, KEY1_Pin)==0); printf("myQueueOlHandle Send!\r\n"); xQueueSend(myQueueOlHandle, &temp, portMAX_DELAY); temp++; } if(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==0) { osDelay(10); while(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==0); printf("BinarySem_KeyHandle Send!\r\n"); xSemaphoreGive(BinarySem_KeyHandle); } } /* USER CODE END StartTask_LedFunc */ } /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the DefaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void const * argument) { /* USER CODE BEGIN StartDefaultTask */ QueueSetMemberHandle_t add = NULL; uint32_t queue_recv = 0; /* Infinite loop */ for(;;) { add = xQueueSelectFromSet(myQueueSet, portMAX_DELAY ); if(add==myQueue0lHandle) { xQueueReceive(add, &queue_recv, portMAX_DELAY); printf("myQueue0lHandle Rev:%d!\r\n",queue_recv); } else if (add==BinarySem_KeyHandle) { xSemaphoreTake (add, portMAX_DELAY); printf("BinarySem_KeyHandle Revok!\r\n"); } osDelay(1); } /* USER CODE END StartDefaultTask */ } /* Private application code --------------------------------------------------*/ /* USER CODE BEGIN Application */ /* USER CODE END Application */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ 报错/* USER CODE BEGIN Header */ /** ****************************************************************************** * File Name : freertos.c * Description : Code for freertos applications ****************************************************************************** * @attention * * <h2><center>&copy; Copyright (c) 2025 STMicroelectronics. * All rights reserved.</center></h2> * * This software component is licensed by ST under Ultimate Liberty license * SLA0044, the "License"; You may not use this file except in compliance with * the License. You may obtain a copy of the License at: * www.st.com/SLA0044 * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "FreeRTOS.h" #include "task.h" #include "main.h" #include "cmsis_os.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include <stdio.h> /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN Variables */ /* USER CODE END Variables */ osThreadId Task_HighFuncHandle; osThreadId Task_MidFuncHandle; osThreadId Task_LowFuncHandle; osThreadId Task_LedFuncHandle; osThreadId DefaultTaskHandle; osMessageQId myQueue01Handle; osMutexId myMutex01Handle; osSemaphoreId BinarySem_UartHandle; osSemaphoreId BinarySem_KeyHandle; /* Private function prototypes -----------------------------------------------*/ /* USER CODE BEGIN FunctionPrototypes */ /* USER CODE END FunctionPrototypes */ void StartTask_HighFunc(void const * argument); void StartTask_MidFunc(void const * argument); void StartTask_LowFunc(void const * argument); void StartTask_LedFunc(void const * argument); void StartDefaultTask(void const * argument); void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */ /* GetIdleTaskMemory prototype (linked to static allocation support) */ void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ); /* USER CODE BEGIN GET_IDLE_TASK_MEMORY */ static StaticTask_t xIdleTaskTCBBuffer; static StackType_t xIdleStack[configMINIMAL_STACK_SIZE]; void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ) { *ppxIdleTaskTCBBuffer = &xIdleTaskTCBBuffer; *ppxIdleTaskStackBuffer = &xIdleStack[0]; *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE; /* place for user code */ } /* USER CODE END GET_IDLE_TASK_MEMORY */ /** * @brief FreeRTOS initialization * @param None * @retval None */ void MX_FREERTOS_Init(void) { /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Create the mutex(es) */ /* definition and creation of myMutex01 */ osMutexDef(myMutex01); myMutex01Handle = osMutexCreate(osMutex(myMutex01)); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* Create the semaphores(s) */ /* definition and creation of BinarySem_Uart */ osSemaphoreDef(BinarySem_Uart); BinarySem_UartHandle = osSemaphoreCreate(osSemaphore(BinarySem_Uart), 1); /* definition and creation of BinarySem_Key */ osSemaphoreDef(BinarySem_Key); BinarySem_KeyHandle = osSemaphoreCreate(osSemaphore(BinarySem_Key), 1); /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* Create the queue(s) */ /* definition and creation of myQueue01 */ osMessageQDef(myQueue01, 16, uint16_t); myQueue01Handle = osMessageCreate(osMessageQ(myQueue01), NULL); /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* definition and creation of Task_HighFunc */ osThreadDef(Task_HighFunc, StartTask_HighFunc, osPriorityHigh, 0, 128); Task_HighFuncHandle = osThreadCreate(osThread(Task_HighFunc), NULL); /* definition and creation of Task_MidFunc */ osThreadDef(Task_MidFunc, StartTask_MidFunc, osPriorityNormal, 0, 128); Task_MidFuncHandle = osThreadCreate(osThread(Task_MidFunc), NULL); /* definition and creation of Task_LowFunc */ osThreadDef(Task_LowFunc, StartTask_LowFunc, osPriorityLow, 0, 128); Task_LowFuncHandle = osThreadCreate(osThread(Task_LowFunc), NULL); /* definition and creation of Task_LedFunc */ osThreadDef(Task_LedFunc, StartTask_LedFunc, osPriorityNormal, 0, 128); Task_LedFuncHandle = osThreadCreate(osThread(Task_LedFunc), NULL); /* definition and creation of DefaultTask */ osThreadDef(DefaultTask, StartDefaultTask, osPriorityIdle, 0, 128); DefaultTaskHandle = osThreadCreate(osThread(DefaultTask), NULL); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ } /* USER CODE BEGIN Header_StartTask_HighFunc */ /** * @brief Function implementing the Task_HighFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_HighFunc */ void StartTask_HighFunc(void const * argument) { /* USER CODE BEGIN StartTask_HighFunc */ /* Infinite loop */ for(;;) { printf("Task_HighFunc gets binarySem!