"""Backend supported: tensorflow.compat.v1, tensorflow, pytorch, paddle""" import deepxde as dde def pde(x, y): dy_r = dde.grad.jacobian(y, x, i=0, j=0) return dy_r + x[:, 0:1] def solution(X): r, x = X[:, 0:1], X[:, 1:] return 4 - r ** 2 def boundary(x, on_boundary): return on_boundary geom = dde.geometry.Rectangle(xmin=[-2, 0], xmax=[2, 20]) bc = dde.DirichletBC(geom, solution, boundary) data = dde.data.PDE(geom, pde, bc, 1600, 200, solution=solution, num_test=1000) net = dde.maps.FNN([2] + [20] * 3 + [1], "tanh", "Glorot normal") model = dde.Model(data, net) model.compile("adam", lr=0.01, metrics=["l2 relative error"]) losshistory, train_state = model.train(epochs=1500) dde.saveplot(losshistory, train_state, issave=True, isplot=True)

时间: 2023-12-04 07:04:44 浏览: 216
这段代码是用于求解一个二维偏微分方程的。其中,使用了深度学习库deepxde来实现求解过程。具体来说,这个方程是一个二阶常微分方程,可以使用dde.grad.jacobian函数求取其导数。模型使用了一个三层的前馈神经网络,并使用adam优化算法进行训练。最终的训练结果保存在losshistory和train_state中,并可通过dde.saveplot函数进行可视化。
相关问题

请对以下代码进行更改,使其可以输出流场图"""Backend supported: tensorflow.compat.v1, tensorflow, pytorch, paddle""" import deepxde as dde def pde(x, y): dy_r = dde.grad.jacobian(y, x, i=0, j=0) return dy_r + x[:, 0:1] def solution(X): r, x = X[:, 0:1], X[:, 1:] return 4 - r ** 2 def boundary(x, on_boundary): return on_boundary geom = dde.geometry.Rectangle(xmin=[-2, 0], xmax=[2, 20]) bc = dde.DirichletBC(geom, solution, boundary) data = dde.data.PDE(geom, pde, bc, 1600, 200, solution=solution, num_test=1000) net = dde.maps.FNN([2] + [20] * 3 + [1], "tanh", "Glorot normal") model = dde.Model(data, net) model.compile("adam", lr=0.01, metrics=["l2 relative error"]) losshistory, train_state = model.train(epochs=1500) dde.saveplot(losshistory, train_state, issave=True, isplot=True)

为了输出流场图,我们需要修改代码如下: ``` import numpy as np import matplotlib.pyplot as plt # 计算解析解 def exact_solution(x): r, x = x[:, 0:1], x[:, 1:] return 2 * (1 - np.exp(-r**2 / 4)) - x**2 / 2 # 生成网格 X, Y = np.meshgrid(np.linspace(-2, 2, 100), np.linspace(0, 20, 100)) XY = np.hstack((X.flatten()[:, None], Y.flatten()[:, None])) # 计算模型预测值 prediction = model.predict(XY) Z = prediction.reshape(100, 100) # 绘制流场图 plt.figure() plt.contourf(X, Y, Z, levels=20, cmap=plt.cm.jet) plt.colorbar() plt.xlabel("x") plt.ylabel("y") plt.title("Flow field") plt.show() ``` 我们首先定义了一个exact_solution函数,用于计算解析解。然后创建一个100x100的网格,并使用model.predict函数计算模型的预测值,最终通过plt.contourf函数绘制流场图。

Using backend: tensorflow.compat.v1

"Using backend: tensorflow.compat.v1" 这行代码通常出现在使用 TensorFlow 库进行深度学习编程时。它表示当前使用的 TensorFlow 后端是兼容 v1 的版本。 TensorFlow 是一个开源的机器学习框架,它提供了两种主要的编程接口:TensorFlow 1.x 和 TensorFlow 2.x。TensorFlow 2.x 引入了一些新的特性和改进,但为了兼容旧代码,TensorFlow 2.x 提供了兼容模式(compatibility mode),允许用户使用 TensorFlow 1.x 的 API。 当你看到 "Using backend: tensorflow.compat.v1" 时,意味着你的代码正在使用 TensorFlow 2.x 的兼容模式来运行 TensorFlow 1.x 的代码。这种模式通常通过导入 TensorFlow 时启用,如下所示: ```python import tensorflow.compat.v1 as tf tf.disable_v2_behavior() ``` 这行代码的作用是将 TensorFlow 2.x 的行为禁用,并启用 TensorFlow 1.x 的行为,从而使得旧代码能够在新的 TensorFlow 版本中运行。
阅读全文

