如果用户表存在hbase呢 用lookup join实现 并实现用flink cdc将订单表从mysql同步至Kafka ,将用户维表从mysql同步至hbase
时间: 2024-05-12 22:19:24 浏览: 324
可以使用Flink的Hbase Connector和JDBC Connector来实现这个需求。
首先,使用Flink CDC将订单表从MySQL同步至Kafka,可以使用Flink CDC的MySQL Source和Kafka Sink。具体步骤如下:
1. 定义MySQL Source:
```
JdbcSource<RowData> mysqlSource = JdbcSource.<RowData>builder()
.setDrivername("com.mysql.jdbc.Driver")
.setDBUrl("jdbc:mysql://localhost:3306/db_name")
.setUsername("user")
.setPassword("password")
.setFetchSize(1000)
.setQuery("SELECT * FROM order_table")
.setRowTypeInfo(typeInfo)
.build();
```
2. 定义Kafka Sink:
```
FlinkKafkaProducer<RowData> kafkaSink = new FlinkKafkaProducer<>(
"order_topic",
new KeyedSerializationSchemaWrapper<>(new RowDataSerializationSchema(typeInfo)),
props,
FlinkKafkaProducer.Semantic.EXACTLY_ONCE);
```
3. 将MySQL Source和Kafka Sink连接起来:
```
DataStream<RowData> orderStream = env.addSource(mysqlSource);
orderStream.addSink(kafkaSink);
```
接下来,将用户维表从MySQL同步至Hbase,可以使用Flink的JDBC Connector和Hbase Connector。具体步骤如下:
1. 定义JDBC Connector:
```
JdbcInputFormat jdbcInputFormat = JdbcInputFormat.buildJdbcInputFormat()
.setDrivername("com.mysql.jdbc.Driver")
.setDBUrl("jdbc:mysql://localhost:3306/db_name")
.setUsername("user")
.setPassword("password")
.setQuery("SELECT * FROM user_table")
.setRowTypeInfo(typeInfo)
.finish();
```
2. 定义Hbase Connector:
```
HBaseConfiguration hBaseConfiguration = HBaseConfiguration.create();
hBaseConfiguration.set("hbase.zookeeper.quorum", "localhost:2181");
hBaseConfiguration.set("hbase.zookeeper.property.clientPort", "2181");
HBaseTableSchema hBaseTableSchema = new HBaseTableSchema();
hBaseTableSchema.setTableName("user_table");
hBaseTableSchema.addColumn("info", "name", STRING);
hBaseTableSchema.addColumn("info", "age", INT);
HBaseUpsertTableSink hbaseSink = new HBaseUpsertTableSink(hBaseConfiguration, hBaseTableSchema);
```
3. 将JDBC Connector和Hbase Connector连接起来:
```
DataStream<RowData> userStream = env.createInput(jdbcInputFormat);
userStream.addSink(hbaseSink);
```
最后,将订单表和用户表进行Lookup Join,可以使用Flink Table API。具体步骤如下:
1. 定义订单表和用户表的Schema:
```
TableSchema orderSchema = TableSchema.builder()
.field("order_id", DataTypes.BIGINT())
.field("user_id", DataTypes.BIGINT())
.field("order_time", DataTypes.TIMESTAMP())
.build();
TableSchema userSchema = TableSchema.builder()
.field("user_id", DataTypes.BIGINT())
.field("name", DataTypes.STRING())
.field("age", DataTypes.INT())
.build();
```
2. 将订单表和用户表转换为Table对象:
```
Table orderTable = tableEnv.fromDataStream(orderStream, orderSchema);
Table userTable = tableEnv.fromHBase("user_table", hBaseConfiguration, userSchema);
```
3. 进行Lookup Join操作:
```
Table resultTable = orderTable.join(userTable).where("user_id = user_id").select("name, order_time");
```
最后,将结果输出到Kafka中:
```
DataStream<Row> resultStream = tableEnv.toDataStream(resultTable, Row.class);
resultStream.addSink(kafkaSink);
```
阅读全文
相关推荐