\r\n"); if(osSemaphorewait(myMutex0lHandle, osWaitForever)== osOK) { printf("Task_HighPunc Running\r\n"); } printf("Task_HighFunc Releasingsesaphore!\r\n"); osSemaphoreRelease (myMutex0lHandle); osDelay(500); } /* USER CODE END StartTask_HighFunc */ } /* USER CODE BEGIN Header_StartTask_MidFunc */ /** * @brief Function implementing the Task_MidFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_MidFunc */ void StartTask_MidFunc(void const * argument) { /* USER CODE BEGIN StartTask_MidFunc */ /* Infinite loop */ for(;;) { printf("Task_MidFunc Running\r\n"); osDelay (500); } /* USER CODE END StartTask_MidFunc */ } /* USER CODE BEGIN Header_StartTask_LowFunc */ /** * @brief Function implementing the Task_LowFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_LowFunc */ void StartTask_LowFunc(void const * argument) { /* USER CODE BEGIN StartTask_LowFunc */ static uint32_t i; /* Infinite loop */ for(;;) { printf("Task_LowFunc gets binarySem!\r\n"); if(osSemaphoreWait(myMutex0lHandle, osWaitForever)== osOK) { printf("Task_LowFunc Running\r\n"); } for(i=0;i<2000000;i++) { if(HAL_GPIO_ReadPin(KEY1_GPIO_Port, KEY1_Pin)== 0) { osDelay(10); while(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin) == 0); printf("Task_HighFunc Suspend!\r\n"); vTaskSuspend(Task_HighHandle); printf("Task_MidFunc Suspend!\r\n"); vTaskSuspend(Task_MidHandle); printf("Task_LedFunc Resume!\r\n"); vTaskResume(Task_LedHandle); printf("Task_LowFunc Suspend!\r\n"); vTaskSuspend(Task_LowHandle); } osThreadYield(); } printf("Task_LowFunc Releasing semaphore!\r\n"); osSemaphoreRelease(myMutex0lHandle); osDelay(500); } /* USER CODE END StartTask_LowFunc */ } /* USER CODE BEGIN Header_StartTask_LedFunc */ /** * @brief Function implementing the Task_LedFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_LedFunc */ void StartTask_LedFunc(void const * argument) { /* USER CODE BEGIN StartTask_LedFunc */ uint32_t temp=0; /* Infinite loop */ for(;;) { if(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==0) { osDelay(10); while(HAL_GPIO_ReadPin(KEY1_GPIO_Port, KEY1_Pin)==0); printf("myQueueOlHandle Send!\r\n"); xQueueSend(myQueueOlHandle, &temp, portMAX_DELAY); temp++; } if(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==0) { osDelay(10); while(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==0); printf("BinarySem_KeyHandle Send!\r\n"); xSemaphoreGive(BinarySem_KeyHandle); } } /* USER CODE END StartTask_LedFunc */ } /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the DefaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void const * argument) { /* USER CODE BEGIN StartDefaultTask */ QueueSetMemberHandle_t add = NULL; uint32_t queue_recv = 0; /* Infinite loop */ for(;;) { add = xQueueSelectFromSet(myQueueSet, portMAX_DELAY ); if(add==myQueue0lHandle) { xQueueReceive(add, &queue_recv, portMAX_DELAY); printf("myQueue0lHandle Rev:%d!\r\n",queue_recv); } else if (add==BinarySem_KeyHandle) { xSemaphoreTake (add, portMAX_DELAY); printf("BinarySem_KeyHandle Revok!\r\n"); } osDelay(1); } /* USER CODE END StartDefaultTask */ } /* Private application code --------------------------------------------------*/ /* USER CODE BEGIN Application */ /* USER CODE END Application */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ 报错../Core/Src/freertos.c(176): warning: #223-D: function "osSemaphorewait" declared implicitly if(osSemaphorewait(myMutex0lHandle, osWaitForever)== osOK) ../Core/Src/freertos.c(176): error: #20: identifier "myMutex0lHandle" is undefined if(osSemaphorewait(myMutex0lHandle, osWaitForever)== osOK) ../Core/Src/freertos.c(181): error: #20: identifier "myMutex0lHandle" is undefined osSemaphoreRelease (myMutex0lHandle); ../Core/Src/freertos.c(221): error: #20: identifier "myMutex0lHandle" is undefined if(osSemaphoreWait(myMutex0lHandle, osWaitForever)== osOK) ../Core/Src/freertos.c(232): error: #20: identifier "Task_HighHandle" is undefined vTaskSuspend(Task_HighHandle); ../Core/Src/freertos.c(234): error: #20: identifier "Task_MidHandle" is undefined vTaskSuspend(Task_MidHandle); ../Core/Src/freertos.c(236): error: #20: identifier "Task_LedHandle" is undefined vTaskResume(Task_LedHandle); ../Core/Src/freertos.c(238): error: #20: identifier "Task_LowHandle" is undefined vTaskSuspend(Task_LowHandle); ../Core/Src/freertos.c(243): error: #20: identifier "myMutex0lHandle" is undefined osSemaphoreRelease(myMutex0lHandle); ../Core/Src/freertos.c(268): error: #20: identifier "myQueueOlHandle" is undefined xQueueSend(myQueueOlHandle, &temp, portMAX_DELAY); ../Core/Src/freertos.c(297): error: #20: identifier "myQueueSet" is undefined add = xQueueSelectFromSet(myQueueSet, portMAX_DELAY ); ../Core/Src/freertos.c(298): error: #20: identifier "myQueue0lHandle" is undefined if(add==myQueue0lHandle) ../Core/Src/freertos.c: 1 warning, 11 errors