相关推荐

!mkdir -p ~/.keras/datasets !cp work/mnist.npz ~/.keras/datasets/ import warnings warnings.filterwarnings("ignore") from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() print(f"训练数据形状: {train_images.shape}") print(f"训练标签长度: {len(train_labels)}") print(f"测试数据形状: {test_images.shape}") print(f"测试标签长度: {len(test_labels)}") from keras import models from keras import layers # 构建神经网络模型 network = models.Sequential() network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) # 隐藏层:512个神经元,激活函数为ReLU network.add(layers.Dense(10, activation='softmax')) # 输出层:10个分类,激活函数为Softmax # 编译模型 network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # 数据预处理 train_images = train_images.reshape((60000, 28 * 28)) # 将图像展平成一维向量 train_images = train_images.astype('float32') / 255 # 归一化到[0,1] test_images = test_images.reshape((10000, 28 * 28)) test_images = test_images.astype('float32') / 255 # 标签编码 from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) # 训练模型 network.fit(train_images, train_labels, epochs=5, batch_size=128) # 测试模型性能 test_loss, test_acc = network.evaluate(test_images, test_labels) print('Test accuracy:', test_acc)W0402 08:09:22.415642 140410418362176 deprecation.py:323] From /opt/conda/lib/python3.6/site-packages/tensorflow_core/python/ops/math_grad.py:1424: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.where in 2.0, which has the same broadcast rule as np.where W0402 08:09:22.484165 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:986: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead. W0402 08:09:22.495126 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:973: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead. W0402 08:09:22.537523 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:2741: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead. W0402 08:09:22.546429 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead. W0402 08:09:22.548026 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:181: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead. W0402 08:09:22.566734 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead. W0402 08:09:22.567799 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead. W0402 08:09:22.613820 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.

import deepxde as dde import matplotlib.pyplot as plt import numpy as np from deepxde.backend import torch import torch import os os.environ["DDE_BACKEND"] = "pytorch" geom = dde.geometry.Rectangle([0,0],[1,1]) #定义几何域,代表4个角点 timedomain = dde.geometry.TimeDomain(0,1.0) #定义时间域 geomtime = dde.geometry.GeometryXTime(geom,timedomain) #几何域与时间域的笛卡尔积 #定义pde损失函数 import numpy as np import numpy as np def k(x): x_coord = x[:, 0:1] cond1 = torch.lt(x_coord, 0.25) # x < 0.25 cond2 = torch.logical_and(torch.ge(x_coord, 0.25), torch.lt(x_coord, 0.50)) # 0.25 <= x < 0.50 cond3 = torch.logical_and(torch.ge(x_coord, 0.50), torch.lt(x_coord, 0.75)) # 0.50 <= x < 0.75 cond4 = torch.ge(x_coord, 0.75) # x >= 0.75 return torch.where(cond1, torch.tensor(1.0), torch.where(cond2, torch.tensor(2.0), torch.where(cond3, torch.tensor(3.0), torch.tensor(4.0)))) c=1 rho=1 def pde(x,y): dy_t = dde.grad.jacobian(y,x,i=0,j=2) dy_xx = dde.grad.hessian(y,x,i=0,j=0) dy_yy = dde.grad.hessian(y,x,i=1,j=1) return c * rho * dy_t - k(x) * (dy_xx + dy_yy) #定义边界条件 # 上边界,y=1 def boundary_t(x, on_boundary): return on_boundary and np.isclose(x[1], 1) # 下边界,y=0 def boundary_b(x, on_boundary): return on_boundary and np.isclose(x[1], 0) # 左边界,x=0 def boundary_l(x, on_boundary): return on_boundary and np.isclose(x[0], 0) # 右边界,x=1 def boundary_r(x, on_boundary): return on_boundary and np.isclose(x[0], 1) bc_t = dde.icbc.NeumannBC(geomtime, lambda x:0, boundary_t) bc_b = dde.icbc.NeumannBC(geomtime, lambda x:0, boundary_b) bc_l = dde.icbc.DirichletBC(geomtime, lambda x:10, boundary_l) bc_r = dde.icbc.DirichletBC(geomtime, lambda x:30, boundary_r) #定义初始条件 def init_func(x): return 0 ic = dde.icbc.IC(geomtime,init_func,lambda _,on_initial:on_initial,) #构建神经网络 data = dde.data.TimePDE( geomtime, pde, [bc_t,bc_b,bc_l,bc_r,ic], num_domain=8000, num_boundary=400, num_

from __future__ import print_function import keras from tensorflow.keras.layers import Input, Flatten, Concatenate, add, dot, Multiply, Add, Lambda,Permute,Reshape,Dot from tensorflow.keras.layers import Dense, Conv1D, BatchNormalization, ReLU, MaxPool1D, Input, Flatten, Concatenate, Dropout, LayerNormalization from tensorflow.keras.layers import GlobalAveragePooling1D from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau from tensorflow.keras.models import Model from tensorflow.keras import backend as K import tensorflow as tf import numpy as np import scipy.io as scio from sklearn.model_selection import KFold from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from tensorflow.keras.utils import plot_model from tensorflow.keras import regularizers from tensorflow.compat.v1.profiler import ProfileOptionBuilder from tensorflow.keras.regularizers import l2 import os # 设置随机种子以确保结果可复现 seed = 42 tf.random.set_seed(seed) np.random.seed(seed) ### 参数设置 ### epoch = 100 # 训练轮数 batch_size = 32 # 批量大小 lr = 0.0002 # 学习率 drop_out = 0.1 # Dropout率 L2 = 0.000001 # L2正则化系数 fc1 = 256 # 全连接层1的神经元数量 fc2 = 128 # 全连接层2的神经元数量 input_shape = (80, 1) # 输入形状 embed_dim = 128 # Transformer嵌入维度 num_heads = 8 # 多头注意力头数 ff_dim = 512 # Feed-Forward网络维度 num_transformer_blocks = 4 # Transformer块数 dropout_rate = 0.1 # Dropout率 # 用于存储训练、验证和测试结果的列表 #train_result_MAE_stress = [] #train_result_RMSE_stress = [] #val_result_MAE_stress = [] #val_result_RMSE_stress = [] #test_result_MAE_stress = [] #test_result_RMSE_stress = [] # 创建保存模型和结果的目录 os.makedirs('models', exist_ok=True) os.makedirs('plots', exist_ok=True) # 归一化函数1将数据归一化到[0, 1]区间。 def normalization(array): new_list = [] min = np.min(array) # 计算数组的最小值 max = np.max(array) # 计算数组的最大值 for wave in array: new_wave = (wave - min) / ( max - min) # 均值归

请作为资深开发工程师,解释我给出的代码。请逐行分析我的代码并给出你对这段代码的理解。 我给出的代码是: 【# 导入必要的库 Import the necessary libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import torch import math import torch.nn as nn from scipy.stats import pearsonr from sklearn.metrics import accuracy_score from sklearn.linear_model import LinearRegression from collections import deque from tensorflow.keras import layers import tensorflow.keras.backend as K from tensorflow.keras.layers import LSTM,Dense,Dropout,SimpleRNN,Input,Conv1D,Activation,BatchNormalization,Flatten,Permute from tensorflow.python import keras from tensorflow.python.keras.layers import Layer from sklearn.preprocessing import MinMaxScaler,StandardScaler from sklearn.metrics import r2_score from sklearn.preprocessing import MinMaxScaler import tensorflow as tf from tensorflow.keras import Sequential, layers, utils, losses from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard from tensorflow.keras.layers import Conv2D,Input,Conv1D from tensorflow.keras.models import Model from PIL import * from tensorflow.keras import regularizers from tensorflow.keras.layers import Dropout from tensorflow.keras.callbacks import EarlyStopping import seaborn as sns from sklearn.decomposition import PCA import numpy as np import matplotlib.pyplot as plt from scipy.signal import filtfilt from scipy.fftpack import fft from sklearn.model_selection import train_test_split import warnings warnings.filterwarnings('ignore')】