### FreeRTOS 编译错误分析与解决 在 FreeRTOS 的开发中,编译错误和警告通常是由以下几个原因导致的:变量未定义、函数调用不正确或配置问题。以下是对问题的具体分析和解决方案。 #### 1. 变量未定义 在代码中出现 `osSemaphorewait myMutex0lHandle` 和 `xQueueSend myQueueOlHandle` 等错误时,通常是因为这些句柄未被正确初始化或声明。FreeRTOS 中的任务句柄(如 `Task_HighHandle`)、队列句柄(如 `myQueueOlHandle`)以及互斥量句柄(如 `myMutex0lHandle`)需要在使用前进行定义和初始化[^1]。 - **解决方法**: - 确保所有句柄在全局范围内声明,并通过相应的 API 初始化。例如: ```c SemaphoreHandle_t myMutex0lHandle = NULL; TaskHandle_t Task_HighHandle = NULL; QueueHandle_t myQueueOlHandle = NULL; void setup() { myMutex0lHandle = xSemaphoreCreateMutex(); // 初始化互斥量 if (myMutex0lHandle == NULL) { printf("Failed to create mutex\r\n"); } xTaskCreate(Task_High, "High", configMINIMAL_STACK_SIZE, NULL, 2, &Task_HighHandle); // 创建任务并获取句柄 myQueueOlHandle = xQueueCreate(10, sizeof(int)); // 创建队列 } ``` #### 2. 函数调用不正确 `vTaskSuspend` 和 `xQueueSelectFromSet` 等函数需要确保其参数类型正确且句柄已初始化。如果句柄未定义或类型不匹配,编译器会报错。 - **解决方法**: - 检查 `vTaskSuspend` 的参数是否为有效的任务句柄。例如: ```c vTaskSuspend(Task_HighHandle); // 暂停任务 ``` - 对于 `xQueueSelectFromSet`,确保队列集已正确创建并添加了相关队列: ```c QueueSetHandle_t myQueueSet = xQueueCreateSet(10); xQueueAddToSet(myQueueOlHandle, myQueueSet); QueueHandle_t selectedQueue = xQueueSelectFromSet(myQueueSet, portMAX_DELAY); ``` #### 3. 配置问题 某些编译错误可能与 FreeRTOS 的配置文件 `FreeRTOSConfig.h` 相关。例如,`configUSE_PORT_OPTIMISED_TASK_SELECTION` 的启用会影响任务调度逻辑[^2]。如果未正确配置,可能会导致编译失败。 - **解决方法**: - 确保 `FreeRTOSConfig.h` 中的宏定义正确。例如: ```c #define configUSE_PORT_OPTIMISED_TASK_SELECTION 1 ``` #### 4. 延迟时间设置 引用中提到的延迟时间 `vTaskDelay(150)` 是为了避免主线程干扰[^1]。如果延迟时间不足,可能导致任务切换异常或资源竞争问题。建议根据实际需求调整延迟值。 ```c vTaskDelay(pdMS_TO_TICKS(150)); // 使用 pdMS_TO_TICKS 转换毫秒为 ticks ``` --- ### 示例代码 以下是一个完整的示例,展示如何初始化句柄并避免编译错误: ```c #include "FreeRTOS.h" #include "task.h" #include "semphr.h" #include "queue.h" SemaphoreHandle_t myMutex0lHandle = NULL; TaskHandle_t Task_HighHandle = NULL; QueueHandle_t myQueueOlHandle = NULL; void task_high(void *pvParameters) { while (1) { xSemaphoreTake(myMutex0lHandle, portMAX_DELAY); // 获取互斥量 printf("Task High Running...\n"); xSemaphoreGive(myMutex0lHandle); // 释放互斥量 vTaskDelay(pdMS_TO_TICKS(1000)); } } void setup() { myMutex0lHandle = xSemaphoreCreateMutex(); if (myMutex0lHandle == NULL) { printf("Failed to create mutex\r\n"); } myQueueOlHandle = xQueueCreate(10, sizeof(int)); if (myQueueOlHandle == NULL) { printf("Failed to create queue\r\n"); } xTaskCreate(task_high, "High", configMINIMAL_STACK_SIZE, NULL, 2, &Task_HighHandle); vTaskStartScheduler(); // 启动调度器 } ``` ---
阅读全文

相关推荐

/* USER CODE BEGIN Header */ /** ****************************************************************************** * File Name : freertos.c * Description : Code for freertos applications ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "FreeRTOS.h" #include "task.h" #include "main.h" #include "cmsis_os.h" #include "string.h" #include "stdio.h" #include "stdlib.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "usart.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define RX_BUFF_SIZE 256 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN Variables */ static uint8_t RxBuff[RX_BUFF_SIZE]; static uint8_t RxByte = 0; static uint8_t Rx_Count = 0; /* USER CODE END Variables */ osThreadId defaultTaskHandle; osThreadId LED_TaskHandle; osThreadId CMDprocess_TaskHandle; osSemaphoreId BinarySemHandle; /* Private function prototypes -----------------------------------------------*/ /* USER CODE BEGIN FunctionPrototypes */ /* USER CODE END FunctionPrototypes */ void StartDefaultTask(void const * argument); void LEDTask(void const * argument); void CMDprocessTask(void const * argument); void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */ /* GetIdleTaskMemory prototype (linked to static allocation support) */ void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ); /* USER CODE BEGIN GET_IDLE_TASK_MEMORY */ static StaticTask_t xIdleTaskTCBBuffer; static StackType_t xIdleStack[configMINIMAL_STACK_SIZE]; void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ) { *ppxIdleTaskTCBBuffer = &xIdleTaskTCBBuffer; *ppxIdleTaskStackBuffer = &xIdleStack[0]; *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE; /* place for user code */ } /* USER CODE END GET_IDLE_TASK_MEMORY */ /** * @brief FreeRTOS initialization * @param None * @retval None */ void MX_FREERTOS_Init(void) { /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* Create the semaphores(s) */ /* definition and creation of BinarySem */ osSemaphoreDef(BinarySem); BinarySemHandle = osSemaphoreCreate(osSemaphore(BinarySem), 1); /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* definition and creation of defaultTask */ osThreadDef(defaultTask, StartDefaultTask, osPriorityNormal, 0, 128); defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL); /* definition and creation of LED_Task */ osThreadDef(LED_Task, LEDTask, osPriorityNormal, 0, 128); LED_TaskHandle = osThreadCreate(osThread(LED_Task), NULL); /* definition and creation of CMDprocess_Task */ osThreadDef(CMDprocess_Task, CMDprocessTask, osPriorityNormal, 0, 128); CMDprocess_TaskHandle = osThreadCreate(osThread(CMDprocess_Task), NULL); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ } /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the defaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void const * argument) { /* USER CODE BEGIN StartDefaultTask */ /* Infinite loop */ for(;;) { vTaskDelay(500); osDelay(1); } /* USER CODE END StartDefaultTask */ } /* USER CODE BEGIN Header_LEDTask */ /** * @brief Function implementing the LED_Task thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_LEDTask */ void LEDTask(void const * argument) { /* USER CODE BEGIN LEDTask */ /* Infinite loop */ for(;;) { osDelay(500); } /* USER CODE END LEDTask */ } /* USER CODE BEGIN Header_CMDprocessTask */ /** * @brief Function implementing the CMDprocess_Task thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_CMDprocessTask */ void CMDprocessTask(void const * argument) { /* USER CODE BEGIN CMDprocessTask */ BaseType_t err = pdFALSE; /* Infinite loop */ for(;;) { if(BinarySemHandle !=0) { err = xSemaphoreTake(BinarySemHandle,portMAX_DELAY); if(err == pdPASS) { printf("CMDprocessTask take the binary Semphore!\r\n"); printf("received CMD is:"); for (int i =0;i<8;i++) printf ("%c",RxBuff[i]); printf ("\n"); if(strncmp((char *)RxBuff,"LED2on",6) == 0) HAL_GPIO_WritePin(GPIOA,GPIO_PIN_0|GPIO_PIN_1,GPIO_PIN_RESET); else if(strncmp((char *)RxBuff,"LED2off",7) == 0) HAL_GPIO_WritePin(GPIOA,GPIO_PIN_0|GPIO_PIN_1,GPIO_PIN_SET); else if(strncmp((char *)RxBuff,"LED3on",6) == 0) HAL_GPIO_WritePin(GPIOA,GPIO_PIN_2|GPIO_PIN_3,GPIO_PIN_RESET); else if(strncmp((char *)RxBuff,"LED3off",7) == 0) HAL_GPIO_WritePin(GPIOA,GPIO_PIN_2|GPIO_PIN_3,GPIO_PIN_SET); else if(strncmp((char *)RxBuff,"BUZZon",6) == 0) HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_SET); else if(strncmp((char *)RxBuff,"BUZZoff",7) == 0) HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_RESET); else printf("invalid CMD,piease input LED2on LED2off BUFFon or BUFFoff\r\n"); } else vTaskDelay(10); } osDelay(1); } /* USER CODE END CMDprocessTask */ } /* Private application code --------------------------------------------------*/ /* USER CODE BEGIN Application */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { RxBuff[Rx_Count++]=RxByte; if((RxByte==0x0A)&&(BinarySemHandle!=0)) { xSemaphoreGiveFromISR(BinarySemHandle,NULL); printf("Semaphore Give FromISR succesed!\r\n"); Rx_Count=0; } if(Rx_Count > 8) { printf("Wrong CMD,Please Check...!\r\n"); memset(RxBuff,0,sizeof(RxBuff)); Rx_Count=0; } while(HAL_UART_Receive_IT(&huart1,&RxByte, 1)==HAL_OK); } /* USER CODE END Application */ 这是freertos.c文件,下面是main.c文件/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stdio.h" #include "usart.h" int fputc(int ch,FILE *f) { HAL_UART_Transmit(&huart1,(uint8_t *)&ch,1,HAL_MAX_DELAY); return ch; } /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ static uint8_t RxByte = 0; /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void MX_FREERTOS_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART1_UART_Init(); /* USE'R CODE BEGIN 2 */ printf("BinarySemaphore test....\r\n"); if(HAL_OK == HAL_UART_Receive_IT(&huart1,&RxByte,1)) printf("UART_Receive_IT successed!\r\n"); else printf("UART_Receive_IT failed!\r\n"); /* USER CODE END 2 */ /* Call init function for freertos objects (in cmsis_os2.c) */ MX_FREERTOS_Init(); /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ 端口调试助手发送指令没反应