!mkdir -p ~/.keras/datasets !cp work/mnist.npz ~/.keras/datasets/ import warnings warnings.filterwarnings("ignore") from keras.datasets import mnist #train_images 和 train_labels 组成了训练集(training set),模型将从这些数据中进行学习。 #然后在测试集(test set,即 test_images 和 test_labels)上对模型进行测试。 (train_images, train_labels), (test_images, test_labels) = mnist.load_data() train_images.shape#看下数据的维度 len(train_labels) train_labels test_images.shape len(test_labels) test_labels from keras import models from keras import layers # 构建神经网络模型 network = models.Sequential() network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) network.add(layers.Dense(10, activation='softmax')) network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) train_images = train_images.reshape((60000, 28 * 28)) train_images = train_images.astype('float32') / 255 test_images = test_images.reshape((10000, 28 * 28)) test_images = test_images.astype('float32') / 255 from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) network.fit(train_images, train_labels, epochs=5, batch_size=128) test_loss, test_acc = network.evaluate(test_images, test_labels) print('test_acc:', test_acc)cp: cannot stat 'work/mnist.npz': No such file or directory;Using TensorFlow backend.;WARNING: Logging before flag parsing goes to stderr. W0407 05:07:41.395064 139824211502912 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:74: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead. W0407 05:07:41.399161 139824211502912 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead. W0407 05:07:41.404188 139824211502912 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.

import os import numpy as np from PIL import Image import tensorflow as tf from tensorflow.keras import backend as K from tensorflow.keras.layers import Input, Lambda from tensorflow.keras.models import Model from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, LearningRateScheduler from tensorflow.keras.preprocessing.sequence import pad_sequences import densenet def get_model(img_h, nclass): input = Input(shape=(img_h, None, 1), name='the_input') y_pred = densenet.dense_cnn(input, nclass) labels = Input(name='the_labels', shape=[None], dtype='float32') input_length = Input(name='input_length', shape=[1], dtype='int64') label_length = Input(name='label_length', shape=[1], dtype='int64') loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length]) model = Model(inputs=[input, labels, input_length, label_length], outputs=loss_out) model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer='adam', metrics=['accuracy']) return model def ctc_lambda_func(args): y_pred, labels, input_length, label_length = args return K.ctc_batch_cost(labels, y_pred, input_length, label_length) def start_train(train_index_file_path, train_img_root_dir, test_index_file_path, test_img_root_dir, model_output_dir="./models", train_epochs=10): img_height = 32 img_width = 200 batch_size = 128 # 修复字符集处理 with open('E:\\data\\labels.txt', 'r', encoding='utf-8') as f: char_set = f.readlines() char_list = [ch.strip('\n') for ch in char_set][1:] # 去掉第一行(假设是标题) char_list += [''] # 添加空白符 num_class = len(char_list) model = get_model(img_height, num_class) modelPath = os.path.join(model_output_dir, 'pretrain_model.h5') if os.path.exists(modelPath): print("加载预训练模型权重...") model.load_weights(modelPath) for layer in model.layers[:80]: layer.trainable = False “name ‘tf’ is not define

!mkdir -p ~/.keras/datasets !cp work/mnist.npz ~/.keras/datasets/ import warnings warnings.filterwarnings("ignore") from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() # 查看数据维度信息 print(f"Train images shape: {train_images.shape}") print(f"Length of train labels: {len(train_labels)}") print(f"Test images shape: {test_images.shape}") print(f"Length of test labels: {len(test_labels)}") from keras import models from keras import layers network = models.Sequential() network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) # 添加第一层 network.add(layers.Dense(10, activation='softmax')) # 添加第二层 network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # 预处理数据 train_images = train_images.reshape((60000, 28 * 28)).astype('float32') / 255 test_images = test_images.reshape((10000, 28 * 28)).astype('float32') / 255 from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) # 开始训练 network.fit(train_images, train_labels, epochs=5, batch_size=128) # 模型评价 test_loss, test_acc = network.evaluate(test_images, test_labels) print('Test accuracy:', test_acc)WARNING: Logging before flag parsing goes to stderr. W0402 07:32:40.355032 140313847297856 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:74: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead. W0402 07:32:40.358073 140313847297856 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead. W0402 07:32:40.361127 140313847297856 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.

!mkdir -p ~/.keras/datasets !cp work/mnist.npz ~/.keras/datasets/ import warnings warnings.filterwarnings("ignore") from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() print(f"训练数据形状: {train_images.shape}") print(f"训练标签长度: {len(train_labels)}") print(f"测试数据形状: {test_images.shape}") print(f"测试标签长度: {len(test_labels)}") from keras import models from keras import layers # 构建神经网络模型 network = models.Sequential() network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) # 隐藏层:512个神经元,激活函数为ReLU network.add(layers.Dense(10, activation='softmax')) # 输出层:10个分类,激活函数为Softmax # 编译模型 network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # 数据预处理 train_images = train_images.reshape((60000, 28 * 28)) # 将图像展平成一维向量 train_images = train_images.astype('float32') / 255 # 归一化到[0,1] test_images = test_images.reshape((10000, 28 * 28)) test_images = test_images.astype('float32') / 255 # 标签编码 from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) # 训练模型 network.fit(train_images, train_labels, epochs=5, batch_size=128) # 测试模型性能 test_loss, test_acc = network.evaluate(test_images, test_labels) print('Test accuracy:', test_acc)WARNING: Logging before flag parsing goes to stderr. W0402 07:43:05.362896 140490082953024 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:74: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead. W0402 07:43:05.367048 140490082953024 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead. W0402 07:43:05.371049 140490082953024 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.帮我指定出需要改哪里,要明确的位置

AttributeError: module 'tensorflow._api.v2.compat.v2.__internal__' has no attribute 'register_load_context_function'. Did you mean: 'register_call_context_function'? PS D:\Learn\Keras-GAN-master> ^C PS D:\Learn\Keras-GAN-master> ^C PS D:\Learn\Keras-GAN-master> & D:/Anaconda3/envs/tf1cpu/python.exe d:/Learn/Keras-GAN-master/context_encoder/context_encoder.py 2025-03-19 15:44:14.482172: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0. 2025-03-19 15:44:15.713157: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0. Traceback (most recent call last): File "d:\Learn\Keras-GAN-master\context_encoder\context_encoder.py", line 7, in <module> from keras.layers.advanced_activations import LeakyReLU ModuleNotFoundError: No module named 'keras.layers.advanced_activations' PS D:\Learn\Keras-GAN-master> ^C 修改代码吧 from keras.datasets import cifar10 from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply, GaussianNoise from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D from keras.layers import MaxPooling2D from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import UpSampling2D, Conv2D from keras.models import Sequential, Model from keras.optimizers import Adam from keras import losses from keras.utils import to_categorical import keras.backend as K import matplotlib.pyplot as plt import numpy as np class ContextEncoder(): def __init__(self): self.img_rows = 32 self.img_cols = 32 self.mask_height = 8 self.mask_width = 8

最新推荐

recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

在深度学习领域,Keras是一个非常流行的高级神经网络API,它构建在TensorFlow等后端之上,简化了模型构建和训练的过程。然而,在实践中,我们可能会遇到一些问题,例如在训练过程中遇到`val_categorical_accuracy: 0...
recommend-type

tensorflow 2.0模式下训练的模型转成 tf1.x 版本的pb模型实例

在TensorFlow 2.0中,模型训练变得更加方便和高效,但有时为了兼容旧系统或者利用TensorFlow 1.x的一些特性,我们需要将2.0版本训练的模型转换为1.x版本的.pb模型。这里我们将详细讲解如何实现这个过程,特别关注在...
recommend-type