/* USER CODE BEGIN Header */ /** ****************************************************************************** * File Name : freertos.c * Description : Code for freertos applications ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "FreeRTOS.h" #include "task.h" #include "main.h" #include "cmsis_os.h" #include "string.h" // 包含 strncmp 函数的声明 #include "stdio.h" // 包含 printf 函数的声明 #include "stdlib.h" // 包含 memset 函数的声明 /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "usart.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define RX_BUFF_SIZE 256 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN Variables */ static uint8_t RxBuff[RX_BUFF_SIZE]; static uint8_t RxByte = 0; static uint8_t Rx_Count = 0; /* USER CODE END Variables */ osThreadId defaultTaskHandle; osThreadId LED_TaskHandle; osThreadId CMDprocess_TaskHandle; osSemaphoreId BinarySemHandle; /* Private function prototypes -----------------------------------------------*/ /* USER CODE BEGIN FunctionPrototypes */ /* USER CODE END FunctionPrototypes */ void StartDefaultTask(void const * argument); void LEDTask(void const * argument); void CMDprocessTask(void const * argument); void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */ /* GetIdleTaskMemory prototype (linked to static allocation support) */ void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ); /* USER CODE BEGIN GET_IDLE_TASK_MEMORY */ static StaticTask_t xIdleTaskTCBBuffer; static StackType_t xIdleStack[configMINIMAL_STACK_SIZE]; void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ) { *ppxIdleTaskTCBBuffer = &xIdleTaskTCBBuffer; *ppxIdleTaskStackBuffer = &xIdleStack[0]; *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE; /* place for user code */ } /* USER CODE END GET_IDLE_TASK_MEMORY */ /** * @brief FreeRTOS initialization * @param None * @retval None */ void MX_FREERTOS_Init(void) { /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* Create the semaphores(s) */ /* definition and creation of BinarySem */ osSemaphoreDef(BinarySem); BinarySemHandle = osSemaphoreCreate(osSemaphore(BinarySem), 1); /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* definition and creation of defaultTask */ osThreadDef(defaultTask, StartDefaultTask, osPriorityNormal, 0, 128); defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL); /* definition and creation of LED_Task */ osThreadDef(LED_Task, LEDTask, osPriorityNormal, 0, 128); LED_TaskHandle = osThreadCreate(osThread(LED_Task), NULL); /* definition and creation of CMDprocess_Task */ osThreadDef(CMDprocess_Task, CMDprocessTask, osPriorityNormal, 0, 128); CMDprocess_TaskHandle = osThreadCreate(osThread(CMDprocess_Task), NULL); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ } /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the defaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void const * argument) { /* USER CODE BEGIN StartDefaultTask */ /* Infinite loop */ for(;;) { osDelay(1); } /* USER CODE END StartDefaultTask */ } /* USER CODE BEGIN Header_LEDTask */ /** * @brief Function implementing the LED_Task thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_LEDTask */ void LEDTask(void const * argument) { /* USER CODE BEGIN LEDTask */ /* Infinite loop */ for(;;) { HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_0); osDelay(500); } /* USER CODE END LEDTask */ } /* USER CODE BEGIN Header_CMDprocessTask */ /** * @brief Function implementing the CMDprocess_Task thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_CMDprocessTask */ void CMDprocessTask(void const * argument) { /* USER CODE BEGIN CMDprocessTask */ BaseType_t err = pdFALSE; /* Infinite loop */ for(;;) { if(BinarySemHandle !=0) { err = xSemaphoreTake(BinarySemHandle,portMAX_DELAY); if(err == pdPASS) { printf("CMDprocessTask take the binary Semphore!\r\n"); printf("received CMD is:"); for (int i =0;i<8;i++) printf ("%c",RxBuff[i]); printf ("\n"); if(strncmp((char *)RxBuff,"LED2on",6) == 0) HAL_GPIO_WritePin(GPIOA,GPIO_PIN_0|GPIO_PIN_1,GPIO_PIN_RESET); else if(strncmp((char *)RxBuff,"LED2off",7) == 0) HAL_GPIO_WritePin(GPIOA,GPIO_PIN_0|GPIO_PIN_1,GPIO_PIN_SET); else if(strncmp((char *)RxBuff,"LED3on",6) == 0) HAL_GPIO_WritePin(GPIOA,GPIO_PIN_2|GPIO_PIN_3,GPIO_PIN_RESET); else if(strncmp((char *)RxBuff,"LED3off",7) == 0) HAL_GPIO_WritePin(GPIOA,GPIO_PIN_2|GPIO_PIN_3,GPIO_PIN_SET); else if(strncmp((char *)RxBuff,"BUZZon",6) == 0) HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_SET); else if(strncmp((char *)RxBuff,"BUZZoff",7) == 0) HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_RESET); else printf("invalid CMD,piease input LED2on LED2off BUFFon or BUFFoff\r\n"); } else vTaskDelay(10); } osDelay(1); } /* USER CODE END CMDprocessTask */ } /* Private application code --------------------------------------------------*/ /* USER CODE BEGIN Application */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { RxBuff[Rx_Count++]=RxByte; if((RxByte==0x0A)&&(BinarySemHandle!=0)) { xSemaphoreGiveFromISR(BinarySemHandle,NULL); printf("Semaphore Give FromISR succesed!\r\n"); Rx_Count=0; } if(Rx_Count > 8) { printf("Wrong CMD,Please Check...!\r\n"); memset(RxBuff,0,sizeof(RxBuff)); Rx_Count=0; } while(HAL_UART_Receive_IT(&huart1,&RxByte, 1)==HAL_OK); } /* USER CODE END Application */ 串口调试助手发送指令后没有反应