毕业论文-于基android数独游戏设计(1).doc

毕业论文-于基android数独游戏设计(1).doc
recommend-type

关于ApiPost的安装包

关于ApiPost的安装包
recommend-type

全面掌握Oracle9i:基础教程与实践指南

Oracle9i是一款由甲骨文公司开发的关系型数据库管理系统,它在信息技术领域中占据着重要的地位。Oracle9i的“i”代表了互联网(internet),意味着它具有强大的网络功能,能够支持大规模的网络应用。该系统具有高度的数据完整性和安全性,并且其强大稳定的特点使得它成为了企业级应用的首选数据库平台。 为了全面掌握Oracle9i,本教程将从以下几个方面详细讲解: 1. Oracle9i的安装与配置:在开始学习之前,您需要了解如何在不同的操作系统上安装Oracle9i数据库,并对数据库进行基本的配置。这包括数据库实例的创建、网络配置文件的设置(如listener.ora和tnsnames.ora)以及初始参数文件的设置。 2. SQL语言基础:SQL(Structured Query Language)是用于管理和操作关系型数据库的标准语言。您需要熟悉SQL语言的基本语法,包括数据查询语言(DQL)、数据操纵语言(DML)、数据定义语言(DDL)和数据控制语言(DCL)。 3. PL/SQL编程:PL/SQL是Oracle公司提供的过程化语言,它是SQL的扩展,增加了过程化编程的能力。学习PL/SQL可以让您编写更复杂、更高效的数据库程序,包括存储过程、函数、包和触发器等。 4. Oracle9i的数据管理:这部分内容涉及数据表的创建、修改、删除以及索引、视图、同义词、序列和分区等高级特性。 5. 数据库性能优化:为了确保数据库的高效运行,需要对数据库进行性能调优。这包括了解Oracle9i的内存管理、锁定机制、SQL语句优化和数据库设计原则等。 6. 数据库备份与恢复:为防止数据丢失或损坏,需要了解Oracle9i的备份和恢复机制。您将学习到如何使用RMAN(Recovery Manager)进行数据备份和恢复,并且熟悉数据库的逻辑备份和恢复策略。 7. 安全管理:安全管理是保护数据库不受非法访问和操作的重要环节。Oracle9i提供了丰富的安全特性,如用户权限管理、审计和加密等,您需要学习如何实施这些安全措施来保证数据库的安全性。 8. Oracle9i网络管理:由于Oracle9i对网络的特别设计,您还需要掌握如何管理Oracle网络,包括监听器的配置、网络故障的诊断等。 9. 高级特性介绍:Oracle9i提供了很多高级功能,如高级复制、流复制、高级安全性、Oracle Data Guard等,这些内容将帮助您掌握Oracle9i的高级特性,从而在面对复杂业务需求时有更多解决方案。 在学习Oracle9i教程的过程中,您将通过大量实例练习加深理解,同时也会了解到最佳实践和常见问题的解决方法。本教程的目的是让您全面掌握Oracle9i数据库管理系统的使用,并具备解决实际问题的能力,无论您是数据库管理员、开发人员还是系统分析师,本教程都将成为您提升技能的有力工具。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

模糊大津法

<think>首先,用户查询是关于“模糊大津法”的,我需要理解这个术语。从引用中,我知道大津法(Otsu's method)是一种图像二值化的全局阈值算法。用户提到“模糊大津法”,这可能是大津法与模糊理论结合的一种变体。我需要基于提供的引用和自己的知识来回答。关键引用:- [^1]:讨论了大津法在图像处理中的应用,特别是二值化。- [^2]:解释了大津法的原理和实现。- [^3]:提到大津法是全局阈值算法。- [^4]:讨论了高斯模糊对大津二值化算法的影响,指出高斯模糊可以减少噪声,提高阈值计算的准确性。用户的问题是:“我想查找关于模糊大津法的技术资料或实现方法请问模糊大津法原理实现方法技术文
recommend-type