/* USER CODE BEGIN Header */ /** ****************************************************************************** * File Name : freertos.c * Description : Code for freertos applications ****************************************************************************** * @attention * *
© Copyright (c) 2025 STMicroelectronics. * All rights reserved.
* * This software component is licensed by ST under Ultimate Liberty license * SLA0044, the "License"; You may not use this file except in compliance with * the License. You may obtain a copy of the License at: * www.st.com/SLA0044 * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "FreeRTOS.h" #include "task.h" #include "main.h" #include "cmsis_os.h" #include "stdio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ extern TIM_HandleTypeDef htim3; //#include "stdio.h" //#include "usart.h" //int fputc(int ch,FILE *f) //{ // HAL_UART_Transmit(&huart1,(uint8_t *)&ch,1,HAL_MAX_DELAY); // return ch; //} /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ void Buzzer_Beep(uint16_t duration_ms); typedef struct { uint8_t mode; uint8_t led_index; uint8_t direction; TickType_t delay; } FlowConfig_t; FlowConfig_t flowCfg = {0, 0, 0, 500}; /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN Variables */ /* USER CODE END Variables */ osThreadId defaultTaskHandle; osThreadId HighTaskHandle; osThreadId MidTaskHandle; osThreadId LowTaskHandle; osThreadId myTask_FlowTaskHandle; osThreadId myTask_KeyTaskHandle; osThreadId myTask_BeepTaskHandle; osMessageQId beepQueueHandle; osMutexId myMutex01Handle; osSemaphoreId myBinarySem01Handle; osSemaphoreId xSemaphoreHandleHandle; /* Private function prototypes -----------------------------------------------*/ /* USER CODE BEGIN FunctionPrototypes */ uint8_t LowPriorityRunningFlag = 0; uint8_t MidPriorityRunningFlag = 0; uint8_t HighPriorityRunningFlag = 0; /* USER CODE END FunctionPrototypes */ void StartDefaultTask(void const * argument); void StartHighPriority_Task(void const * argument); void StartMidPriority_Task(void const * argument); void StartLowPriority_Task(void const * argument); void FlowTask(void const * argument); void KeyTask(void const * argument); void BeepTask(void const * argument); void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */ /* GetIdleTaskMemory prototype (linked to static allocation support) */ void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ); /* USER CODE BEGIN GET_IDLE_TASK_MEMORY */ static StaticTask_t xIdleTaskTCBBuffer; static StackType_t xIdleStack[configMINIMAL_STACK_SIZE]; void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ) { *ppxIdleTaskTCBBuffer = &xIdleTaskTCBBuffer; *ppxIdleTaskStackBuffer = &xIdleStack[0]; *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE; /* place for user code */ } /* USER CODE END GET_IDLE_TASK_MEMORY */ /** * @brief FreeRTOS initialization * @param None * @retval None */ void MX_FREERTOS_Init(void) { /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Create the mutex(es) */ /* definition and creation of myMutex01 */ osMutexDef(myMutex01); myMutex01Handle = osMutexCreate(osMutex(myMutex01)); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* Create the semaphores(s) */ /* definition and creation of myBinarySem01 */ osSemaphoreDef(myBinarySem01); myBinarySem01Handle = osSemaphoreCreate(osSemaphore(myBinarySem01), 1); /* definition and creation of xSemaphoreHandle */ osSemaphoreDef(xSemaphoreHandle); xSemaphoreHandleHandle = osSemaphoreCreate(osSemaphore(xSemaphoreHandle), 1); /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* Create the queue(s) */ /* definition and creation of beepQueue */ osMessageQDef(beepQueue, 16, uint16_t); beepQueueHandle = osMessageCreate(osMessageQ(beepQueue), NULL); /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* definition and creation of defaultTask */ osThreadDef(defaultTask, StartDefaultTask, osPriorityNormal, 0, 128); defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL); /* definition and creation of HighTask */ osThreadDef(HighTask, StartHighPriority_Task, osPriorityHigh, 0, 128); HighTaskHandle = osThreadCreate(osThread(HighTask), NULL); /* definition and creation of MidTask */ osThreadDef(MidTask, StartMidPriority_Task, osPriorityNormal, 0, 128); MidTaskHandle = osThreadCreate(osThread(MidTask), NULL); /* definition and creation of LowTask */ osThreadDef(LowTask, StartLowPriority_Task, osPriorityLow, 0, 128); LowTaskHandle = osThreadCreate(osThread(LowTask), NULL); /* definition and creation of myTask_FlowTask */ osThreadDef(myTask_FlowTask, FlowTask, osPriorityIdle, 0, 128); myTask_FlowTaskHandle = osThreadCreate(osThread(myTask_FlowTask), NULL); /* definition and creation of myTask_KeyTask */ osThreadDef(myTask_KeyTask, KeyTask, osPriorityLow, 0, 128); myTask_KeyTaskHandle = osThreadCreate(osThread(myTask_KeyTask), NULL); /* definition and creation of myTask_BeepTask */ osThreadDef(myTask_BeepTask, BeepTask, osPriorityIdle, 0, 128); myTask_BeepTaskHandle = osThreadCreate(osThread(myTask_BeepTask), NULL); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ } /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the defaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void const * argument) { /* USER CODE BEGIN StartDefaultTask */ /* Infinite loop */ for(;;) { osDelay(1); } /* USER CODE END StartDefaultTask */ } /* USER CODE BEGIN Header_StartHighPriority_Task */ /** * @brief Function implementing the HighTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartHighPriority_Task */ void StartHighPriority_Task(void const * argument) { /* USER CODE BEGIN StartHighPriority_Task */ /* Infinite loop */ for(;;) { printf("HighPriority_Task gets binarySem!\n"); if(osSemaphoreWait(myBinarySem01Handle, osWaitForever) == osOK) { printf("HighPriority_Task Ruming\n\n"); } if(osMutexWait(myMutex01Handle, osWaitForever) == osOK) { printf("HighPriority_Task got mutex!\n"); } printf("HighPriority_Task Releasing semaphore!\r\n"); osSemaphoreRelease(myBinarySem01Handle); osMutexRelease(myMutex01Handle); vTaskDelay(500); osDelay(1); } /* USER CODE END StartHighPriority_Task */ } /* USER CODE BEGIN Header_StartMidPriority_Task */ /** * @brief Function implementing the MidTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartMidPriority_Task */ void StartMidPriority_Task(void const * argument) { /* USER CODE BEGIN StartMidPriority_Task */ /* Infinite loop */ for(;;) { printf("MidPriority_Task Runing\n"); vTaskDelay(500); osDelay(1); } /* USER CODE END StartMidPriority_Task */ } /* USER CODE BEGIN Header_StartLowPriority_Task */ /** * @brief Function implementing the LowTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartLowPriority_Task */ void StartLowPriority_Task(void const * argument) { /* USER CODE BEGIN StartLowPriority_Task */ static uint32_t i; /* Infinite loop */ for(;;) { printf("LowPriority_Task gets binarySem!\n"); if(osSemaphoreWait(myBinarySem01Handle, osWaitForever) == osOK) { printf("LowPriority_Task Runing\n\n"); } if(osMutexWait(myMutex01Handle, osWaitForever) == osOK) { printf("LowPriority_Task Runing\n\n"); } for(i=0;i<2000000;i++) { osThreadYield(); } printf("LowPriority_Task Releasing semaphore!\r\n"); osSemaphoreRelease(myBinarySem01Handle); osMutexRelease(myMutex01Handle); vTaskDelay(500); osDelay(1); } /* USER CODE END StartLowPriority_Task */ } /* USER CODE BEGIN Header_FlowTask */ /** * @brief Function implementing the myTask_FlowTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_FlowTask */ void FlowTask(void const * argument) { /* USER CODE BEGIN FlowTask */ const uint16_t led_pins[6] = {GPIO_PIN_0, GPIO_PIN_1, GPIO_PIN_2, GPIO_PIN_3, GPIO_PIN_4, GPIO_PIN_5}; /* Infinite loop */ for(;;) { for (int i = 0; i < 6; i++) HAL_GPIO_WritePin(GPIOA, led_pins[i], GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOA, led_pins[flowCfg.led_index], GPIO_PIN_RESET); uint8_t dummy = 1; xQueueSend(beepQueueHandle, &dummy, 0); if (flowCfg.direction == 0) { flowCfg.led_index = (flowCfg.led_index + 1) % 6; } else { flowCfg.led_index = (flowCfg.led_index + 5) % 6; } vTaskDelay(pdMS_TO_TICKS(flowCfg.delay)); osDelay(1); } /* USER CODE END FlowTask */ } /* USER CODE BEGIN Header_KeyTask */ /** * @brief Function implementing the myTask_KeyTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_KeyTask */ void KeyTask(void const * argument) { /* USER CODE BEGIN KeyTask */ GPIO_PinState key_state, last_state = GPIO_PIN_SET; /* Infinite loop */ for(;;) { key_state = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_15); if (key_state == GPIO_PIN_RESET && last_state == GPIO_PIN_SET) { flowCfg.mode = (flowCfg.mode + 1) % 4; switch (flowCfg.mode) { case 0: flowCfg.delay = 500; flowCfg.direction = 0; break; case 1: flowCfg.delay = 250; flowCfg.direction = 0; break; case 2: flowCfg.delay = 100; flowCfg.direction = 0; break; case 3: flowCfg.delay = 250; flowCfg.direction = 1; break; } } last_state = key_state; vTaskDelay(pdMS_TO_TICKS(50)); osDelay(1); } /* USER CODE END KeyTask */ } /* USER CODE BEGIN Header_BeepTask */ /** * @brief Function implementing the myTask_BeepTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_BeepTask */ void BeepTask(void const * argument) { /* USER CODE BEGIN BeepTask */ uint8_t beep_flag; /* Infinite loop */ for(;;) { if (xQueueReceive(beepQueueHandle, &beep_flag, portMAX_DELAY)) { HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_3); vTaskDelay(pdMS_TO_TICKS(300)); HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_3); } osDelay(1); } /* USER CODE END BeepTask */ } /* Private application code --------------------------------------------------*/ /* USER CODE BEGIN Application */ void Buzzer_Beep(uint16_t duration_ms) { HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_3); __HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_3, 50); osDelay(duration_ms); HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_3); } /* USER CODE END Application */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ 帮我画出基本任务流程图