SOA服务设计原则:2007年7月版原理深入解析

由于提供的文件信息是相同的标题、描述和标签,且压缩包中仅包含一个文件,我们可以得出文件“Prentice.Hall.SOA.Principles.of.Service.Design.Jul.2007.pdf”很可能是一本关于面向服务架构(SOA)的书籍。该文件的名称和描述表明了它是一本专门讨论服务设计原则的出版物,其出版日期为2007年7月。以下是从标题和描述中提取的知识点: ### SOA设计原则 1. **服务导向架构(SOA)基础**: - SOA是一种设计原则,它将业务操作封装为可以重用的服务。 - 服务是独立的、松耦合的业务功能,可以在不同的应用程序中复用。 2. **服务设计**: - 设计优质服务对于构建成功的SOA至关重要。 - 设计过程中需要考虑到服务的粒度、服务的生命周期管理、服务接口定义等。 3. **服务重用**: - 服务设计的目的是为了重用,需要识别出业务领域中可重用的功能单元。 - 通过重用现有的服务,可以降低开发成本,缩短开发时间,并提高系统的整体效率。 4. **服务的独立性与自治性**: - 服务需要在技术上是独立的,使得它们能够自主地运行和被管理。 - 自治性意味着服务能够独立于其他服务的存在和状态进行更新和维护。 5. **服务的可组合性**: - SOA强调服务的组合性,这意味着可以通过组合不同的服务构建新的业务功能。 - 服务之间的交互应当是标准化的,以确保不同服务间的无缝通信。 6. **服务的无状态性**: - 在设计服务时,最好让服务保持无状态,以便它们可以被缓存、扩展和并行处理。 - 状态信息可以放在服务外部,比如数据库或缓存系统中。 7. **服务的可发现性**: - 设计服务时,必须考虑服务的发现机制,以便服务消费者可以找到所需的服务。 - 通常通过服务注册中心来实现服务的动态发现和绑定。 8. **服务的标准化和协议**: - 服务应该基于开放标准构建,确保不同系统和服务之间能够交互。 - 服务之间交互所使用的协议应该广泛接受,如SOAP、REST等。 9. **服务的可治理性**: - 设计服务时还需要考虑服务的管理与监控,确保服务的质量和性能。 - 需要有机制来跟踪服务使用情况、服务变更管理以及服务质量保障。 10. **服务的业务与技术视角**: - 服务设计应该同时考虑业务和技术的视角,确保服务既满足业务需求也具备技术可行性。 - 业务规则和逻辑应该与服务实现逻辑分离,以保证业务的灵活性和可维护性。 ### SOA的实施挑战与最佳实践 1. **变更管理**: - 实施SOA时需要考虑到如何管理和适应快速变更。 - 必须建立适当的变更控制流程来管理和批准服务的更改。 2. **安全性**: - 安全是SOA设计中的一个关键方面,需要确保服务交互的安全。 - 需要实现身份验证、授权、加密和审计机制以保护数据和服务。 3. **互操作性**: - 服务应设计为可与不同平台和技术实现互操作。 - 必须确保服务之间可以跨平台和语言进行通信。 4. **质量保证**: - 对服务进行持续的质量监控和改进是实施SOA不可或缺的一部分。 - 服务质量(QoS)相关的特性如性能、可靠性、可用性等都应被纳入设计考量。 5. **投资回报(ROI)和成本效益分析**: - 从经济角度评估实施SOA的合理性。 - 在设计服务时考虑长期成本节约和ROI。 根据以上知识点的总结,可以看出“Prentice.Hall.SOA.Principles.of.Service.Design.Jul.2007.pdf”这本书很可能是系统地介绍SOA设计原则和最佳实践的专业著作,对于想要深入了解SOA设计的读者来说是一本宝贵的参考资料。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为
recommend-type

rc滤波导致相位

<think>我们参考了关于RC滤波器的多个引用,特别是引用[3]和引用[4]中提到了相位的影响。 根据引用[3]:对于一阶RC低通滤波器,相位角θ的计算公式为:θ = -arctan(ωRC),其中ω是角频率(ω=2πf),R是电阻值,C是电容值。 引用[4]也解释了相位变化的原因:电容是储能元件,信号通过电容时会有延时,导致输出信号相对于输入信号产生相位差。 因此,对于RC低通滤波器,相位差是负的,表示输出信号滞后于输入信号。滞后的角度随频率增加而增加,在截止频率处滞后45度,当频率趋近于无穷大时,滞后90度。 对于RC高通滤波器,根据引用[3]的提示(虽然没有直接给出公式),