pdf

大家在看

recommend-type

详细说明 VC++的MFC开发串口调试助手源代码,包括数据发送,接收,显示制式等29782183com

详细说明 VC++的MFC开发串口调试助手源代码,包括数据发送,接收,显示制式等29782183com
recommend-type

Java实现ModBus Poll端,读/写外连设备寄存器数据,COM3端口连接

资源绑定,Java实现ModBus Poll端,读/写外连设备寄存器数据,COM3端口连接
recommend-type

基于边折叠的网格快速简化

Fast mesh simplification via edge collapsing This project contains an implementation of a "multiple choice" mesh simplfication algorithm. Over a number of iterations a random fraction of the total edges in the supplied mesh are processed with a subset of these processed edges collapsed (the lowest scoring collapses win when a collision occurs). The only non-standard dependency is the qef_simd.h single file header which you can find in my "qef" project, a version is also included here.
recommend-type

修复Windows 10&11 因更新造成的IE11 无法使用

修复Windows 10&11 因更新造成的IE11 无法使用
recommend-type

(分享)虚拟激光键盘设计制作原理+源代码-电路方案

前言: 自1999年发布第一只浏览传感器以来,其光学鼠标传感器的出货量已经突破6亿只。Avago开创了应用于鼠标的光学传感技术,并向全球各大LED和激光鼠标制造商提供从入门级到下一代的光学和激光鼠标传感器,继续引领市场潮流。Avago Technologies(安华高科技)是为先进的通信、工业和商业等应用领域提供创新的半导体解决方案的领导厂商,成为激光技术应用中的佼佼者。 虚拟激光键盘设计介绍: 激光投射键盘相信大家之前也有所听说,他通过光学手段,将计算机键盘的画面通过激光投影到任意的平面上(如桌面)上,并且允许操作者像使用真实键盘那样进行输入操作。 虚拟激光键盘设计方案概述: 我们的设计基于了PC机上进行的计算机视觉来处理按键事件。采用了一个由摄像头和激光器组成的测距系统工作。 本设计所需要的硬件非常简单,只需要3个核心部件即可实现:一个摄像头、一个激光器以及投射键盘图案的投射激光。这也是正是低成本的奥秘所在了。 当用户在桌上“按下”一个虚拟的按键后,手指上反射的激光信号会被摄像头捕捉。随后安装在PC/Mac上的信号处理软件就会进行最核心的工作:通过反射的激光光斑定位用户的指尖位置,并求出对应的按键: 虚拟激光键盘效果图如下: 视频演示: 虚拟激光键盘原理分析: 在具体介绍实现过程前,我们首先需要分析这类激光投影键盘的工作原理以及给出解决问题的思路,这样也可方便大家举一反三。首先需要解决的核心问题有这么两个: 如何产生键盘的画面? 如何检测键盘输入事件? 产生键盘画面 对于产生键盘画面,可能很多人认为这种画面是通过激光+高速光学振镜来得到的。这种方式虽然在技术上是完全可行的,但由于需要采用精密的机械部件,成本非常高,并且也难以做成轻便的产品。 通过光学振镜扫描产生的激光投影画面截图 实际上在激光投影键盘产品中,这类画面往往是通过全息投影技术得到的。激光器通过照射先前保存有键盘画面的全息镜片的方式在目标平面上产生相应的画面。这种方式的成本非常低廉,市面销售的激光笔常配备的投影图案的镜头也是用这种原理产生的。 不过这类全息投影方式对于DIY来说仍旧不现实,幸好得益于目前网络的便利——通过网购可以直接买到用于产生激光键盘画面的全息投影设备了,且成本在¥50以内。 更多详细介绍详见附件内容。

最新推荐

recommend-type

2013年春季省开课程网络形考“经营管理实务”第三次作业.doc

2013年春季省开课程网络形考“经营管理实务”第三次作业.doc
recommend-type

【数据科学工具】Anaconda下载安装与配置教程:涵盖系统要求、安装步骤及环境配置

内容概要:本文详细介绍了Anaconda的下载、安装与配置方法(2025最新版)。Anaconda是一个开源的Python/R数据科学集成开发平台,预装了1500多个科学计算库,并提供conda包管理和环境管理功能。文章首先列出了系统要求,接着分别讲述了适用于不同操作系统的下载方式,包括官方下载和国内镜像下载。然后,具体讲解了Windows、macOS和Linux三种操作系统的安装步骤,以及环境变量的手动配置方法。此外,还提供了验证安装是否成功的命令和配置国内镜像源的方法,以提高下载速度。最后,列出了一些常用conda命令和常见问题的解决方案。 适合人群:从事数据科学、机器学习领域的研究人员和开发者,特别是需要频繁使用Python科学计算库的用户。 使用场景及目标:①帮助用户快速搭建Python开发环境,尤其是需要多个Python版本共存或隔离环境的情况下;②解决因网络原因导致的下载速度慢的问题;③提供详细的安装指南,确保安装过程顺利进行;④指导用户正确配置环境变量,避免常见的安装后无法使用的错误。 阅读建议:由于Anaconda涉及多平台安装和配置,建议读者根据自己的操作系统选择相应的章节重点阅读,并严格按照步骤操作。对于初次使用者,建议先从简单的安装入手,再逐步学习环境管理和包管理的相关命令。
recommend-type

综合布线设计内容.doc

综合布线设计内容.doc
recommend-type

成功的项目管理.docx

成功的项目管理.docx
recommend-type

前端分析-202307110078988

前端分析-202307110078988
recommend-type

cc65 Windows完整版发布:6502 C开发工具

cc65是一个针对6502处理器的完整C编程开发环境,特别适用于Windows操作系统。6502处理器是一种经典的8位微处理器,于1970年代被广泛应用于诸如Apple II、Atari 2600、NES(任天堂娱乐系统)等早期计算机和游戏机中。cc65工具集能够允许开发者使用C语言编写程序,这对于那些希望为这些老旧系统开发软件的程序员来说是一大福音,因为相较于汇编语言,C语言更加高级、易读,并且具备更好的可移植性。 cc65开发工具包主要包含以下几个重要组件: 1. C编译器:这是cc65的核心部分,它能够将C语言源代码编译成6502处理器的机器码。这使得开发者可以用高级语言编写程序,而不必处理低级的汇编指令。 2. 链接器:链接器负责将编译器生成的目标代码和库文件组合成一个单独的可执行程序。在6502的开发环境中,链接器还需要处理各种内存段的定位和映射问题。 3. 汇编器:虽然主要通过C语言进行开发,但某些底层操作仍然可能需要使用汇编语言来实现。cc65包含了一个汇编器,允许程序员编写汇编代码段。 4. 库和运行时:cc65提供了一套标准库,这些库函数为C语言提供了支持,并且对于操作系统级别的功能进行了封装,使得开发者能够更方便地进行编程。运行时支持包括启动代码、中断处理、内存管理等。 5. 开发工具和文档:除了基本的编译、链接和汇编工具外,cc65还提供了一系列辅助工具,如反汇编器、二进制文件编辑器、交叉引用器等。同时,cc65还包含丰富的文档资源,为开发者提供了详尽的使用指南、编程参考和示例代码。 cc65可以广泛用于学习和开发6502架构相关的软件,尤其适合那些对6502处理器、复古计算机或者早期游戏系统有兴趣的开发者。这些开发者可能想要创建或修改旧式游戏、系统软件、仿真器,或者进行技术研究和学习。 尽管cc65是一个功能强大的工具,但它也要求开发者对目标平台的硬件架构和操作系统有足够的了解。这是因为6502并非现代处理器,它对内存访问、I/O操作和中断管理等有着特殊的限制和要求。因此,使用cc65需要开发者具备一定的背景知识,包括但不限于6502指令集、内存映射、硬件寄存器操作等方面的内容。 此外,cc65针对Windows平台进行了优化和封装,使得它可以在Windows操作系统上无缝运行,这对于习惯于Windows环境的用户是一个好消息。不过,如果用户使用的是其他操作系统,可能需要通过相应的兼容层或虚拟机来运行Windows环境,以便使用cc65工具。 总的来说,cc65提供了一种相对简单的方式来开发运行在6502处理器上的软件。它极大地降低了开发难度,使得更多的人能够接触和参与到基于6502平台的软件开发中来,为这个历史悠久的平台注入了新的活力。
recommend-type

【CLIP模型实战】:从数据预处理到代码实现的图文相似度计算完全指南

# 1. CLIP模型概述 在人工智能领域中,CLIP(Contrastive Language-Image Pre-training)模型作为一款开创性的多模态学习技术,已经成为业界瞩目的焦点。CLIP模型是由OpenAI在2021年推出的,其创新之处在于通过大规模的图文对齐数据进行预训练,能够理解和匹配图像与自然语言描述之间的关联性。CLIP突破了传统方法在特定任务上需要大规模标注数据的限制
recommend-type

车载以太网doip协议格式

<think>首先,用户的问题是:“我想查找关于车载以太网DOIP协议的数据格式或规范”。用户引用了站内内容,其中提到DoIP是基于以太网的通讯协议,用于传输UDS协议的数据,规范于ISO13400标准。关键点:-DoIP协议:DiagnosticcommunicationoverInternetProtocol-规范:ISO13400标准-数据格式:我需要提供关于DoIP数据格式的详细信息根据系统级指令:-所有行内数学表达式使用$...$格式-独立公式使用$$...$$格式并单独成段-LaTeX语法正确-使用中文回答-生成相关问题-回答中引用的段落末尾自然地添加引用标识-回答结构清晰,帮助用
recommend-type

JavaScript中文帮助手册:初学者实用指南

### JavaScript中文帮助手册知识点概述 #### 1. JavaScript简介 JavaScript是一种轻量级的编程语言,广泛用于网页开发。它能够增强用户与网页的交互性,使得网页内容变得动态和富有生气。JavaScript能够操纵网页中的HTML元素,响应用户事件,以及与后端服务器进行通信等。 #### 2. JavaScript基本语法 JavaScript的语法受到了Java和C语言的影响,包括变量声明、数据类型、运算符、控制语句等基础组成部分。以下为JavaScript中常见的基础知识点: - 变量:使用关键字`var`、`let`或`const`来声明变量,其中`let`和`const`是ES6新增的关键字,提供了块级作用域和不可变变量的概念。 - 数据类型:包括基本数据类型(字符串、数值、布尔、null和undefined)和复合数据类型(对象、数组和函数)。 - 运算符:包括算术运算符、关系运算符、逻辑运算符、位运算符等。 - 控制语句:条件判断语句(if...else、switch)、循环语句(for、while、do...while)等。 - 函数:是JavaScript中的基础,可以被看作是一段代码的集合,用于封装重复使用的代码逻辑。 #### 3. DOM操作 文档对象模型(DOM)是HTML和XML文档的编程接口。JavaScript可以通过DOM操作来读取、修改、添加或删除网页中的元素和内容。以下为DOM操作的基础知识点: - 获取元素:使用`getElementById()`、`getElementsByTagName()`等方法获取页面中的元素。 - 创建和添加元素:使用`document.createElement()`创建新元素,使用`appendChild()`或`insertBefore()`方法将元素添加到文档中。 - 修改和删除元素:通过访问元素的属性和方法,例如`innerHTML`、`textContent`、`removeChild()`等来修改或删除元素。 - 事件处理:为元素添加事件监听器,响应用户的点击、鼠标移动、键盘输入等行为。 #### 4. BOM操作 浏览器对象模型(BOM)提供了独立于内容而与浏览器窗口进行交互的对象和方法。以下是BOM操作的基础知识点: - window对象:代表了浏览器窗口本身,提供了许多属性和方法,如窗口大小调整、滚动、弹窗等。 - location对象:提供了当前URL信息的接口,可以用来获取URL、重定向页面等。 - history对象:提供了浏览器会话历史的接口,可以进行导航历史操作。 - screen对象:提供了屏幕信息的接口,包括屏幕的宽度、高度等。 #### 5. JavaScript事件 JavaScript事件是用户或浏览器自身执行的某些行为,如点击、页面加载、键盘按键、鼠标移动等。通过事件,JavaScript可以对这些行为进行响应。以下为事件处理的基础知识点: - 事件类型:包括鼠标事件、键盘事件、表单事件、窗口事件等。 - 事件监听:通过`addEventListener()`方法为元素添加事件监听器,规定当事件发生时所要执行的函数。 - 事件冒泡:事件从最深的节点开始,然后逐级向上传播到根节点。 - 事件捕获:事件从根节点开始,然后逐级向下传播到最深的节点。 #### 6. JavaScript高级特性 随着ECMAScript标准的演进,JavaScript引入了许多高级特性,这些特性包括但不限于: - 对象字面量增强:属性简写、方法简写、计算属性名等。 - 解构赋值:可以从数组或对象中提取数据,赋值给变量。 - 模板字符串:允许嵌入表达式。 - 异步编程:Promise、async/await等用于处理异步操作。 - 模块化:使用`import`和`export`关键字导入和导出模块。 - 类和模块:引入了`class`关键字,允许使用面向对象编程风格定义类,以及模块的声明。 #### 7. 开发工具和调试技巧 为了提高JavaScript开发效率和调试问题,以下是一些常用的工具和调试技巧: - 浏览器的开发者工具:包括控制台(Console)、元素查看器(Elements)、网络监控(Network)、源码编辑器(Sources)等。 - 断点调试:在源码编辑器中设置断点,逐步执行代码,查看变量值和程序流程。 - console.log:在控制台输出日志,帮助理解程序执行流程和变量状态。 - 使用JavaScript验证工具:如JSHint、ESLint等,可以在开发过程中进行代码质量检查。 以上就是《JavaScript中文帮助手册》中可能包含的主要知识点。作为初学者,通过这些内容可以系统地学习和掌握JavaScript基础和进阶知识,实现从初学到实践的跨越。在实际应用中,还需结合具体实例和项目练习,不断加深理解和熟练操作。
recommend-type

深入理解MySQL存储引擎:InnoDB与MyISAM的终极对决

# 1. MySQL存储引擎概述 MySQL数据库的灵活性和高性能在很大程度上得益于其存储引擎架构。**存储引擎**是MySQL中用于存储、索引、查询数据的底层软件模块。不同的存储引擎拥有不同的功能和特性,允许数据库管理员针对特定的应用需求选择最佳的存储引擎。例如,**InnoDB**提供事务支持和行级锁定,适用于需要ACID(原子